e5824764524ef308de53afa2c767271e2b55cb53
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwNone_GeomW4W4_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4W4_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water4-Water4
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwNone_GeomW4W4_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr1;
85     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     real *           vdwioffsetptr2;
87     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     real *           vdwioffsetptr3;
89     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
91     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
93     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
95     __m256d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
96     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m256d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
99     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m256d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
102     __m256d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
103     __m256d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
104     __m256d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
105     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
106     real             *charge;
107     __m128i          ewitab;
108     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
109     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
110     real             *ewtab;
111     __m256d          dummy_mask,cutoff_mask;
112     __m128           tmpmask0,tmpmask1;
113     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
114     __m256d          one     = _mm256_set1_pd(1.0);
115     __m256d          two     = _mm256_set1_pd(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm256_set1_pd(fr->epsfac);
128     charge           = mdatoms->chargeA;
129
130     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
131     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
132     beta2            = _mm256_mul_pd(beta,beta);
133     beta3            = _mm256_mul_pd(beta,beta2);
134
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
137     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
142     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
143     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
144
145     jq1              = _mm256_set1_pd(charge[inr+1]);
146     jq2              = _mm256_set1_pd(charge[inr+2]);
147     jq3              = _mm256_set1_pd(charge[inr+3]);
148     qq11             = _mm256_mul_pd(iq1,jq1);
149     qq12             = _mm256_mul_pd(iq1,jq2);
150     qq13             = _mm256_mul_pd(iq1,jq3);
151     qq21             = _mm256_mul_pd(iq2,jq1);
152     qq22             = _mm256_mul_pd(iq2,jq2);
153     qq23             = _mm256_mul_pd(iq2,jq3);
154     qq31             = _mm256_mul_pd(iq3,jq1);
155     qq32             = _mm256_mul_pd(iq3,jq2);
156     qq33             = _mm256_mul_pd(iq3,jq3);
157
158     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
159     rcutoff_scalar   = fr->rcoulomb;
160     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
161     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
162
163     /* Avoid stupid compiler warnings */
164     jnrA = jnrB = jnrC = jnrD = 0;
165     j_coord_offsetA = 0;
166     j_coord_offsetB = 0;
167     j_coord_offsetC = 0;
168     j_coord_offsetD = 0;
169
170     outeriter        = 0;
171     inneriter        = 0;
172
173     for(iidx=0;iidx<4*DIM;iidx++)
174     {
175         scratch[iidx] = 0.0;
176     }
177
178     /* Start outer loop over neighborlists */
179     for(iidx=0; iidx<nri; iidx++)
180     {
181         /* Load shift vector for this list */
182         i_shift_offset   = DIM*shiftidx[iidx];
183
184         /* Load limits for loop over neighbors */
185         j_index_start    = jindex[iidx];
186         j_index_end      = jindex[iidx+1];
187
188         /* Get outer coordinate index */
189         inr              = iinr[iidx];
190         i_coord_offset   = DIM*inr;
191
192         /* Load i particle coords and add shift vector */
193         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
194                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
195
196         fix1             = _mm256_setzero_pd();
197         fiy1             = _mm256_setzero_pd();
198         fiz1             = _mm256_setzero_pd();
199         fix2             = _mm256_setzero_pd();
200         fiy2             = _mm256_setzero_pd();
201         fiz2             = _mm256_setzero_pd();
202         fix3             = _mm256_setzero_pd();
203         fiy3             = _mm256_setzero_pd();
204         fiz3             = _mm256_setzero_pd();
205
206         /* Reset potential sums */
207         velecsum         = _mm256_setzero_pd();
208
209         /* Start inner kernel loop */
210         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
211         {
212
213             /* Get j neighbor index, and coordinate index */
214             jnrA             = jjnr[jidx];
215             jnrB             = jjnr[jidx+1];
216             jnrC             = jjnr[jidx+2];
217             jnrD             = jjnr[jidx+3];
218             j_coord_offsetA  = DIM*jnrA;
219             j_coord_offsetB  = DIM*jnrB;
220             j_coord_offsetC  = DIM*jnrC;
221             j_coord_offsetD  = DIM*jnrD;
222
223             /* load j atom coordinates */
224             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
225                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
226                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
227
228             /* Calculate displacement vector */
229             dx11             = _mm256_sub_pd(ix1,jx1);
230             dy11             = _mm256_sub_pd(iy1,jy1);
231             dz11             = _mm256_sub_pd(iz1,jz1);
232             dx12             = _mm256_sub_pd(ix1,jx2);
233             dy12             = _mm256_sub_pd(iy1,jy2);
234             dz12             = _mm256_sub_pd(iz1,jz2);
235             dx13             = _mm256_sub_pd(ix1,jx3);
236             dy13             = _mm256_sub_pd(iy1,jy3);
237             dz13             = _mm256_sub_pd(iz1,jz3);
238             dx21             = _mm256_sub_pd(ix2,jx1);
239             dy21             = _mm256_sub_pd(iy2,jy1);
240             dz21             = _mm256_sub_pd(iz2,jz1);
241             dx22             = _mm256_sub_pd(ix2,jx2);
242             dy22             = _mm256_sub_pd(iy2,jy2);
243             dz22             = _mm256_sub_pd(iz2,jz2);
244             dx23             = _mm256_sub_pd(ix2,jx3);
245             dy23             = _mm256_sub_pd(iy2,jy3);
246             dz23             = _mm256_sub_pd(iz2,jz3);
247             dx31             = _mm256_sub_pd(ix3,jx1);
248             dy31             = _mm256_sub_pd(iy3,jy1);
249             dz31             = _mm256_sub_pd(iz3,jz1);
250             dx32             = _mm256_sub_pd(ix3,jx2);
251             dy32             = _mm256_sub_pd(iy3,jy2);
252             dz32             = _mm256_sub_pd(iz3,jz2);
253             dx33             = _mm256_sub_pd(ix3,jx3);
254             dy33             = _mm256_sub_pd(iy3,jy3);
255             dz33             = _mm256_sub_pd(iz3,jz3);
256
257             /* Calculate squared distance and things based on it */
258             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
259             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
260             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
261             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
262             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
263             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
264             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
265             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
266             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
267
268             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
269             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
270             rinv13           = gmx_mm256_invsqrt_pd(rsq13);
271             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
272             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
273             rinv23           = gmx_mm256_invsqrt_pd(rsq23);
274             rinv31           = gmx_mm256_invsqrt_pd(rsq31);
275             rinv32           = gmx_mm256_invsqrt_pd(rsq32);
276             rinv33           = gmx_mm256_invsqrt_pd(rsq33);
277
278             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
279             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
280             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
281             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
282             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
283             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
284             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
285             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
286             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
287
288             fjx1             = _mm256_setzero_pd();
289             fjy1             = _mm256_setzero_pd();
290             fjz1             = _mm256_setzero_pd();
291             fjx2             = _mm256_setzero_pd();
292             fjy2             = _mm256_setzero_pd();
293             fjz2             = _mm256_setzero_pd();
294             fjx3             = _mm256_setzero_pd();
295             fjy3             = _mm256_setzero_pd();
296             fjz3             = _mm256_setzero_pd();
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             if (gmx_mm256_any_lt(rsq11,rcutoff2))
303             {
304
305             r11              = _mm256_mul_pd(rsq11,rinv11);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm256_mul_pd(r11,ewtabscale);
311             ewitab           = _mm256_cvttpd_epi32(ewrt);
312             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
313             ewitab           = _mm_slli_epi32(ewitab,2);
314             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
315             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
316             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
317             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
318             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
319             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
320             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
321             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(_mm256_sub_pd(rinv11,sh_ewald),velec));
322             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
323
324             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velec            = _mm256_and_pd(velec,cutoff_mask);
328             velecsum         = _mm256_add_pd(velecsum,velec);
329
330             fscal            = felec;
331
332             fscal            = _mm256_and_pd(fscal,cutoff_mask);
333
334             /* Calculate temporary vectorial force */
335             tx               = _mm256_mul_pd(fscal,dx11);
336             ty               = _mm256_mul_pd(fscal,dy11);
337             tz               = _mm256_mul_pd(fscal,dz11);
338
339             /* Update vectorial force */
340             fix1             = _mm256_add_pd(fix1,tx);
341             fiy1             = _mm256_add_pd(fiy1,ty);
342             fiz1             = _mm256_add_pd(fiz1,tz);
343
344             fjx1             = _mm256_add_pd(fjx1,tx);
345             fjy1             = _mm256_add_pd(fjy1,ty);
346             fjz1             = _mm256_add_pd(fjz1,tz);
347
348             }
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             if (gmx_mm256_any_lt(rsq12,rcutoff2))
355             {
356
357             r12              = _mm256_mul_pd(rsq12,rinv12);
358
359             /* EWALD ELECTROSTATICS */
360
361             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
362             ewrt             = _mm256_mul_pd(r12,ewtabscale);
363             ewitab           = _mm256_cvttpd_epi32(ewrt);
364             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
365             ewitab           = _mm_slli_epi32(ewitab,2);
366             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
367             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
368             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
369             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
370             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
371             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
372             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
373             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(_mm256_sub_pd(rinv12,sh_ewald),velec));
374             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
375
376             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
377
378             /* Update potential sum for this i atom from the interaction with this j atom. */
379             velec            = _mm256_and_pd(velec,cutoff_mask);
380             velecsum         = _mm256_add_pd(velecsum,velec);
381
382             fscal            = felec;
383
384             fscal            = _mm256_and_pd(fscal,cutoff_mask);
385
386             /* Calculate temporary vectorial force */
387             tx               = _mm256_mul_pd(fscal,dx12);
388             ty               = _mm256_mul_pd(fscal,dy12);
389             tz               = _mm256_mul_pd(fscal,dz12);
390
391             /* Update vectorial force */
392             fix1             = _mm256_add_pd(fix1,tx);
393             fiy1             = _mm256_add_pd(fiy1,ty);
394             fiz1             = _mm256_add_pd(fiz1,tz);
395
396             fjx2             = _mm256_add_pd(fjx2,tx);
397             fjy2             = _mm256_add_pd(fjy2,ty);
398             fjz2             = _mm256_add_pd(fjz2,tz);
399
400             }
401
402             /**************************
403              * CALCULATE INTERACTIONS *
404              **************************/
405
406             if (gmx_mm256_any_lt(rsq13,rcutoff2))
407             {
408
409             r13              = _mm256_mul_pd(rsq13,rinv13);
410
411             /* EWALD ELECTROSTATICS */
412
413             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
414             ewrt             = _mm256_mul_pd(r13,ewtabscale);
415             ewitab           = _mm256_cvttpd_epi32(ewrt);
416             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
417             ewitab           = _mm_slli_epi32(ewitab,2);
418             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
419             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
420             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
421             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
422             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
423             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
424             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
425             velec            = _mm256_mul_pd(qq13,_mm256_sub_pd(_mm256_sub_pd(rinv13,sh_ewald),velec));
426             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
427
428             cutoff_mask      = _mm256_cmp_pd(rsq13,rcutoff2,_CMP_LT_OQ);
