Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwNone_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr1;
71     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
72     real *           vdwioffsetptr2;
73     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
74     real *           vdwioffsetptr3;
75     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     __m128i          ewitab;
84     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
85     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
86     real             *ewtab;
87     __m256d          dummy_mask,cutoff_mask;
88     __m128           tmpmask0,tmpmask1;
89     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
90     __m256d          one     = _mm256_set1_pd(1.0);
91     __m256d          two     = _mm256_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm256_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105
106     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
107     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
108     beta2            = _mm256_mul_pd(beta,beta);
109     beta3            = _mm256_mul_pd(beta,beta2);
110
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
118     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
119     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->rcoulomb;
123     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
124     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
157                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
158
159         fix1             = _mm256_setzero_pd();
160         fiy1             = _mm256_setzero_pd();
161         fiz1             = _mm256_setzero_pd();
162         fix2             = _mm256_setzero_pd();
163         fiy2             = _mm256_setzero_pd();
164         fiz2             = _mm256_setzero_pd();
165         fix3             = _mm256_setzero_pd();
166         fiy3             = _mm256_setzero_pd();
167         fiz3             = _mm256_setzero_pd();
168
169         /* Reset potential sums */
170         velecsum         = _mm256_setzero_pd();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             jnrC             = jjnr[jidx+2];
180             jnrD             = jjnr[jidx+3];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183             j_coord_offsetC  = DIM*jnrC;
184             j_coord_offsetD  = DIM*jnrD;
185
186             /* load j atom coordinates */
187             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                                  x+j_coord_offsetC,x+j_coord_offsetD,
189                                                  &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx10             = _mm256_sub_pd(ix1,jx0);
193             dy10             = _mm256_sub_pd(iy1,jy0);
194             dz10             = _mm256_sub_pd(iz1,jz0);
195             dx20             = _mm256_sub_pd(ix2,jx0);
196             dy20             = _mm256_sub_pd(iy2,jy0);
197             dz20             = _mm256_sub_pd(iz2,jz0);
198             dx30             = _mm256_sub_pd(ix3,jx0);
199             dy30             = _mm256_sub_pd(iy3,jy0);
200             dz30             = _mm256_sub_pd(iz3,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
204             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
205             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
206
207             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
208             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
209             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
210
211             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
212             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
213             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
217                                                                  charge+jnrC+0,charge+jnrD+0);
218
219             fjx0             = _mm256_setzero_pd();
220             fjy0             = _mm256_setzero_pd();
221             fjz0             = _mm256_setzero_pd();
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             if (gmx_mm256_any_lt(rsq10,rcutoff2))
228             {
229
230             r10              = _mm256_mul_pd(rsq10,rinv10);
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq10             = _mm256_mul_pd(iq1,jq0);
234
235             /* EWALD ELECTROSTATICS */
236
237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
238             ewrt             = _mm256_mul_pd(r10,ewtabscale);
239             ewitab           = _mm256_cvttpd_epi32(ewrt);
240             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
241             ewitab           = _mm_slli_epi32(ewitab,2);
242             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
243             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
244             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
245             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
246             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
247             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
248             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
249             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
250             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
251
252             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
253
254             /* Update potential sum for this i atom from the interaction with this j atom. */
255             velec            = _mm256_and_pd(velec,cutoff_mask);
256             velecsum         = _mm256_add_pd(velecsum,velec);
257
258             fscal            = felec;
259
260             fscal            = _mm256_and_pd(fscal,cutoff_mask);
261