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velec            = _mm256_and_pd(velec,cutoff_mask);
432             velecsum         = _mm256_add_pd(velecsum,velec);
433
434             fscal            = felec;
435
436             fscal            = _mm256_and_pd(fscal,cutoff_mask);
437
438             /* Calculate temporary vectorial force */
439             tx               = _mm256_mul_pd(fscal,dx13);
440             ty               = _mm256_mul_pd(fscal,dy13);
441             tz               = _mm256_mul_pd(fscal,dz13);
442
443             /* Update vectorial force */
444             fix1             = _mm256_add_pd(fix1,tx);
445             fiy1             = _mm256_add_pd(fiy1,ty);
446             fiz1             = _mm256_add_pd(fiz1,tz);
447
448             fjx3             = _mm256_add_pd(fjx3,tx);
449             fjy3             = _mm256_add_pd(fjy3,ty);
450             fjz3             = _mm256_add_pd(fjz3,tz);
451
452             }
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             if (gmx_mm256_any_lt(rsq21,rcutoff2))
459             {
460
461             r21              = _mm256_mul_pd(rsq21,rinv21);
462
463             /* EWALD ELECTROSTATICS */
464
465             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
466             ewrt             = _mm256_mul_pd(r21,ewtabscale);
467             ewitab           = _mm256_cvttpd_epi32(ewrt);
468             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
469             ewitab           = _mm_slli_epi32(ewitab,2);
470             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
471             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
472             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
473             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
474             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
475             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
476             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
477             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(_mm256_sub_pd(rinv21,sh_ewald),velec));
478             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
479
480             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
481
482             /* Update potential sum for this i atom from the interaction with this j atom. */
483             velec            = _mm256_and_pd(velec,cutoff_mask);
484             velecsum         = _mm256_add_pd(velecsum,velec);
485
486             fscal            = felec;
487
488             fscal            = _mm256_and_pd(fscal,cutoff_mask);
489
490             /* Calculate temporary vectorial force */
491             tx               = _mm256_mul_pd(fscal,dx21);
492             ty               = _mm256_mul_pd(fscal,dy21);
493             tz               = _mm256_mul_pd(fscal,dz21);
494
495             /* Update vectorial force */
496             fix2             = _mm256_add_pd(fix2,tx);
497             fiy2             = _mm256_add_pd(fiy2,ty);
498             fiz2             = _mm256_add_pd(fiz2,tz);
499
500             fjx1             = _mm256_add_pd(fjx1,tx);
501             fjy1             = _mm256_add_pd(fjy1,ty);
502             fjz1             = _mm256_add_pd(fjz1,tz);
503
504             }
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             if (gmx_mm256_any_lt(rsq22,rcutoff2))
511             {
512
513             r22              = _mm256_mul_pd(rsq22,rinv22);
514
515             /* EWALD ELECTROSTATICS */
516
517             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
518             ewrt             = _mm256_mul_pd(r22,ewtabscale);
519             ewitab           = _mm256_cvttpd_epi32(ewrt);
520             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
521             ewitab           = _mm_slli_epi32(ewitab,2);
522             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
523             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
524             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
525             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
526             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
527             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
528             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
529             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(_mm256_sub_pd(rinv22,sh_ewald),velec));
530             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
531
532             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm256_and_pd(velec,cutoff_mask);
536             velecsum         = _mm256_add_pd(velecsum,velec);
537
538             fscal            = felec;
539
540             fscal            = _mm256_and_pd(fscal,cutoff_mask);
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm256_mul_pd(fscal,dx22);
544             ty               = _mm256_mul_pd(fscal,dy22);
545             tz               = _mm256_mul_pd(fscal,dz22);
546
547             /* Update vectorial force */
548             fix2             = _mm256_add_pd(fix2,tx);
549             fiy2             = _mm256_add_pd(fiy2,ty);
550             fiz2             = _mm256_add_pd(fiz2,tz);
551
552             fjx2             = _mm256_add_pd(fjx2,tx);
553             fjy2             = _mm256_add_pd(fjy2,ty);
554             fjz2             = _mm256_add_pd(fjz2,tz);
555
556             }
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             if (gmx_mm256_any_lt(rsq23,rcutoff2))
563             {
564
565             r23              = _mm256_mul_pd(rsq23,rinv23);
566
567             /* EWALD ELECTROSTATICS */
568
569             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
570             ewrt             = _mm256_mul_pd(r23,ewtabscale);
571             ewitab           = _mm256_cvttpd_epi32(ewrt);
572             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
573             ewitab           = _mm_slli_epi32(ewitab,2);
574             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
575             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
576             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
577             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
578             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
579             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
580             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
581             velec            = _mm256_mul_pd(qq23,_mm256_sub_pd(_mm256_sub_pd(rinv23,sh_ewald),velec));
582             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
583
584             cutoff_mask      = _mm256_cmp_pd(rsq23,rcutoff2,_CMP_LT_OQ);
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm256_and_pd(velec,cutoff_mask);
588             velecsum         = _mm256_add_pd(velecsum,velec);
589
590             fscal            = felec;
591
592             fscal            = _mm256_and_pd(fscal,cutoff_mask);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm256_mul_pd(fscal,dx23);
596             ty               = _mm256_mul_pd(fscal,dy23);
597             tz               = _mm256_mul_pd(fscal,dz23);
598
599             /* Update vectorial force */
600             fix2             = _mm256_add_pd(fix2,tx);
601             fiy2             = _mm256_add_pd(fiy2,ty);
602             fiz2             = _mm256_add_pd(fiz2,tz);
603
604             fjx3             = _mm256_add_pd(fjx3,tx);
605             fjy3             = _mm256_add_pd(fjy3,ty);
606             fjz3             = _mm256_add_pd(fjz3,tz);
607
608             }
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             if (gmx_mm256_any_lt(rsq31,rcutoff2))
615             {
616
617             r31              = _mm256_mul_pd(rsq31,rinv31);
618
619             /* EWALD ELECTROSTATICS */
620
621             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
622             ewrt             = _mm256_mul_pd(r31,ewtabscale);
623             ewitab           = _mm256_cvttpd_epi32(ewrt);
624             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
625             ewitab           = _mm_slli_epi32(ewitab,2);
626             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
627             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
628             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
629             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
630             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
631             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
632             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
633             velec            = _mm256_mul_pd(qq31,_mm256_sub_pd(_mm256_sub_pd(rinv31,sh_ewald),velec));
634             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
635
636             cutoff_mask      = _mm256_cmp_pd(rsq31,rcutoff2,_CMP_LT_OQ);
637
638             /* Update potential sum for this i atom from the interaction with this j atom. */
639             velec            = _mm256_and_pd(velec,cutoff_mask);
640             velecsum         = _mm256_add_pd(velecsum,velec);
641
642             fscal            = felec;
643
644             fscal            = _mm256_and_pd(fscal,cutoff_mask);
645
646             /* Calculate temporary vectorial force */
647             tx               = _mm256_mul_pd(fscal,dx31);
648             ty               = _mm256_mul_pd(fscal,dy31);
649             tz               = _mm256_mul_pd(fscal,dz31);
650
651             /* Update vectorial force */
652             fix3             = _mm256_add_pd(fix3,tx);
653             fiy3             = _mm256_add_pd(fiy3,ty);
654             fiz3             = _mm256_add_pd(fiz3,tz);
655
656             fjx1             = _mm256_add_pd(fjx1,tx);
657             fjy1             = _mm256_add_pd(fjy1,ty);
658             fjz1             = _mm256_add_pd(fjz1,tz);
659
660             }
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             if (gmx_mm256_any_lt(rsq32,rcutoff2))
667             {
668
669             r32              = _mm256_mul_pd(rsq32,rinv32);
670
671             /* EWALD ELECTROSTATICS */
672
673             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
674             ewrt             = _mm256_mul_pd(r32,ewtabscale);
675             ewitab           = _mm256_cvttpd_epi32(ewrt);
676             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
677             ewitab           = _mm_slli_epi32(ewitab,2);
678             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
679             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
680             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
681             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
682             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
683             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
684             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
685             velec            = _mm256_mul_pd(qq32,_mm256_sub_pd(_mm256_sub_pd(rinv32,sh_ewald),velec));
686             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
687
688             cutoff_mask      = _mm256_cmp_pd(rsq32,rcutoff2,_CMP_LT_OQ);
689
690             /* Update potential sum for this i atom from the interaction with this j atom. */
691             velec            = _mm256_and_pd(velec,cutoff_mask);
692             velecsum         = _mm256_add_pd(velecsum,velec);
693
694             fscal            = felec;
695
696             fscal            = _mm256_and_pd(fscal,cutoff_mask);
697
698             /* Calculate temporary vectorial force */
699             tx               = _mm256_mul_pd(fscal,dx32);
700             ty               = _mm256_mul_pd(fscal,dy32);
701             tz               = _mm256_mul_pd(fscal,dz32);
702
703             /* Update vectorial force */
704             fix3             = _mm256_add_pd(fix3,tx);
705             fiy3             = _mm256_add_pd(fiy3,ty);
706             fiz3             = _mm256_add_pd(fiz3,tz);
707
708             fjx2             = _mm256_add_pd(fjx2,tx);
709             fjy2             = _mm256_add_pd(fjy2,ty);
710             fjz2             = _mm256_add_pd(fjz2,tz);
711
712             }
713
714             /**************************
715              * CALCULATE INTERACTIONS *
716              **************************/
717
718             if (gmx_mm256_any_lt(rsq33,rcutoff2))
719             {
720
721             r33              = _mm256_mul_pd(rsq33,rinv33);
722
723             /* EWALD ELECTROSTATICS */
724
725             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
726             ewrt             = _mm256_mul_pd(r33,ewtabscale);
727             ewitab           = _mm256_cvttpd_epi32(ewrt);
728             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
729             ewitab           = _mm_slli_epi32(ewitab,2);
730             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
731             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
732             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
733             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
734             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
735             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
736             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
737             velec            = _mm256_mul_pd(qq33,_mm256_sub_pd(_mm256_sub_pd(rinv33,sh_ewald),velec));
738             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
739
740             cutoff_mask      = _mm256_cmp_pd(rsq33,rcutoff2,_CMP_LT_OQ);
741
742             /* Update potential sum for this i atom from the interaction with this j atom. */
743             velec            = _mm256_and_pd(velec,cutoff_mask);
744             velecsum         = _mm256_add_pd(velecsum,velec);
745
746             fscal            = felec;
747
748             fscal            = _mm256_and_pd(fscal,cutoff_mask);
749
750             /* Calculate temporary vectorial force */
751             tx               = _mm256_mul_pd(fscal,dx33);
752             ty               = _mm256_mul_pd(fscal,dy33);
753             tz               = _mm256_mul_pd(fscal,dz33);
754
755             /* Update vectorial force */
756             fix3             = _mm256_add_pd(fix3,tx);
757             fiy3             = _mm256_add_pd(fiy3,ty);
758             fiz3             = _mm256_add_pd(fiz3,tz);
759
760             fjx3             = _mm256_add_pd(fjx3,tx);
761             fjy3             = _mm256_add_pd(fjy3,ty);
762             fjz3             = _mm256_add_pd(fjz3,tz);
763
764             }
765
766             fjptrA             = f+j_coord_offsetA;
767             fjptrB             = f+j_coord_offsetB;
768             fjptrC             = f+j_coord_offsetC;
769             fjptrD             = f+j_coord_offsetD;
770
771             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
772                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
773
774             /* Inner loop uses 414 flops */
775         }
776
777         if(jidx<j_index_end)
778         {
779
780             /* Get j neighbor index, and coordinate index */
781             jnrlistA         = jjnr[jidx];
782             jnrlistB         = jjnr[jidx+1];
783             jnrlistC         = jjnr[jidx+2];
784             jnrlistD         = jjnr[jidx+3];
785             /* Sign of each element will be negative for non-real atoms.
786              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
787              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
788              */
789             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
790
791             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
792             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
793             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
794
795             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
796             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
797             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
798             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
799             j_coord_offsetA  = DIM*jnrA;
800             j_coord_offsetB  = DIM*jnrB;
801             j_coord_offsetC  = DIM*jnrC;
802             j_coord_offsetD  = DIM*jnrD;
803
804             /* load j atom coordinates */
805             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
806                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
807                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
808
809             /* Calculate displacement vector */
810             dx11             = _mm256_sub_pd(ix1,jx1);
811             dy11             = _mm256_sub_pd(iy1,jy1);
812             dz11             = _mm256_sub_pd(iz1,jz1);
813             dx12             = _mm256_sub_pd(ix1,jx2);
814             dy12             = _mm256_sub_pd(iy1,jy2);
815             dz12             = _mm256_sub_pd(iz1,jz2);
816             dx13             = _mm256_sub_pd(ix1,jx3);
817             dy13             = _mm256_sub_pd(iy1,jy3);
818             dz13             = _mm256_sub_pd(iz1,jz3);
819             dx21             = _mm256_sub_pd(ix2,jx1);
820             dy21             = _mm256_sub_pd(iy2,jy1);
821             dz21             = _mm256_sub_pd(iz2,jz1);
822             dx22             = _mm256_sub_pd(ix2,jx2);
823             dy22             = _mm256_sub_pd(iy2,jy2);
824             dz22             = _mm256_sub_pd(iz2,jz2);
825             dx23             = _mm256_sub_pd(ix2,jx3);
826             dy23             = _mm256_sub_pd(iy2,jy3);
827             dz23             = _mm256_sub_pd(iz2,jz3);
828             dx31             = _mm256_sub_pd(ix3,jx1);
829             dy31             = _mm256_sub_pd(iy3,jy1);
830             dz31             = _mm256_sub_pd(iz3,jz1);
831             dx32             = _mm256_sub_pd(ix3,jx2);
832             dy32             = _mm256_sub_pd(iy3,jy2);
833             dz32             = _mm256_sub_pd(iz3,jz2);
834             dx33             = _mm256_sub_pd(ix3,jx3);
835             dy33             = _mm256_sub_pd(iy3,jy3);
836             dz33             = _mm256_sub_pd(iz3,jz3);
837
838             /* Calculate squared distance and things based on it */
839             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
840             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
841             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
842             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
843             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
844             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
845             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
846             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
847             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
848
849             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
850             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
851             rinv13           = gmx_mm256_invsqrt_pd(rsq13);
852             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
853             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
854             rinv23           = gmx_mm256_invsqrt_pd(rsq23);
855             rinv31           = gmx_mm256_invsqrt_pd(rsq31);
856             rinv32           = gmx_mm256_invsqrt_pd(rsq32);
857             rinv33           = gmx_mm256_invsqrt_pd(rsq33);
858
859             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
860             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
861             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
862             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
863             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
864             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
865             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
866             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
867             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
868
869             fjx1             = _mm256_setzero_pd();
870             fjy1             = _mm256_setzero_pd();
871             fjz1             = _mm256_setzero_pd();
872             fjx2             = _mm256_setzero_pd();
873             fjy2             = _mm256_setzero_pd();
874             fjz2             = _mm256_setzero_pd();
875             fjx3             = _mm256_setzero_pd();
876             fjy3             = _mm256_setzero_pd();
877             fjz3             = _mm256_setzero_pd();
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             if (gmx_mm256_any_lt(rsq11,rcutoff2))
884             {
885
886             r11              = _mm256_mul_pd(rsq11,rinv11);
887             r11              = _mm256_andnot_pd(dummy_mask,r11);
888
889             /* EWALD ELECTROSTATICS */
890
891             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
892             ewrt             = _mm256_mul_pd(r11,ewtabscale);
893             ewitab           = _mm256_cvttpd_epi32(ewrt);
894             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
895             ewitab           = _mm_slli_epi32(ewitab,2);
896             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
897             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
898             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
899             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
900             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
901             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
902             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
903             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(_mm256_sub_pd(rinv11,sh_ewald),velec));
904             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
905
906             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
907
908             /* Update potential sum for this i atom from the interaction with this j atom. */
909             velec            = _mm256_and_pd(velec,cutoff_mask);
910             velec            = _mm256_andnot_pd(dummy_mask,velec);
911             velecsum         = _mm256_add_pd(velecsum,velec);
912
913             fscal            = felec;
914
915             fscal            = _mm256_and_pd(fscal,cutoff_mask);
916
917             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm256_mul_pd(fscal,dx11);
921             ty               = _mm256_mul_pd(fscal,dy11);
922             tz               = _mm256_mul_pd(fscal,dz11);
923
924             /* Update vectorial force */
925             fix1             = _mm256_add_pd(fix1,tx);
926             fiy1             = _mm256_add_pd(fiy1,ty);
927             fiz1             = _mm256_add_pd(fiz1,tz);
928
929             fjx1             = _mm256_add_pd(fjx1,tx);
930             fjy1             = _mm256_add_pd(fjy1,ty);
931             fjz1             = _mm256_add_pd(fjz1,tz);
932
933             }
934
935             /**************************
936              * CALCULATE INTERACTIONS *
937              **************************/
938
939             if (gmx_mm256_any_lt(rsq12,rcutoff2))
940             {
941
942             r12              = _mm256_mul_pd(rsq12,rinv12);
943             r12              = _mm256_andnot_pd(dummy_mask,r12);
944
945             /* EWALD ELECTROSTATICS */
946
947             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
948             ewrt             = _mm256_mul_pd(r12,ewtabscale);
949             ewitab           = _mm256_cvttpd_epi32(ewrt);
950             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
951             ewitab           = _mm_slli_epi32(ewitab,2);
952             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
953             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
954             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
955             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
956             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
957             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
958             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
959             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(_mm256_sub_pd(rinv12,sh_ewald),velec));
960             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
961
962             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
963
964             /* Update potential sum for this i atom from the interaction with this j atom. */
965             velec            = _mm256_and_pd(velec,cutoff_mask);
966             velec            = _mm256_andnot_pd(dummy_mask,velec);
967             velecsum         = _mm256_add_pd(velecsum,velec);
968
969             fscal            = felec;
970
971             fscal            = _mm256_and_pd(fscal,cutoff_mask);
972
973             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
974
975             /* Calculate temporary vectorial force */
976             tx               = _mm256_mul_pd(fscal,dx12);
977             ty               = _mm256_mul_pd(fscal,dy12);
978             tz               = _mm256_mul_pd(fscal,dz12);
979
980             /* Update vectorial force */
981             fix1             = _mm256_add_pd(fix1,tx);
982             fiy1             = _mm256_add_pd(fiy1,ty);
983             fiz1             = _mm256_add_pd(fiz1,tz);
984
985             fjx2             = _mm256_add_pd(fjx2,tx);
986             fjy2             = _mm256_add_pd(fjy2,ty);
987             fjz2             = _mm256_add_pd(fjz2,tz);
988
989             }
990
991             /**************************
992              * CALCULATE INTERACTIONS *
993              **************************/
994
995             if (gmx_mm256_any_lt(rsq13,rcutoff2))
996             {
997
998             r13              = _mm256_mul_pd(rsq13,rinv13);
999             r13              = _mm256_andnot_pd(dummy_mask,r13);
1000
1001             /* EWALD ELECTROSTATICS */
1002
1003             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1004             ewrt             = _mm256_mul_pd(r13,ewtabscale);
1005             ewitab           = _mm256_cvttpd_epi32(ewrt);
1006             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1007             ewitab           = _mm_slli_epi32(ewitab,2);
1008             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1009             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1010             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1011             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1012             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1013             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1014             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1015             velec            = _mm256_mul_pd(qq13,_mm256_sub_pd(_mm256_sub_pd(rinv13,sh_ewald),velec));
1016             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
1017
1018             cutoff_mask      = _mm256_cmp_pd(rsq13,rcutoff2,_CMP_LT_OQ);
1019
1020             /* Update potential sum for this i atom from the interaction with this j atom. */
1021             velec            = _mm256_and_pd(velec,cutoff_mask);
1022             velec            = _mm256_andnot_pd(dummy_mask,velec);
1023             velecsum         = _mm256_add_pd(velecsum,velec);
1024
1025             fscal            = felec;
1026
1027             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1028
1029             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1030
1031             /* Calculate temporary vectorial force */
1032             tx               = _mm256_mul_pd(fscal,dx13);
1033             ty               = _mm256_mul_pd(fscal,dy13);
1034             tz               = _mm256_mul_pd(fscal,dz13);
1035
1036             /* Update vectorial force */
1037             fix1             = _mm256_add_pd(fix1,tx);
1038             fiy1             = _mm256_add_pd(fiy1,ty);
1039             fiz1             = _mm256_add_pd(fiz1,tz);
1040
1041             fjx3             = _mm256_add_pd(fjx3,tx);
1042             fjy3             = _mm256_add_pd(fjy3,ty);
1043             fjz3             = _mm256_add_pd(fjz3,tz);
1044
1045             }
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             if (gmx_mm256_any_lt(rsq21,rcutoff2))
1052             {
1053
1054             r21              = _mm256_mul_pd(rsq21,rinv21);
1055             r21              = _mm256_andnot_pd(dummy_mask,r21);
1056
1057             /* EWALD ELECTROSTATICS */
1058
1059             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1060             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1061             ewitab           = _mm256_cvttpd_epi32(ewrt);
1062             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1063             ewitab           = _mm_slli_epi32(ewitab,2);
1064             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1065             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1066             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1067             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1068             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1069             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1070             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1071             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(_mm256_sub_pd(rinv21,sh_ewald),velec));
1072             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1073
1074             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
1075
1076             /* Update potential sum for this i atom from the interaction with this j atom. */
1077             velec            = _mm256_and_pd(velec,cutoff_mask);
1078             velec            = _mm256_andnot_pd(dummy_mask,velec);
1079             velecsum         = _mm256_add_pd(velecsum,velec);
1080
1081             fscal            = felec;
1082
1083             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1084
1085             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1086
1087             /* Calculate temporary vectorial force */
1088             tx               = _mm256_mul_pd(fscal,dx21);
1089             ty               = _mm256_mul_pd(fscal,dy21);
1090             tz               = _mm256_mul_pd(fscal,dz21);
1091
1092             /* Update vectorial force */
1093             fix2             = _mm256_add_pd(fix2,tx);
1094             fiy2             = _mm256_add_pd(fiy2,ty);
1095             fiz2             = _mm256_add_pd(fiz2,tz);
1096
1097             fjx1             = _mm256_add_pd(fjx1,tx);
1098             fjy1             = _mm256_add_pd(fjy1,ty);
1099             fjz1             = _mm256_add_pd(fjz1,tz);
1100
1101             }
1102
1103             /**************************