262             /* Calculate temporary vectorial force */
263             tx               = _mm256_mul_pd(fscal,dx10);
264             ty               = _mm256_mul_pd(fscal,dy10);
265             tz               = _mm256_mul_pd(fscal,dz10);
266
267             /* Update vectorial force */
268             fix1             = _mm256_add_pd(fix1,tx);
269             fiy1             = _mm256_add_pd(fiy1,ty);
270             fiz1             = _mm256_add_pd(fiz1,tz);
271
272             fjx0             = _mm256_add_pd(fjx0,tx);
273             fjy0             = _mm256_add_pd(fjy0,ty);
274             fjz0             = _mm256_add_pd(fjz0,tz);
275
276             }
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             if (gmx_mm256_any_lt(rsq20,rcutoff2))
283             {
284
285             r20              = _mm256_mul_pd(rsq20,rinv20);
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq20             = _mm256_mul_pd(iq2,jq0);
289
290             /* EWALD ELECTROSTATICS */
291
292             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
293             ewrt             = _mm256_mul_pd(r20,ewtabscale);
294             ewitab           = _mm256_cvttpd_epi32(ewrt);
295             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
296             ewitab           = _mm_slli_epi32(ewitab,2);
297             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
298             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
299             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
300             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
301             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
302             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
303             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
304             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
305             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
306
307             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velec            = _mm256_and_pd(velec,cutoff_mask);
311             velecsum         = _mm256_add_pd(velecsum,velec);
312
313             fscal            = felec;
314
315             fscal            = _mm256_and_pd(fscal,cutoff_mask);
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm256_mul_pd(fscal,dx20);
319             ty               = _mm256_mul_pd(fscal,dy20);
320             tz               = _mm256_mul_pd(fscal,dz20);
321
322             /* Update vectorial force */
323             fix2             = _mm256_add_pd(fix2,tx);
324             fiy2             = _mm256_add_pd(fiy2,ty);
325             fiz2             = _mm256_add_pd(fiz2,tz);
326
327             fjx0             = _mm256_add_pd(fjx0,tx);
328             fjy0             = _mm256_add_pd(fjy0,ty);
329             fjz0             = _mm256_add_pd(fjz0,tz);
330
331             }
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             if (gmx_mm256_any_lt(rsq30,rcutoff2))
338             {
339
340             r30              = _mm256_mul_pd(rsq30,rinv30);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq30             = _mm256_mul_pd(iq3,jq0);
344
345             /* EWALD ELECTROSTATICS */
346
347             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
348             ewrt             = _mm256_mul_pd(r30,ewtabscale);
349             ewitab           = _mm256_cvttpd_epi32(ewrt);
350             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
351             ewitab           = _mm_slli_epi32(ewitab,2);
352             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
353             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
354             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
355             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
356             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
357             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
358             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
359             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_sub_pd(rinv30,sh_ewald),velec));
360             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
361
362             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm256_and_pd(velec,cutoff_mask);
366             velecsum         = _mm256_add_pd(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _mm256_and_pd(fscal,cutoff_mask);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm256_mul_pd(fscal,dx30);
374             ty               = _mm256_mul_pd(fscal,dy30);
375             tz               = _mm256_mul_pd(fscal,dz30);
376
377             /* Update vectorial force */
378             fix3             = _mm256_add_pd(fix3,tx);
379             fiy3             = _mm256_add_pd(fiy3,ty);
380             fiz3             = _mm256_add_pd(fiz3,tz);
381
382             fjx0             = _mm256_add_pd(fjx0,tx);
383             fjy0             = _mm256_add_pd(fjy0,ty);
384             fjz0             = _mm256_add_pd(fjz0,tz);
385
386             }
387
388             fjptrA             = f+j_coord_offsetA;
389             fjptrB             = f+j_coord_offsetB;
390             fjptrC             = f+j_coord_offsetC;
391             fjptrD             = f+j_coord_offsetD;
392
393             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
394
395             /* Inner loop uses 141 flops */
396         }
397
398         if(jidx<j_index_end)
399         {
400
401             /* Get j neighbor index, and coordinate index */
402             jnrlistA         = jjnr[jidx];
403             jnrlistB         = jjnr[jidx+1];
404             jnrlistC         = jjnr[jidx+2];
405             jnrlistD         = jjnr[jidx+3];
406             /* Sign of each element will be negative for non-real atoms.