1104              * CALCULATE INTERACTIONS *
1105              **************************/
1106
1107             if (gmx_mm256_any_lt(rsq22,rcutoff2))
1108             {
1109
1110             r22              = _mm256_mul_pd(rsq22,rinv22);
1111             r22              = _mm256_andnot_pd(dummy_mask,r22);
1112
1113             /* EWALD ELECTROSTATICS */
1114
1115             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1116             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1117             ewitab           = _mm256_cvttpd_epi32(ewrt);
1118             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1119             ewitab           = _mm_slli_epi32(ewitab,2);
1120             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1121             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1122             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1123             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1124             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1125             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1126             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1127             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(_mm256_sub_pd(rinv22,sh_ewald),velec));
1128             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1129
1130             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
1131
1132             /* Update potential sum for this i atom from the interaction with this j atom. */
1133             velec            = _mm256_and_pd(velec,cutoff_mask);
1134             velec            = _mm256_andnot_pd(dummy_mask,velec);
1135             velecsum         = _mm256_add_pd(velecsum,velec);
1136
1137             fscal            = felec;
1138
1139             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1140
1141             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1142
1143             /* Calculate temporary vectorial force */
1144             tx               = _mm256_mul_pd(fscal,dx22);
1145             ty               = _mm256_mul_pd(fscal,dy22);
1146             tz               = _mm256_mul_pd(fscal,dz22);
1147
1148             /* Update vectorial force */
1149             fix2             = _mm256_add_pd(fix2,tx);
1150             fiy2             = _mm256_add_pd(fiy2,ty);
1151             fiz2             = _mm256_add_pd(fiz2,tz);
1152
1153             fjx2             = _mm256_add_pd(fjx2,tx);
1154             fjy2             = _mm256_add_pd(fjy2,ty);
1155             fjz2             = _mm256_add_pd(fjz2,tz);
1156
1157             }
1158
1159             /**************************
1160              * CALCULATE INTERACTIONS *
1161              **************************/
1162
1163             if (gmx_mm256_any_lt(rsq23,rcutoff2))
1164             {
1165
1166             r23              = _mm256_mul_pd(rsq23,rinv23);
1167             r23              = _mm256_andnot_pd(dummy_mask,r23);
1168
1169             /* EWALD ELECTROSTATICS */
1170
1171             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1172             ewrt             = _mm256_mul_pd(r23,ewtabscale);
1173             ewitab           = _mm256_cvttpd_epi32(ewrt);
1174             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1175             ewitab           = _mm_slli_epi32(ewitab,2);
1176             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1177             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1178             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1179             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1180             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1181             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1182             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1183             velec            = _mm256_mul_pd(qq23,_mm256_sub_pd(_mm256_sub_pd(rinv23,sh_ewald),velec));
1184             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
1185
1186             cutoff_mask      = _mm256_cmp_pd(rsq23,rcutoff2,_CMP_LT_OQ);
1187
1188             /* Update potential sum for this i atom from the interaction with this j atom. */
1189             velec            = _mm256_and_pd(velec,cutoff_mask);
1190             velec            = _mm256_andnot_pd(dummy_mask,velec);
1191             velecsum         = _mm256_add_pd(velecsum,velec);
1192
1193             fscal            = felec;
1194
1195             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1196
1197             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1198
1199             /* Calculate temporary vectorial force */
1200             tx               = _mm256_mul_pd(fscal,dx23);
1201             ty               = _mm256_mul_pd(fscal,dy23);
1202             tz               = _mm256_mul_pd(fscal,dz23);
1203
1204             /* Update vectorial force */
1205             fix2             = _mm256_add_pd(fix2,tx);
1206             fiy2             = _mm256_add_pd(fiy2,ty);
1207             fiz2             = _mm256_add_pd(fiz2,tz);
1208
1209             fjx3             = _mm256_add_pd(fjx3,tx);
1210             fjy3             = _mm256_add_pd(fjy3,ty);
1211             fjz3             = _mm256_add_pd(fjz3,tz);
1212
1213             }
1214
1215             /**************************
1216              * CALCULATE INTERACTIONS *
1217              **************************/
1218
1219             if (gmx_mm256_any_lt(rsq31,rcutoff2))
1220             {
1221
1222             r31              = _mm256_mul_pd(rsq31,rinv31);
1223             r31              = _mm256_andnot_pd(dummy_mask,r31);
1224
1225             /* EWALD ELECTROSTATICS */
1226
1227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1228             ewrt             = _mm256_mul_pd(r31,ewtabscale);
1229             ewitab           = _mm256_cvttpd_epi32(ewrt);
1230             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1231             ewitab           = _mm_slli_epi32(ewitab,2);
1232             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1233             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1234             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1235             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1236             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1237             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1238             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1239             velec            = _mm256_mul_pd(qq31,_mm256_sub_pd(_mm256_sub_pd(rinv31,sh_ewald),velec));
1240             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
1241
1242             cutoff_mask      = _mm256_cmp_pd(rsq31,rcutoff2,_CMP_LT_OQ);
1243
1244             /* Update potential sum for this i atom from the interaction with this j atom. */
1245             velec            = _mm256_and_pd(velec,cutoff_mask);
1246             velec            = _mm256_andnot_pd(dummy_mask,velec);
1247             velecsum         = _mm256_add_pd(velecsum,velec);
1248
1249             fscal            = felec;
1250
1251             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1252
1253             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1254
1255             /* Calculate temporary vectorial force */
1256             tx               = _mm256_mul_pd(fscal,dx31);
1257             ty               = _mm256_mul_pd(fscal,dy31);
1258             tz               = _mm256_mul_pd(fscal,dz31);
1259
1260             /* Update vectorial force */
1261             fix3             = _mm256_add_pd(fix3,tx);
1262             fiy3             = _mm256_add_pd(fiy3,ty);
1263             fiz3             = _mm256_add_pd(fiz3,tz);
1264
1265             fjx1             = _mm256_add_pd(fjx1,tx);
1266             fjy1             = _mm256_add_pd(fjy1,ty);
1267             fjz1             = _mm256_add_pd(fjz1,tz);
1268
1269             }
1270
1271             /**************************
1272              * CALCULATE INTERACTIONS *
1273              **************************/
1274
1275             if (gmx_mm256_any_lt(rsq32,rcutoff2))
1276             {
1277
1278             r32              = _mm256_mul_pd(rsq32,rinv32);
1279             r32              = _mm256_andnot_pd(dummy_mask,r32);
1280
1281             /* EWALD ELECTROSTATICS */
1282
1283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1284             ewrt             = _mm256_mul_pd(r32,ewtabscale);
1285             ewitab           = _mm256_cvttpd_epi32(ewrt);
1286             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1287             ewitab           = _mm_slli_epi32(ewitab,2);
1288             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1289             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1290             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1291             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1292             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1293             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1294             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1295             velec            = _mm256_mul_pd(qq32,_mm256_sub_pd(_mm256_sub_pd(rinv32,sh_ewald),velec));
1296             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
1297
1298             cutoff_mask      = _mm256_cmp_pd(rsq32,rcutoff2,_CMP_LT_OQ);
1299
1300             /* Update potential sum for this i atom from the interaction with this j atom. */
1301             velec            = _mm256_and_pd(velec,cutoff_mask);
1302             velec            = _mm256_andnot_pd(dummy_mask,velec);
1303             velecsum         = _mm256_add_pd(velecsum,velec);
1304
1305             fscal            = felec;
1306
1307             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1308
1309             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1310
1311             /* Calculate temporary vectorial force */
1312             tx               = _mm256_mul_pd(fscal,dx32);
1313             ty               = _mm256_mul_pd(fscal,dy32);
1314             tz               = _mm256_mul_pd(fscal,dz32);
1315
1316             /* Update vectorial force */
1317             fix3             = _mm256_add_pd(fix3,tx);
1318             fiy3             = _mm256_add_pd(fiy3,ty);
1319             fiz3             = _mm256_add_pd(fiz3,tz);
1320
1321             fjx2             = _mm256_add_pd(fjx2,tx);
1322             fjy2             = _mm256_add_pd(fjy2,ty);
1323             fjz2             = _mm256_add_pd(fjz2,tz);
1324
1325             }
1326
1327             /**************************
1328              * CALCULATE INTERACTIONS *
1329              **************************/
1330
1331             if (gmx_mm256_any_lt(rsq33,rcutoff2))
1332             {
1333
1334             r33              = _mm256_mul_pd(rsq33,rinv33);
1335             r33              = _mm256_andnot_pd(dummy_mask,r33);
1336
1337             /* EWALD ELECTROSTATICS */
1338
1339             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1340             ewrt             = _mm256_mul_pd(r33,ewtabscale);
1341             ewitab           = _mm256_cvttpd_epi32(ewrt);
1342             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1343             ewitab           = _mm_slli_epi32(ewitab,2);
1344             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1345             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1346             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1347             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1348             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1349             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1350             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1351             velec            = _mm256_mul_pd(qq33,_mm256_sub_pd(_mm256_sub_pd(rinv33,sh_ewald),velec));
1352             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
1353
1354             cutoff_mask      = _mm256_cmp_pd(rsq33,rcutoff2,_CMP_LT_OQ);
1355
1356             /* Update potential sum for this i atom from the interaction with this j atom. */
1357             velec            = _mm256_and_pd(velec,cutoff_mask);
1358             velec            = _mm256_andnot_pd(dummy_mask,velec);
1359             velecsum         = _mm256_add_pd(velecsum,velec);
1360
1361             fscal            = felec;
1362
1363             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1364
1365             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1366
1367             /* Calculate temporary vectorial force */
1368             tx               = _mm256_mul_pd(fscal,dx33);
1369             ty               = _mm256_mul_pd(fscal,dy33);
1370             tz               = _mm256_mul_pd(fscal,dz33);
1371
1372             /* Update vectorial force */
1373             fix3             = _mm256_add_pd(fix3,tx);
1374             fiy3             = _mm256_add_pd(fiy3,ty);
1375             fiz3             = _mm256_add_pd(fiz3,tz);
1376
1377             fjx3             = _mm256_add_pd(fjx3,tx);
1378             fjy3             = _mm256_add_pd(fjy3,ty);
1379             fjz3             = _mm256_add_pd(fjz3,tz);
1380
1381             }
1382
1383             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1384             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1385             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1386             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1387
1388             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
1389                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1390
1391             /* Inner loop uses 423 flops */
1392         }
1393
1394         /* End of innermost loop */
1395
1396         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1397                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1398
1399         ggid                        = gid[iidx];
1400         /* Update potential energies */
1401         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1402
1403         /* Increment number of inner iterations */
1404         inneriter                  += j_index_end - j_index_start;
1405
1406         /* Outer loop uses 19 flops */
1407     }
1408
1409     /* Increment number of outer iterations */
1410     outeriter        += nri;
1411
1412     /* Update outer/inner flops */
1413
1414     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*19 + inneriter*423);
1415 }
1416 /*
1417  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4W4_F_avx_256_double
1418  * Electrostatics interaction: Ewald
1419  * VdW interaction:            None
1420  * Geometry:                   Water4-Water4
1421  * Calculate force/pot:        Force
1422  */
1423 void
1424 nb_kernel_ElecEwSh_VdwNone_GeomW4W4_F_avx_256_double
1425                     (t_nblist                    * gmx_restrict       nlist,
1426                      rvec                        * gmx_restrict          xx,
1427                      rvec                        * gmx_restrict          ff,
1428                      t_forcerec                  * gmx_restrict          fr,
1429                      t_mdatoms                   * gmx_restrict     mdatoms,
1430                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1431                      t_nrnb                      * gmx_restrict        nrnb)
1432 {
1433     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1434      * just 0 for non-waters.