407              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
408              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
409              */
410             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
411
412             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
413             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
414             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
415
416             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
417             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
418             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
419             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
420             j_coord_offsetA  = DIM*jnrA;
421             j_coord_offsetB  = DIM*jnrB;
422             j_coord_offsetC  = DIM*jnrC;
423             j_coord_offsetD  = DIM*jnrD;
424
425             /* load j atom coordinates */
426             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
427                                                  x+j_coord_offsetC,x+j_coord_offsetD,
428                                                  &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx10             = _mm256_sub_pd(ix1,jx0);
432             dy10             = _mm256_sub_pd(iy1,jy0);
433             dz10             = _mm256_sub_pd(iz1,jz0);
434             dx20             = _mm256_sub_pd(ix2,jx0);
435             dy20             = _mm256_sub_pd(iy2,jy0);
436             dz20             = _mm256_sub_pd(iz2,jz0);
437             dx30             = _mm256_sub_pd(ix3,jx0);
438             dy30             = _mm256_sub_pd(iy3,jy0);
439             dz30             = _mm256_sub_pd(iz3,jz0);
440
441             /* Calculate squared distance and things based on it */
442             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
443             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
444             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
445
446             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
447             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
448             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
449
450             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
451             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
452             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
453
454             /* Load parameters for j particles */
455             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
456                                                                  charge+jnrC+0,charge+jnrD+0);
457
458             fjx0             = _mm256_setzero_pd();
459             fjy0             = _mm256_setzero_pd();
460             fjz0             = _mm256_setzero_pd();
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             if (gmx_mm256_any_lt(rsq10,rcutoff2))
467             {
468
469             r10              = _mm256_mul_pd(rsq10,rinv10);
470             r10              = _mm256_andnot_pd(dummy_mask,r10);
471
472             /* Compute parameters for interactions between i and j atoms */
473             qq10             = _mm256_mul_pd(iq1,jq0);
474
475             /* EWALD ELECTROSTATICS */
476
477             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
478             ewrt             = _mm256_mul_pd(r10,ewtabscale);
479             ewitab           = _mm256_cvttpd_epi32(ewrt);
480             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
481             ewitab           = _mm_slli_epi32(ewitab,2);
482             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
483             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
484             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
485             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
486             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
487             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
488             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
489             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
490             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
491
492             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
493
494             /* Update potential sum for this i atom from the interaction with this j atom. */
495             velec            = _mm256_and_pd(velec,cutoff_mask);
496             velec            = _mm256_andnot_pd(dummy_mask,velec);
497             velecsum         = _mm256_add_pd(velecsum,velec);
498
499             fscal            = felec;
500
501             fscal            = _mm256_and_pd(fscal,cutoff_mask);
502
503             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
504
505             /* Calculate temporary vectorial force */
506             tx               = _mm256_mul_pd(fscal,dx10);
507             ty               = _mm256_mul_pd(fscal,dy10);
508             tz               = _mm256_mul_pd(fscal,dz10);
509
510             /* Update vectorial force */
511             fix1             = _mm256_add_pd(fix1,tx);
512             fiy1             = _mm256_add_pd(fiy1,ty);
513             fiz1             = _mm256_add_pd(fiz1,tz);
514
515             fjx0             = _mm256_add_pd(fjx0,tx);
516             fjy0             = _mm256_add_pd(fjy0,ty);
517             fjz0             = _mm256_add_pd(fjz0,tz);
518
519             }
520
521             /**************************
522              * CALCULATE INTERACTIONS *
523              **************************/
524
525             if (gmx_mm256_any_lt(rsq20,rcutoff2))
526             {
527
528             r20              = _mm256_mul_pd(rsq20,rinv20);
529             r20              = _mm256_andnot_pd(dummy_mask,r20);
530
531             /* Compute parameters for interactions between i and j atoms */
532             qq20             = _mm256_mul_pd(iq2,jq0);
533
534             /* EWALD ELECTROSTATICS */
535
536             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
537             ewrt             = _mm256_mul_pd(r20,ewtabscale);
538             ewitab           = _mm256_cvttpd_epi32(ewrt);
539             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
540             ewitab           = _mm_slli_epi32(ewitab,2);
541             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
542             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
543             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
544             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
545             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
546             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
547             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
548             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
549             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
550
551             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm256_and_pd(velec,cutoff_mask);
555             velec            = _mm256_andnot_pd(dummy_mask,velec);
556             velecsum         = _mm256_add_pd(velecsum,velec);
557
558             fscal            = felec;
559
560             fscal            = _mm256_and_pd(fscal,cutoff_mask);
561
562             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm256_mul_pd(fscal,dx20);
566             ty               = _mm256_mul_pd(fscal,dy20);
567             tz               = _mm256_mul_pd(fscal,dz20);
568
569             /* Update vectorial force */
570             fix2             = _mm256_add_pd(fix2,tx);
571             fiy2             = _mm256_add_pd(fiy2,ty);
572             fiz2             = _mm256_add_pd(fiz2,tz);
573
574             fjx0             = _mm256_add_pd(fjx0,tx);
575             fjy0             = _mm256_add_pd(fjy0,ty);
576             fjz0             = _mm256_add_pd(fjz0,tz);
577
578             }
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             if (gmx_mm256_any_lt(rsq30,rcutoff2))
585             {
586
587             r30              = _mm256_mul_pd(rsq30,rinv30);
588             r30              = _mm256_andnot_pd(dummy_mask,r30);
589
590             /* Compute parameters for interactions between i and j atoms */
591             qq30             = _mm256_mul_pd(iq3,jq0);
592
593             /* EWALD ELECTROSTATICS */
594
595             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
596             ewrt             = _mm256_mul_pd(r30,ewtabscale);
597             ewitab           = _mm256_cvttpd_epi32(ewrt);
598             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
599             ewitab           = _mm_slli_epi32(ewitab,2);
600             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
601             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
602             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
603             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
604             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
605             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
606             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
607             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_sub_pd(rinv30,sh_ewald),velec));
608             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
609
610             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
611
612             /* Update potential sum for this i atom from the interaction with this j atom. */
613             velec            = _mm256_and_pd(velec,cutoff_mask);
614             velec            = _mm256_andnot_pd(dummy_mask,velec);
615             velecsum         = _mm256_add_pd(velecsum,velec);
616
617             fscal            = felec;
618
619             fscal            = _mm256_and_pd(fscal,cutoff_mask);
620
621             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm256_mul_pd(fscal,dx30);
625             ty               = _mm256_mul_pd(fscal,dy30);
626             tz               = _mm256_mul_pd(fscal,dz30);
627
628             /* Update vectorial force */
629             fix3             = _mm256_add_pd(fix3,tx);
630             fiy3             = _mm256_add_pd(fiy3,ty);
631             fiz3             = _mm256_add_pd(fiz3,tz);
632
633             fjx0             = _mm256_add_pd(fjx0,tx);
634             fjy0             = _mm256_add_pd(fjy0,ty);
635             fjz0             = _mm256_add_pd(fjz0,tz);
636
637             }
638
639             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
640             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
641             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
642             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
643
644             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
645
646             /* Inner loop uses 144 flops */
647         }
648
649         /* End of innermost loop */
650
651         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
652                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
653
654         ggid                        = gid[iidx];
655         /* Update potential energies */
656         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
657
658         /* Increment number of inner iterations */
659         inneriter                  += j_index_end - j_index_start;
660
661         /* Outer loop uses 19 flops */
662     }
663
664     /* Increment number of outer iterations */
665     outeriter        += nri;
666
667     /* Update outer/inner flops */
668
669     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*144);
670 }
671 /*
672  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_avx_256_double
673  * Electrostatics interaction: Ewald
674  * VdW interaction:            None
675  * Geometry:                   Water4-Particle
676  * Calculate force/pot:        Force
677  */
678 void
679 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_avx_256_double
680                     (t_nblist * gmx_restrict                nlist,
681                      rvec * gmx_restrict                    xx,
682                      rvec * gmx_restrict                    ff,
683                      t_forcerec * gmx_restrict              fr,
684                      t_mdatoms * gmx_restrict               mdatoms,
685                      nb_kernel_data_t * gmx_restrict        kernel_data,
686                      t_nrnb * gmx_restrict                  nrnb)
687 {
688     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
689      * just 0 for non-waters.
690      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
691      * jnr indices corresponding to data put in the four positions in the SIMD register.