1435      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
1436      * jnr indices corresponding to data put in the four positions in the SIMD register.
1437      */
1438     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1439     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1440     int              jnrA,jnrB,jnrC,jnrD;
1441     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1442     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
1443     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1444     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1445     real             rcutoff_scalar;
1446     real             *shiftvec,*fshift,*x,*f;
1447     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1448     real             scratch[4*DIM];
1449     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1450     real *           vdwioffsetptr1;
1451     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1452     real *           vdwioffsetptr2;
1453     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1454     real *           vdwioffsetptr3;
1455     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1456     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1457     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1458     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1459     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1460     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
1461     __m256d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1462     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1463     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1464     __m256d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1465     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1466     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1467     __m256d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1468     __m256d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1469     __m256d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1470     __m256d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1471     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
1472     real             *charge;
1473     __m128i          ewitab;
1474     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1475     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
1476     real             *ewtab;
1477     __m256d          dummy_mask,cutoff_mask;
1478     __m128           tmpmask0,tmpmask1;
1479     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
1480     __m256d          one     = _mm256_set1_pd(1.0);
1481     __m256d          two     = _mm256_set1_pd(2.0);
1482     x                = xx[0];
1483     f                = ff[0];
1484
1485     nri              = nlist->nri;
1486     iinr             = nlist->iinr;
1487     jindex           = nlist->jindex;
1488     jjnr             = nlist->jjnr;
1489     shiftidx         = nlist->shift;
1490     gid              = nlist->gid;
1491     shiftvec         = fr->shift_vec[0];
1492     fshift           = fr->fshift[0];
1493     facel            = _mm256_set1_pd(fr->epsfac);
1494     charge           = mdatoms->chargeA;
1495
1496     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
1497     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
1498     beta2            = _mm256_mul_pd(beta,beta);
1499     beta3            = _mm256_mul_pd(beta,beta2);
1500
1501     ewtab            = fr->ic->tabq_coul_F;
1502     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
1503     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
1504
1505     /* Setup water-specific parameters */
1506     inr              = nlist->iinr[0];
1507     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
1508     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
1509     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
1510
1511     jq1              = _mm256_set1_pd(charge[inr+1]);
1512     jq2              = _mm256_set1_pd(charge[inr+2]);
1513     jq3              = _mm256_set1_pd(charge[inr+3]);
1514     qq11             = _mm256_mul_pd(iq1,jq1);
1515     qq12             = _mm256_mul_pd(iq1,jq2);
1516     qq13             = _mm256_mul_pd(iq1,jq3);
1517     qq21             = _mm256_mul_pd(iq2,jq1);
1518     qq22             = _mm256_mul_pd(iq2,jq2);
1519     qq23             = _mm256_mul_pd(iq2,jq3);
1520     qq31             = _mm256_mul_pd(iq3,jq1);
1521     qq32             = _mm256_mul_pd(iq3,jq2);
1522     qq33             = _mm256_mul_pd(iq3,jq3);
1523
1524     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1525     rcutoff_scalar   = fr->rcoulomb;
1526     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
1527     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
1528
1529     /* Avoid stupid compiler warnings */
1530     jnrA = jnrB = jnrC = jnrD = 0;
1531     j_coord_offsetA = 0;
1532     j_coord_offsetB = 0;
1533     j_coord_offsetC = 0;
1534     j_coord_offsetD = 0;
1535
1536     outeriter        = 0;
1537     inneriter        = 0;
1538
1539     for(iidx=0;iidx<4*DIM;iidx++)
1540     {
1541         scratch[iidx] = 0.0;
1542     }
1543
1544     /* Start outer loop over neighborlists */
1545     for(iidx=0; iidx<nri; iidx++)
1546     {
1547         /* Load shift vector for this list */
1548         i_shift_offset   = DIM*shiftidx[iidx];
1549
1550         /* Load limits for loop over neighbors */
1551         j_index_start    = jindex[iidx];
1552         j_index_end      = jindex[iidx+1];
1553
1554         /* Get outer coordinate index */
1555         inr              = iinr[iidx];
1556         i_coord_offset   = DIM*inr;
1557
1558         /* Load i particle coords and add shift vector */
1559         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
1560                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1561
1562         fix1             = _mm256_setzero_pd();
1563         fiy1             = _mm256_setzero_pd();
1564         fiz1             = _mm256_setzero_pd();
1565         fix2             = _mm256_setzero_pd();
1566         fiy2             = _mm256_setzero_pd();
1567         fiz2             = _mm256_setzero_pd();
1568         fix3             = _mm256_setzero_pd();
1569         fiy3             = _mm256_setzero_pd();
1570         fiz3             = _mm256_setzero_pd();
1571
1572         /* Start inner kernel loop */
1573         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1574         {
1575
1576             /* Get j neighbor index, and coordinate index */
1577             jnrA             = jjnr[jidx];
1578             jnrB             = jjnr[jidx+1];
1579             jnrC             = jjnr[jidx+2];
1580             jnrD             = jjnr[jidx+3];
1581             j_coord_offsetA  = DIM*jnrA;
1582             j_coord_offsetB  = DIM*jnrB;
1583             j_coord_offsetC  = DIM*jnrC;
1584             j_coord_offsetD  = DIM*jnrD;
1585
1586             /* load j atom coordinates */
1587             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
1588                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
1589                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1590
1591             /* Calculate displacement vector */
1592             dx11             = _mm256_sub_pd(ix1,jx1);
1593             dy11             = _mm256_sub_pd(iy1,jy1);
1594             dz11             = _mm256_sub_pd(iz1,jz1);
1595             dx12             = _mm256_sub_pd(ix1,jx2);
1596             dy12             = _mm256_sub_pd(iy1,jy2);
1597             dz12             = _mm256_sub_pd(iz1,jz2);
1598             dx13             = _mm256_sub_pd(ix1,jx3);
1599             dy13             = _mm256_sub_pd(iy1,jy3);
1600             dz13             = _mm256_sub_pd(iz1,jz3);
1601             dx21             = _mm256_sub_pd(ix2,jx1);
1602             dy21             = _mm256_sub_pd(iy2,jy1);
1603             dz21             = _mm256_sub_pd(iz2,jz1);
1604             dx22             = _mm256_sub_pd(ix2,jx2);
1605             dy22             = _mm256_sub_pd(iy2,jy2);
1606             dz22             = _mm256_sub_pd(iz2,jz2);
1607             dx23             = _mm256_sub_pd(ix2,jx3);
1608             dy23             = _mm256_sub_pd(iy2,jy3);
1609             dz23             = _mm256_sub_pd(iz2,jz3);
1610             dx31             = _mm256_sub_pd(ix3,jx1);
1611             dy31             = _mm256_sub_pd(iy3,jy1);
1612             dz31             = _mm256_sub_pd(iz3,jz1);
1613             dx32             = _mm256_sub_pd(ix3,jx2);
1614             dy32             = _mm256_sub_pd(iy3,jy2);
1615             dz32             = _mm256_sub_pd(iz3,jz2);
1616             dx33             = _mm256_sub_pd(ix3,jx3);
1617             dy33             = _mm256_sub_pd(iy3,jy3);
1618             dz33             = _mm256_sub_pd(iz3,jz3);
1619
1620             /* Calculate squared distance and things based on it */
1621             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1622             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1623             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
1624             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1625             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1626             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
1627             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
1628             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
1629             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
1630
1631             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1632             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1633             rinv13           = gmx_mm256_invsqrt_pd(rsq13);
1634             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1635             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
1636             rinv23           = gmx_mm256_invsqrt_pd(rsq23);
1637             rinv31           = gmx_mm256_invsqrt_pd(rsq31);
1638             rinv32           = gmx_mm256_invsqrt_pd(rsq32);
1639             rinv33           = gmx_mm256_invsqrt_pd(rsq33);
1640
1641             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1642             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1643             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
1644             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1645             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1646             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
1647             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
1648             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
1649             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
1650
1651             fjx1             = _mm256_setzero_pd();
1652             fjy1             = _mm256_setzero_pd();
1653             fjz1             = _mm256_setzero_pd();
1654             fjx2             = _mm256_setzero_pd();
1655             fjy2             = _mm256_setzero_pd();
1656             fjz2             = _mm256_setzero_pd();
1657             fjx3             = _mm256_setzero_pd();
1658             fjy3             = _mm256_setzero_pd();
1659             fjz3             = _mm256_setzero_pd();
1660
1661             /**************************
1662              * CALCULATE INTERACTIONS *
1663              **************************/
1664
1665             if (gmx_mm256_any_lt(rsq11,rcutoff2))
1666             {
1667
1668             r11              = _mm256_mul_pd(rsq11,rinv11);
1669
1670             /* EWALD ELECTROSTATICS */
1671
1672             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1673             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1674             ewitab           = _mm256_cvttpd_epi32(ewrt);
1675             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1676             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1677                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1678                                             &ewtabF,&ewtabFn);
1679             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1680             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1681
1682             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
1683
1684             fscal            = felec;
1685
1686             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1687
1688             /* Calculate temporary vectorial force */
1689             tx               = _mm256_mul_pd(fscal,dx11);
1690             ty               = _mm256_mul_pd(fscal,dy11);
1691             tz               = _mm256_mul_pd(fscal,dz11);
1692
1693             /* Update vectorial force */
1694             fix1             = _mm256_add_pd(fix1,tx);
1695             fiy1             = _mm256_add_pd(fiy1,ty);
1696             fiz1             = _mm256_add_pd(fiz1,tz);
1697
1698             fjx1             = _mm256_add_pd(fjx1,tx);
1699             fjy1             = _mm256_add_pd(fjy1,ty);
1700             fjz1             = _mm256_add_pd(fjz1,tz);
1701
1702             }
1703
1704             /**************************
1705              * CALCULATE INTERACTIONS *
1706              **************************/
1707
1708             if (gmx_mm256_any_lt(rsq12,rcutoff2))
1709             {
1710
1711             r12              = _mm256_mul_pd(rsq12,rinv12);
1712
1713             /* EWALD ELECTROSTATICS */
1714
1715             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1716             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1717             ewitab           = _mm256_cvttpd_epi32(ewrt);
1718             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1719             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1720                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1721                                             &ewtabF,&ewtabFn);
1722             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1723             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1724
1725             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
1726
1727             fscal            = felec;
1728
1729             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1730
1731             /* Calculate temporary vectorial force */