692      */
693     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
694     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
695     int              jnrA,jnrB,jnrC,jnrD;
696     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
697     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
698     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
699     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
700     real             rcutoff_scalar;
701     real             *shiftvec,*fshift,*x,*f;
702     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
703     real             scratch[4*DIM];
704     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
705     real *           vdwioffsetptr1;
706     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
707     real *           vdwioffsetptr2;
708     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
709     real *           vdwioffsetptr3;
710     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
711     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
712     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
713     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
714     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
715     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
716     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
717     real             *charge;
718     __m128i          ewitab;
719     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
720     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
721     real             *ewtab;
722     __m256d          dummy_mask,cutoff_mask;
723     __m128           tmpmask0,tmpmask1;
724     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
725     __m256d          one     = _mm256_set1_pd(1.0);
726     __m256d          two     = _mm256_set1_pd(2.0);
727     x                = xx[0];
728     f                = ff[0];
729
730     nri              = nlist->nri;
731     iinr             = nlist->iinr;
732     jindex           = nlist->jindex;
733     jjnr             = nlist->jjnr;
734     shiftidx         = nlist->shift;
735     gid              = nlist->gid;
736     shiftvec         = fr->shift_vec[0];
737     fshift           = fr->fshift[0];
738     facel            = _mm256_set1_pd(fr->epsfac);
739     charge           = mdatoms->chargeA;
740
741     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
742     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
743     beta2            = _mm256_mul_pd(beta,beta);
744     beta3            = _mm256_mul_pd(beta,beta2);
745
746     ewtab            = fr->ic->tabq_coul_F;
747     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
748     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
749
750     /* Setup water-specific parameters */
751     inr              = nlist->iinr[0];
752     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
753     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
754     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
755
756     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
757     rcutoff_scalar   = fr->rcoulomb;
758     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
759     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
760
761     /* Avoid stupid compiler warnings */
762     jnrA = jnrB = jnrC = jnrD = 0;
763     j_coord_offsetA = 0;
764     j_coord_offsetB = 0;
765     j_coord_offsetC = 0;
766     j_coord_offsetD = 0;
767
768     outeriter        = 0;
769     inneriter        = 0;
770
771     for(iidx=0;iidx<4*DIM;iidx++)
772     {
773         scratch[iidx] = 0.0;
774     }
775
776     /* Start outer loop over neighborlists */
777     for(iidx=0; iidx<nri; iidx++)
778     {
779         /* Load shift vector for this list */
780         i_shift_offset   = DIM*shiftidx[iidx];
781
782         /* Load limits for loop over neighbors */
783         j_index_start    = jindex[iidx];
784         j_index_end      = jindex[iidx+1];
785
786         /* Get outer coordinate index */
787         inr              = iinr[iidx];
788         i_coord_offset   = DIM*inr;
789
790         /* Load i particle coords and add shift vector */
791         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
792                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
793
794         fix1             = _mm256_setzero_pd();
795         fiy1             = _mm256_setzero_pd();
796         fiz1             = _mm256_setzero_pd();
797         fix2             = _mm256_setzero_pd();
798         fiy2             = _mm256_setzero_pd();
799         fiz2             = _mm256_setzero_pd();
800         fix3             = _mm256_setzero_pd();
801         fiy3             = _mm256_setzero_pd();
802         fiz3             = _mm256_setzero_pd();
803
804         /* Start inner kernel loop */
805         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
806         {
807
808             /* Get j neighbor index, and coordinate index */
809             jnrA             = jjnr[jidx];
810             jnrB             = jjnr[jidx+1];
811             jnrC             = jjnr[jidx+2];
812             jnrD             = jjnr[jidx+3];
813             j_coord_offsetA  = DIM*jnrA;
814             j_coord_offsetB  = DIM*jnrB;
815             j_coord_offsetC  = DIM*jnrC;
816             j_coord_offsetD  = DIM*jnrD;
817
818             /* load j atom coordinates */
819             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
820                                                  x+j_coord_offsetC,x+j_coord_offsetD,
821                                                  &jx0,&jy0,&jz0);
822
823             /* Calculate displacement vector */
824             dx10             = _mm256_sub_pd(ix1,jx0);