1732             tx               = _mm256_mul_pd(fscal,dx12);
1733             ty               = _mm256_mul_pd(fscal,dy12);
1734             tz               = _mm256_mul_pd(fscal,dz12);
1735
1736             /* Update vectorial force */
1737             fix1             = _mm256_add_pd(fix1,tx);
1738             fiy1             = _mm256_add_pd(fiy1,ty);
1739             fiz1             = _mm256_add_pd(fiz1,tz);
1740
1741             fjx2             = _mm256_add_pd(fjx2,tx);
1742             fjy2             = _mm256_add_pd(fjy2,ty);
1743             fjz2             = _mm256_add_pd(fjz2,tz);
1744
1745             }
1746
1747             /**************************
1748              * CALCULATE INTERACTIONS *
1749              **************************/
1750
1751             if (gmx_mm256_any_lt(rsq13,rcutoff2))
1752             {
1753
1754             r13              = _mm256_mul_pd(rsq13,rinv13);
1755
1756             /* EWALD ELECTROSTATICS */
1757
1758             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1759             ewrt             = _mm256_mul_pd(r13,ewtabscale);
1760             ewitab           = _mm256_cvttpd_epi32(ewrt);
1761             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1762             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1763                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1764                                             &ewtabF,&ewtabFn);
1765             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1766             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
1767
1768             cutoff_mask      = _mm256_cmp_pd(rsq13,rcutoff2,_CMP_LT_OQ);
1769
1770             fscal            = felec;
1771
1772             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1773
1774             /* Calculate temporary vectorial force */
1775             tx               = _mm256_mul_pd(fscal,dx13);
1776             ty               = _mm256_mul_pd(fscal,dy13);
1777             tz               = _mm256_mul_pd(fscal,dz13);
1778
1779             /* Update vectorial force */
1780             fix1             = _mm256_add_pd(fix1,tx);
1781             fiy1             = _mm256_add_pd(fiy1,ty);
1782             fiz1             = _mm256_add_pd(fiz1,tz);
1783
1784             fjx3             = _mm256_add_pd(fjx3,tx);
1785             fjy3             = _mm256_add_pd(fjy3,ty);
1786             fjz3             = _mm256_add_pd(fjz3,tz);
1787
1788             }
1789
1790             /**************************
1791              * CALCULATE INTERACTIONS *
1792              **************************/
1793
1794             if (gmx_mm256_any_lt(rsq21,rcutoff2))
1795             {
1796
1797             r21              = _mm256_mul_pd(rsq21,rinv21);
1798
1799             /* EWALD ELECTROSTATICS */
1800
1801             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1802             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1803             ewitab           = _mm256_cvttpd_epi32(ewrt);
1804             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1805             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1806                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1807                                             &ewtabF,&ewtabFn);
1808             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1809             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1810
1811             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
1812
1813             fscal            = felec;
1814
1815             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1816
1817             /* Calculate temporary vectorial force */
1818             tx               = _mm256_mul_pd(fscal,dx21);
1819             ty               = _mm256_mul_pd(fscal,dy21);
1820             tz               = _mm256_mul_pd(fscal,dz21);
1821
1822             /* Update vectorial force */
1823             fix2             = _mm256_add_pd(fix2,tx);
1824             fiy2             = _mm256_add_pd(fiy2,ty);
1825             fiz2             = _mm256_add_pd(fiz2,tz);
1826
1827             fjx1             = _mm256_add_pd(fjx1,tx);
1828             fjy1             = _mm256_add_pd(fjy1,ty);
1829             fjz1             = _mm256_add_pd(fjz1,tz);
1830
1831             }
1832
1833             /**************************
1834              * CALCULATE INTERACTIONS *
1835              **************************/
1836
1837             if (gmx_mm256_any_lt(rsq22,rcutoff2))
1838             {
1839
1840             r22              = _mm256_mul_pd(rsq22,rinv22);
1841
1842             /* EWALD ELECTROSTATICS */
1843
1844             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1845             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1846             ewitab           = _mm256_cvttpd_epi32(ewrt);
1847             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1848             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1849                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1850                                             &ewtabF,&ewtabFn);
1851             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1852             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1853
1854             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
1855
1856             fscal            = felec;
1857
1858             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1859
1860             /* Calculate temporary vectorial force */
1861             tx               = _mm256_mul_pd(fscal,dx22);
1862             ty               = _mm256_mul_pd(fscal,dy22);
1863             tz               = _mm256_mul_pd(fscal,dz22);
1864
1865             /* Update vectorial force */
1866             fix2             = _mm256_add_pd(fix2,tx);
1867             fiy2             = _mm256_add_pd(fiy2,ty);
1868             fiz2             = _mm256_add_pd(fiz2,tz);
1869
1870             fjx2             = _mm256_add_pd(fjx2,tx);
1871             fjy2             = _mm256_add_pd(fjy2,ty);
1872             fjz2             = _mm256_add_pd(fjz2,tz);
1873
1874             }
1875
1876             /**************************
1877              * CALCULATE INTERACTIONS *
1878              **************************/
1879
1880             if (gmx_mm256_any_lt(rsq23,rcutoff2))
1881             {
1882
1883             r23              = _mm256_mul_pd(rsq23,rinv23);
1884
1885             /* EWALD ELECTROSTATICS */
1886
1887             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1888             ewrt             = _mm256_mul_pd(r23,ewtabscale);
1889             ewitab           = _mm256_cvttpd_epi32(ewrt);
1890             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1891             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1892                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1893                                             &ewtabF,&ewtabFn);
1894             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1895             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
1896
1897             cutoff_mask      = _mm256_cmp_pd(rsq23,rcutoff2,_CMP_LT_OQ);
1898
1899             fscal            = felec;
1900
1901             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1902
1903             /* Calculate temporary vectorial force */
1904             tx               = _mm256_mul_pd(fscal,dx23);
1905             ty               = _mm256_mul_pd(fscal,dy23);
1906             tz               = _mm256_mul_pd(fscal,dz23);
1907
1908             /* Update vectorial force */
1909             fix2             = _mm256_add_pd(fix2,tx);
1910             fiy2             = _mm256_add_pd(fiy2,ty);
1911             fiz2             = _mm256_add_pd(fiz2,tz);
1912
1913             fjx3             = _mm256_add_pd(fjx3,tx);
1914             fjy3             = _mm256_add_pd(fjy3,ty);
1915             fjz3             = _mm256_add_pd(fjz3,tz);
1916
1917             }
1918
1919             /**************************
1920              * CALCULATE INTERACTIONS *
1921              **************************/
1922
1923             if (gmx_mm256_any_lt(rsq31,rcutoff2))
1924             {
1925
1926             r31              = _mm256_mul_pd(rsq31,rinv31);
1927
1928             /* EWALD ELECTROSTATICS */
1929
1930             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1931             ewrt             = _mm256_mul_pd(r31,ewtabscale);
1932             ewitab           = _mm256_cvttpd_epi32(ewrt);
1933             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1934             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1935                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1936                                             &ewtabF,&ewtabFn);
1937             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1938             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
1939
1940             cutoff_mask      = _mm256_cmp_pd(rsq31,rcutoff2,_CMP_LT_OQ);
1941
1942             fscal            = felec;
1943
1944             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1945
1946             /* Calculate temporary vectorial force */
1947             tx               = _mm256_mul_pd(fscal,dx31);
1948             ty               = _mm256_mul_pd(fscal,dy31);
1949             tz               = _mm256_mul_pd(fscal,dz31);
1950
1951             /* Update vectorial force */
1952             fix3             = _mm256_add_pd(fix3,tx);
1953             fiy3             = _mm256_add_pd(fiy3,ty);
1954             fiz3             = _mm256_add_pd(fiz3,tz);
1955
1956             fjx1             = _mm256_add_pd(fjx1,tx);
1957             fjy1             = _mm256_add_pd(fjy1,ty);
1958             fjz1             = _mm256_add_pd(fjz1,tz);
1959
1960             }
1961
1962             /**************************
1963              * CALCULATE INTERACTIONS *
1964              **************************/
1965
1966             if (gmx_mm256_any_lt(rsq32,rcutoff2))
1967             {
1968
1969             r32              = _mm256_mul_pd(rsq32,rinv32);
1970
1971             /* EWALD ELECTROSTATICS */
1972
1973             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1974             ewrt             = _mm256_mul_pd(r32,ewtabscale);
1975             ewitab           = _mm256_cvttpd_epi32(ewrt);
1976             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1977             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1978                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1979                                             &ewtabF,&ewtabFn);
1980             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1981             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
1982
1983             cutoff_mask      = _mm256_cmp_pd(rsq32,rcutoff2,_CMP_LT_OQ);
1984
1985             fscal            = felec;
1986
1987             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1988
1989             /* Calculate temporary vectorial force */
1990             tx               = _mm256_mul_pd(fscal,dx32);
1991             ty               = _mm256_mul_pd(fscal,dy32);
1992             tz               = _mm256_mul_pd(fscal,dz32);
1993
1994             /* Update vectorial force */
1995             fix3             = _mm256_add_pd(fix3,tx);
1996             fiy3             = _mm256_add_pd(fiy3,ty);
1997             fiz3             = _mm256_add_pd(fiz3,tz);
1998
1999             fjx2             = _mm256_add_pd(fjx2,tx);
2000             fjy2             = _mm256_add_pd(fjy2,ty);
2001             fjz2             = _mm256_add_pd(fjz2,tz);
2002
2003             }
2004
2005             /**************************
2006              * CALCULATE INTERACTIONS *
2007              **************************/
2008
2009             if (gmx_mm256_any_lt(rsq33,rcutoff2))
2010             {
2011
2012             r33              = _mm256_mul_pd(rsq33,rinv33);
2013
2014             /* EWALD ELECTROSTATICS */
2015
2016             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2017             ewrt             = _mm256_mul_pd(r33,ewtabscale);
2018             ewitab           = _mm256_cvttpd_epi32(ewrt);
2019             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2020             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2021                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2022                                             &ewtabF,&ewtabFn);
2023             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2024             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
2025
2026             cutoff_mask      = _mm256_cmp_pd(rsq33,rcutoff2,_CMP_LT_OQ);
2027
2028             fscal            = felec;
2029
2030             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2031
2032             /* Calculate temporary vectorial force */
2033             tx               = _mm256_mul_pd(fscal,dx33);
2034             ty               = _mm256_mul_pd(fscal,dy33);
2035             tz               = _mm256_mul_pd(fscal,dz33);
2036
2037             /* Update vectorial force */
2038             fix3             = _mm256_add_pd(fix3,tx);
2039             fiy3             = _mm256_add_pd(fiy3,ty);
2040             fiz3             = _mm256_add_pd(fiz3,tz);
2041
2042             fjx3             = _mm256_add_pd(fjx3,tx);
2043             fjy3             = _mm256_add_pd(fjy3,ty);
2044             fjz3             = _mm256_add_pd(fjz3,tz);
2045
2046             }
2047
2048             fjptrA             = f+j_coord_offsetA;
2049             fjptrB             = f+j_coord_offsetB;
2050             fjptrC             = f+j_coord_offsetC;
2051             fjptrD             = f+j_coord_offsetD;
2052
2053             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
2054                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2055
2056             /* Inner loop uses 351 flops */
2057         }
2058
2059         if(jidx<j_index_end)
2060         {
2061
2062             /* Get j neighbor index, and coordinate index */
2063             jnrlistA         = jjnr[jidx];
2064             jnrlistB         = jjnr[jidx+1];
2065             jnrlistC         = jjnr[jidx+2];
2066             jnrlistD         = jjnr[jidx+3];
2067             /* Sign of each element will be negative for non-real atoms.
2068              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
2069              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
2070              */
2071             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
2072
2073             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
2074             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
2075             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
2076
2077             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
2078             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
2079             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
2080             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
2081             j_coord_offsetA  = DIM*jnrA;
2082             j_coord_offsetB  = DIM*jnrB;
2083             j_coord_offsetC  = DIM*jnrC;
2084             j_coord_offsetD  = DIM*jnrD;
2085
2086             /* load j atom coordinates */
2087             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
2088                                                  x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
2089                                                  &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
2090
2091             /* Calculate displacement vector */
2092             dx11             = _mm256_sub_pd(ix1,jx1);
2093             dy11             = _mm256_sub_pd(iy1,jy1);
2094             dz11             = _mm256_sub_pd(iz1,jz1);
2095             dx12             = _mm256_sub_pd(ix1,jx2);
2096             dy12             = _mm256_sub_pd(iy1,jy2);
2097             dz12             = _mm256_sub_pd(iz1,jz2);
2098             dx13             = _mm256_sub_pd(ix1,jx3);
2099             dy13             = _mm256_sub_pd(iy1,jy3);
2100             dz13             = _mm256_sub_pd(iz1,jz3);
2101             dx21             = _mm256_sub_pd(ix2,jx1);
2102             dy21             = _mm256_sub_pd(iy2,jy1);
2103             dz21             = _mm256_sub_pd(iz2,jz1);
2104             dx22             = _mm256_sub_pd(ix2,jx2);
2105             dy22             = _mm256_sub_pd(iy2,jy2);
2106             dz22             = _mm256_sub_pd(iz2,jz2);
2107             dx23             = _mm256_sub_pd(ix2,jx3);
2108             dy23             = _mm256_sub_pd(iy2,jy3);
2109             dz23             = _mm256_sub_pd(iz2,jz3);
2110             dx31             = _mm256_sub_pd(ix3,jx1);
2111             dy31             = _mm256_sub_pd(iy3,jy1);
2112             dz31             = _mm256_sub_pd(iz3,jz1);
2113             dx32             = _mm256_sub_pd(ix3,jx2);
2114             dy32             = _mm256_sub_pd(iy3,jy2);
2115             dz32             = _mm256_sub_pd(iz3,jz2);
2116             dx33             = _mm256_sub_pd(ix3,jx3);
2117             dy33             = _mm256_sub_pd(iy3,jy3);
2118             dz33             = _mm256_sub_pd(iz3,jz3);
2119
2120             /* Calculate squared distance and things based on it */
2121             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
2122             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
2123             rsq13            = gmx_mm256_calc_rsq_pd(dx13,dy13,dz13);
2124             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
2125             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
2126             rsq23            = gmx_mm256_calc_rsq_pd(dx23,dy23,dz23);
2127             rsq31            = gmx_mm256_calc_rsq_pd(dx31,dy31,dz31);
2128             rsq32            = gmx_mm256_calc_rsq_pd(dx32,dy32,dz32);
2129             rsq33            = gmx_mm256_calc_rsq_pd(dx33,dy33,dz33);
2130
2131             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
2132             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
2133             rinv13           = gmx_mm256_invsqrt_pd(rsq13);
2134             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
2135             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
2136             rinv23           = gmx_mm256_invsqrt_pd(rsq23);
2137             rinv31           = gmx_mm256_invsqrt_pd(rsq31);
2138             rinv32           = gmx_mm256_invsqrt_pd(rsq32);
2139             rinv33           = gmx_mm256_invsqrt_pd(rsq33);
2140
2141             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
2142             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
2143             rinvsq13         = _mm256_mul_pd(rinv13,rinv13);
2144             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
2145             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
2146             rinvsq23         = _mm256_mul_pd(rinv23,rinv23);
2147             rinvsq31         = _mm256_mul_pd(rinv31,rinv31);
2148             rinvsq32         = _mm256_mul_pd(rinv32,rinv32);
2149             rinvsq33         = _mm256_mul_pd(rinv33,rinv33);
2150
2151             fjx1             = _mm256_setzero_pd();
2152             fjy1             = _mm256_setzero_pd();
2153             fjz1             = _mm256_setzero_pd();
2154             fjx2             = _mm256_setzero_pd();
2155             fjy2             = _mm256_setzero_pd();
2156             fjz2             = _mm256_setzero_pd();
2157             fjx3             = _mm256_setzero_pd();
2158             fjy3             = _mm256_setzero_pd();
2159             fjz3             = _mm256_setzero_pd();
2160
2161             /**************************
2162              * CALCULATE INTERACTIONS *
2163              **************************/
2164
2165             if (gmx_mm256_any_lt(rsq11,rcutoff2))
2166             {
2167
2168             r11              = _mm256_mul_pd(rsq11,rinv11);
2169             r11              = _mm256_andnot_pd(dummy_mask,r11);
2170
2171             /* EWALD ELECTROSTATICS */
2172
2173             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2174             ewrt             = _mm256_mul_pd(r11,ewtabscale);
2175             ewitab           = _mm256_cvttpd_epi32(ewrt);
2176             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2177             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2178                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2179                                             &ewtabF,&ewtabFn);
2180             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2181             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
2182
2183             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
2184
2185             fscal            = felec;
2186
2187             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2188
2189             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2190
2191             /* Calculate temporary vectorial force */
2192             tx               = _mm256_mul_pd(fscal,dx11);
2193             ty               = _mm256_mul_pd(fscal,dy11);
2194             tz               = _mm256_mul_pd(fscal,dz11);
2195
2196             /* Update vectorial force */
2197             fix1             = _mm256_add_pd(fix1,tx);
2198             fiy1             = _mm256_add_pd(fiy1,ty);
2199             fiz1             = _mm256_add_pd(fiz1,tz);
2200
2201             fjx1             = _mm256_add_pd(fjx1,tx);
2202             fjy1             = _mm256_add_pd(fjy1,ty);
2203             fjz1             = _mm256_add_pd(fjz1,tz);
2204
2205             }
2206
2207             /**************************
2208              * CALCULATE INTERACTIONS *
2209              **************************/
2210
2211             if (gmx_mm256_any_lt(rsq12,rcutoff2))
2212             {
2213
2214             r12              = _mm256_mul_pd(rsq12,rinv12);
2215             r12              = _mm256_andnot_pd(dummy_mask,r12);
2216
2217             /* EWALD ELECTROSTATICS */
2218
2219             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2220             ewrt             = _mm256_mul_pd(r12,ewtabscale);
2221             ewitab           = _mm256_cvttpd_epi32(ewrt);
2222             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2223             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2224                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2225                                             &ewtabF,&ewtabFn);
2226             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2227             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
2228
2229             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
2230
2231             fscal            = felec;
2232
2233             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2234
2235             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2236
2237             /* Calculate temporary vectorial force */
2238             tx               = _mm256_mul_pd(fscal,dx12);
2239             ty               = _mm256_mul_pd(fscal,dy12);
2240             tz               = _mm256_mul_pd(fscal,dz12);
2241
2242             /* Update vectorial force */
2243             fix1             = _mm256_add_pd(fix1,tx);
2244             fiy1             = _mm256_add_pd(fiy1,ty);
2245             fiz1             = _mm256_add_pd(fiz1,tz);
2246
2247             fjx2             = _mm256_add_pd(fjx2,tx);
2248             fjy2             = _mm256_add_pd(fjy2,ty);
2249             fjz2             = _mm256_add_pd(fjz2,tz);
2250
2251             }
2252
2253             /**************************
2254              * CALCULATE INTERACTIONS *
2255              **************************/
2256
2257             if (gmx_mm256_any_lt(rsq13,rcutoff2))
2258             {
2259
2260             r13              = _mm256_mul_pd(rsq13,rinv13);
2261             r13              = _mm256_andnot_pd(dummy_mask,r13);
2262
2263             /* EWALD ELECTROSTATICS */
2264
2265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2266             ewrt             = _mm256_mul_pd(r13,ewtabscale);
2267             ewitab           = _mm256_cvttpd_epi32(ewrt);
2268             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2269             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2270                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2271                                             &ewtabF,&ewtabFn);
2272             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2273             felec            = _mm256_mul_pd(_mm256_mul_pd(qq13,rinv13),_mm256_sub_pd(rinvsq13,felec));
2274
2275             cutoff_mask      = _mm256_cmp_pd(rsq13,rcutoff2,_CMP_LT_OQ);
2276
2277             fscal            = felec;
2278
2279             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2280
2281             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2282
2283             /* Calculate temporary vectorial force */
2284             tx               = _mm256_mul_pd(fscal,dx13);
2285             ty               = _mm256_mul_pd(fscal,dy13);
2286             tz               = _mm256_mul_pd(fscal,dz13);
2287
2288             /* Update vectorial force */
2289             fix1             = _mm256_add_pd(fix1,tx);
2290             fiy1             = _mm256_add_pd(fiy1,ty);
2291             fiz1             = _mm256_add_pd(fiz1,tz);
2292
2293             fjx3             = _mm256_add_pd(fjx3,tx);
2294             fjy3             = _mm256_add_pd(fjy3,ty);
2295             fjz3             = _mm256_add_pd(fjz3,tz);
2296
2297             }
2298
2299             /**************************
2300              * CALCULATE INTERACTIONS *
2301              **************************/
2302
2303             if (gmx_mm256_any_lt(rsq21,rcutoff2))
2304             {
2305
2306             r21              = _mm256_mul_pd(rsq21,rinv21);
2307             r21              = _mm256_andnot_pd(dummy_mask,r21);
2308
2309             /* EWALD ELECTROSTATICS */
2310
2311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2312             ewrt             = _mm256_mul_pd(r21,ewtabscale);
2313             ewitab           = _mm256_cvttpd_epi32(ewrt);
2314             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2315             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2316                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2317                                             &ewtabF,&ewtabFn);