825             dy10             = _mm256_sub_pd(iy1,jy0);
826             dz10             = _mm256_sub_pd(iz1,jz0);
827             dx20             = _mm256_sub_pd(ix2,jx0);
828             dy20             = _mm256_sub_pd(iy2,jy0);
829             dz20             = _mm256_sub_pd(iz2,jz0);
830             dx30             = _mm256_sub_pd(ix3,jx0);
831             dy30             = _mm256_sub_pd(iy3,jy0);
832             dz30             = _mm256_sub_pd(iz3,jz0);
833
834             /* Calculate squared distance and things based on it */
835             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
836             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
837             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
838
839             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
840             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
841             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
842
843             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
844             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
845             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
846
847             /* Load parameters for j particles */
848             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
849                                                                  charge+jnrC+0,charge+jnrD+0);
850
851             fjx0             = _mm256_setzero_pd();
852             fjy0             = _mm256_setzero_pd();
853             fjz0             = _mm256_setzero_pd();
854
855             /**************************
856              * CALCULATE INTERACTIONS *
857              **************************/
858
859             if (gmx_mm256_any_lt(rsq10,rcutoff2))
860             {
861
862             r10              = _mm256_mul_pd(rsq10,rinv10);
863
864             /* Compute parameters for interactions between i and j atoms */
865             qq10             = _mm256_mul_pd(iq1,jq0);
866
867             /* EWALD ELECTROSTATICS */
868
869             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
870             ewrt             = _mm256_mul_pd(r10,ewtabscale);
871             ewitab           = _mm256_cvttpd_epi32(ewrt);
872             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
873             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
874                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
875                                             &ewtabF,&ewtabFn);
876             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
877             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
878
879             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
880
881             fscal            = felec;
882
883             fscal            = _mm256_and_pd(fscal,cutoff_mask);
884
885             /* Calculate temporary vectorial force */
886             tx               = _mm256_mul_pd(fscal,dx10);
887             ty               = _mm256_mul_pd(fscal,dy10);
888             tz               = _mm256_mul_pd(fscal,dz10);
889
890             /* Update vectorial force */
891             fix1             = _mm256_add_pd(fix1,tx);
892             fiy1             = _mm256_add_pd(fiy1,ty);
893             fiz1             = _mm256_add_pd(fiz1,tz);
894
895             fjx0             = _mm256_add_pd(fjx0,tx);
896             fjy0             = _mm256_add_pd(fjy0,ty);
897             fjz0             = _mm256_add_pd(fjz0,tz);
898
899             }
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             if (gmx_mm256_any_lt(rsq20,rcutoff2))
906             {
907
908             r20              = _mm256_mul_pd(rsq20,rinv20);
909
910             /* Compute parameters for interactions between i and j atoms */
911             qq20             = _mm256_mul_pd(iq2,jq0);
912
913             /* EWALD ELECTROSTATICS */
914
915             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
916             ewrt             = _mm256_mul_pd(r20,ewtabscale);
917             ewitab           = _mm256_cvttpd_epi32(ewrt);
918             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
919             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
920                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
921                                             &ewtabF,&ewtabFn);
922             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
923             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
924
925             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
926
927             fscal            = felec;
928
929             fscal            = _mm256_and_pd(fscal,cutoff_mask);
930
931             /* Calculate temporary vectorial force */
932             tx               = _mm256_mul_pd(fscal,dx20);
933             ty               = _mm256_mul_pd(fscal,dy20);
934             tz               = _mm256_mul_pd(fscal,dz20);
935
936             /* Update vectorial force */
937             fix2             = _mm256_add_pd(fix2,tx);
938             fiy2             = _mm256_add_pd(fiy2,ty);
939             fiz2             = _mm256_add_pd(fiz2,tz);
940
941             fjx0             = _mm256_add_pd(fjx0,tx);
942             fjy0             = _mm256_add_pd(fjy0,ty);
943             fjz0             = _mm256_add_pd(fjz0,tz);
944
945             }
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             if (gmx_mm256_any_lt(rsq30,rcutoff2))
952             {
953
954             r30              = _mm256_mul_pd(rsq30,rinv30);
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq30             = _mm256_mul_pd(iq3,jq0);
958
959             /* EWALD ELECTROSTATICS */