2318             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2319             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
2320
2321             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
2322
2323             fscal            = felec;
2324
2325             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2326
2327             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2328
2329             /* Calculate temporary vectorial force */
2330             tx               = _mm256_mul_pd(fscal,dx21);
2331             ty               = _mm256_mul_pd(fscal,dy21);
2332             tz               = _mm256_mul_pd(fscal,dz21);
2333
2334             /* Update vectorial force */
2335             fix2             = _mm256_add_pd(fix2,tx);
2336             fiy2             = _mm256_add_pd(fiy2,ty);
2337             fiz2             = _mm256_add_pd(fiz2,tz);
2338
2339             fjx1             = _mm256_add_pd(fjx1,tx);
2340             fjy1             = _mm256_add_pd(fjy1,ty);
2341             fjz1             = _mm256_add_pd(fjz1,tz);
2342
2343             }
2344
2345             /**************************
2346              * CALCULATE INTERACTIONS *
2347              **************************/
2348
2349             if (gmx_mm256_any_lt(rsq22,rcutoff2))
2350             {
2351
2352             r22              = _mm256_mul_pd(rsq22,rinv22);
2353             r22              = _mm256_andnot_pd(dummy_mask,r22);
2354
2355             /* EWALD ELECTROSTATICS */
2356
2357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2358             ewrt             = _mm256_mul_pd(r22,ewtabscale);
2359             ewitab           = _mm256_cvttpd_epi32(ewrt);
2360             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2361             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2362                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2363                                             &ewtabF,&ewtabFn);
2364             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2365             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
2366
2367             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
2368
2369             fscal            = felec;
2370
2371             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2372
2373             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2374
2375             /* Calculate temporary vectorial force */
2376             tx               = _mm256_mul_pd(fscal,dx22);
2377             ty               = _mm256_mul_pd(fscal,dy22);
2378             tz               = _mm256_mul_pd(fscal,dz22);
2379
2380             /* Update vectorial force */
2381             fix2             = _mm256_add_pd(fix2,tx);
2382             fiy2             = _mm256_add_pd(fiy2,ty);
2383             fiz2             = _mm256_add_pd(fiz2,tz);
2384
2385             fjx2             = _mm256_add_pd(fjx2,tx);
2386             fjy2             = _mm256_add_pd(fjy2,ty);
2387             fjz2             = _mm256_add_pd(fjz2,tz);
2388
2389             }
2390
2391             /**************************
2392              * CALCULATE INTERACTIONS *
2393              **************************/
2394
2395             if (gmx_mm256_any_lt(rsq23,rcutoff2))
2396             {
2397
2398             r23              = _mm256_mul_pd(rsq23,rinv23);
2399             r23              = _mm256_andnot_pd(dummy_mask,r23);
2400
2401             /* EWALD ELECTROSTATICS */
2402
2403             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2404             ewrt             = _mm256_mul_pd(r23,ewtabscale);
2405             ewitab           = _mm256_cvttpd_epi32(ewrt);
2406             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2407             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2408                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2409                                             &ewtabF,&ewtabFn);
2410             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2411             felec            = _mm256_mul_pd(_mm256_mul_pd(qq23,rinv23),_mm256_sub_pd(rinvsq23,felec));
2412
2413             cutoff_mask      = _mm256_cmp_pd(rsq23,rcutoff2,_CMP_LT_OQ);
2414
2415             fscal            = felec;
2416
2417             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2418
2419             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2420
2421             /* Calculate temporary vectorial force */
2422             tx               = _mm256_mul_pd(fscal,dx23);
2423             ty               = _mm256_mul_pd(fscal,dy23);
2424             tz               = _mm256_mul_pd(fscal,dz23);
2425
2426             /* Update vectorial force */
2427             fix2             = _mm256_add_pd(fix2,tx);
2428             fiy2             = _mm256_add_pd(fiy2,ty);
2429             fiz2             = _mm256_add_pd(fiz2,tz);
2430
2431             fjx3             = _mm256_add_pd(fjx3,tx);
2432             fjy3             = _mm256_add_pd(fjy3,ty);
2433             fjz3             = _mm256_add_pd(fjz3,tz);
2434
2435             }
2436
2437             /**************************
2438              * CALCULATE INTERACTIONS *
2439              **************************/
2440
2441             if (gmx_mm256_any_lt(rsq31,rcutoff2))
2442             {
2443
2444             r31              = _mm256_mul_pd(rsq31,rinv31);
2445             r31              = _mm256_andnot_pd(dummy_mask,r31);
2446
2447             /* EWALD ELECTROSTATICS */
2448
2449             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2450             ewrt             = _mm256_mul_pd(r31,ewtabscale);
2451             ewitab           = _mm256_cvttpd_epi32(ewrt);
2452             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2453             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2454                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2455                                             &ewtabF,&ewtabFn);
2456             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2457             felec            = _mm256_mul_pd(_mm256_mul_pd(qq31,rinv31),_mm256_sub_pd(rinvsq31,felec));
2458
2459             cutoff_mask      = _mm256_cmp_pd(rsq31,rcutoff2,_CMP_LT_OQ);
2460
2461             fscal            = felec;
2462
2463             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2464
2465             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2466
2467             /* Calculate temporary vectorial force */
2468             tx               = _mm256_mul_pd(fscal,dx31);
2469             ty               = _mm256_mul_pd(fscal,dy31);
2470             tz               = _mm256_mul_pd(fscal,dz31);
2471
2472             /* Update vectorial force */
2473             fix3             = _mm256_add_pd(fix3,tx);
2474             fiy3             = _mm256_add_pd(fiy3,ty);
2475             fiz3             = _mm256_add_pd(fiz3,tz);
2476
2477             fjx1             = _mm256_add_pd(fjx1,tx);
2478             fjy1             = _mm256_add_pd(fjy1,ty);
2479             fjz1             = _mm256_add_pd(fjz1,tz);
2480
2481             }
2482
2483             /**************************
2484              * CALCULATE INTERACTIONS *
2485              **************************/
2486
2487             if (gmx_mm256_any_lt(rsq32,rcutoff2))
2488             {
2489
2490             r32              = _mm256_mul_pd(rsq32,rinv32);
2491             r32              = _mm256_andnot_pd(dummy_mask,r32);
2492
2493             /* EWALD ELECTROSTATICS */
2494
2495             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2496             ewrt             = _mm256_mul_pd(r32,ewtabscale);
2497             ewitab           = _mm256_cvttpd_epi32(ewrt);
2498             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2499             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2500                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2501                                             &ewtabF,&ewtabFn);
2502             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2503             felec            = _mm256_mul_pd(_mm256_mul_pd(qq32,rinv32),_mm256_sub_pd(rinvsq32,felec));
2504
2505             cutoff_mask      = _mm256_cmp_pd(rsq32,rcutoff2,_CMP_LT_OQ);
2506
2507             fscal            = felec;
2508
2509             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2510
2511             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2512
2513             /* Calculate temporary vectorial force */
2514             tx               = _mm256_mul_pd(fscal,dx32);
2515             ty               = _mm256_mul_pd(fscal,dy32);
2516             tz               = _mm256_mul_pd(fscal,dz32);
2517
2518             /* Update vectorial force */
2519             fix3             = _mm256_add_pd(fix3,tx);
2520             fiy3             = _mm256_add_pd(fiy3,ty);
2521             fiz3             = _mm256_add_pd(fiz3,tz);
2522
2523             fjx2             = _mm256_add_pd(fjx2,tx);
2524             fjy2             = _mm256_add_pd(fjy2,ty);
2525             fjz2             = _mm256_add_pd(fjz2,tz);
2526
2527             }
2528
2529             /**************************
2530              * CALCULATE INTERACTIONS *
2531              **************************/
2532
2533             if (gmx_mm256_any_lt(rsq33,rcutoff2))
2534             {
2535
2536             r33              = _mm256_mul_pd(rsq33,rinv33);
2537             r33              = _mm256_andnot_pd(dummy_mask,r33);
2538
2539             /* EWALD ELECTROSTATICS */
2540
2541             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2542             ewrt             = _mm256_mul_pd(r33,ewtabscale);
2543             ewitab           = _mm256_cvttpd_epi32(ewrt);
2544             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2545             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2546                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2547                                             &ewtabF,&ewtabFn);
2548             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2549             felec            = _mm256_mul_pd(_mm256_mul_pd(qq33,rinv33),_mm256_sub_pd(rinvsq33,felec));
2550
2551             cutoff_mask      = _mm256_cmp_pd(rsq33,rcutoff2,_CMP_LT_OQ);
2552
2553             fscal            = felec;
2554
2555             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2556
2557             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2558
2559             /* Calculate temporary vectorial force */
2560             tx               = _mm256_mul_pd(fscal,dx33);
2561             ty               = _mm256_mul_pd(fscal,dy33);
2562             tz               = _mm256_mul_pd(fscal,dz33);
2563
2564             /* Update vectorial force */
2565             fix3             = _mm256_add_pd(fix3,tx);
2566             fiy3             = _mm256_add_pd(fiy3,ty);
2567             fiz3             = _mm256_add_pd(fiz3,tz);
2568
2569             fjx3             = _mm256_add_pd(fjx3,tx);
2570             fjy3             = _mm256_add_pd(fjy3,ty);
2571             fjz3             = _mm256_add_pd(fjz3,tz);
2572
2573             }
2574
2575             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2576             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2577             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2578             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2579
2580             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
2581                                                       fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2582
2583             /* Inner loop uses 360 flops */
2584         }
2585
2586         /* End of innermost loop */
2587
2588         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2589                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
2590
2591         /* Increment number of inner iterations */
2592         inneriter                  += j_index_end - j_index_start;
2593
2594         /* Outer loop uses 18 flops */
2595     }
2596
2597     /* Increment number of outer iterations */
2598     outeriter        += nri;
2599
2600     /* Update outer/inner flops */
2601
2602     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*18 + inneriter*360);
2603 }