960
961             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962             ewrt             = _mm256_mul_pd(r30,ewtabscale);
963             ewitab           = _mm256_cvttpd_epi32(ewrt);
964             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
965             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
966                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
967                                             &ewtabF,&ewtabFn);
968             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
969             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
970
971             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
972
973             fscal            = felec;
974
975             fscal            = _mm256_and_pd(fscal,cutoff_mask);
976
977             /* Calculate temporary vectorial force */
978             tx               = _mm256_mul_pd(fscal,dx30);
979             ty               = _mm256_mul_pd(fscal,dy30);
980             tz               = _mm256_mul_pd(fscal,dz30);
981
982             /* Update vectorial force */
983             fix3             = _mm256_add_pd(fix3,tx);
984             fiy3             = _mm256_add_pd(fiy3,ty);
985             fiz3             = _mm256_add_pd(fiz3,tz);
986
987             fjx0             = _mm256_add_pd(fjx0,tx);
988             fjy0             = _mm256_add_pd(fjy0,ty);
989             fjz0             = _mm256_add_pd(fjz0,tz);
990
991             }
992
993             fjptrA             = f+j_coord_offsetA;
994             fjptrB             = f+j_coord_offsetB;
995             fjptrC             = f+j_coord_offsetC;
996             fjptrD             = f+j_coord_offsetD;
997
998             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
999
1000             /* Inner loop uses 120 flops */
1001         }
1002
1003         if(jidx<j_index_end)
1004         {
1005
1006             /* Get j neighbor index, and coordinate index */
1007             jnrlistA         = jjnr[jidx];
1008             jnrlistB         = jjnr[jidx+1];
1009             jnrlistC         = jjnr[jidx+2];
1010             jnrlistD         = jjnr[jidx+3];
1011             /* Sign of each element will be negative for non-real atoms.
1012              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1013              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1014              */
1015             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1016
1017             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1018             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1019             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1020
1021             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1022             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1023             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1024             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1025             j_coord_offsetA  = DIM*jnrA;
1026             j_coord_offsetB  = DIM*jnrB;
1027             j_coord_offsetC  = DIM*jnrC;
1028             j_coord_offsetD  = DIM*jnrD;
1029
1030             /* load j atom coordinates */
1031             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1032                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1033                                                  &jx0,&jy0,&jz0);
1034
1035             /* Calculate displacement vector */
1036             dx10             = _mm256_sub_pd(ix1,jx0);
1037             dy10             = _mm256_sub_pd(iy1,jy0);
1038             dz10             = _mm256_sub_pd(iz1,jz0);
1039             dx20             = _mm256_sub_pd(ix2,jx0);
1040             dy20             = _mm256_sub_pd(iy2,jy0);
1041             dz20             = _mm256_sub_pd(iz2,jz0);
1042             dx30             = _mm256_sub_pd(ix3,jx0);
1043             dy30             = _mm256_sub_pd(iy3,jy0);
1044             dz30             = _mm256_sub_pd(iz3,jz0);
1045
1046             /* Calculate squared distance and things based on it */
1047             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1048             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1049             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1050
1051             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1052             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1053             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1054
1055             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1056             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1057             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1058
1059             /* Load parameters for j particles */
1060             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1061                                                                  charge+jnrC+0,charge+jnrD+0);
1062
1063             fjx0             = _mm256_setzero_pd();
1064             fjy0             = _mm256_setzero_pd();
1065             fjz0             = _mm256_setzero_pd();
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1072             {
1073
1074             r10              = _mm256_mul_pd(rsq10,rinv10);
1075             r10              = _mm256_andnot_pd(dummy_mask,r10);
1076
1077             /* Compute parameters for interactions between i and j atoms */
1078             qq10             = _mm256_mul_pd(iq1,jq0);
1079
1080             /* EWALD ELECTROSTATICS */
1081
1082             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1083             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1084             ewitab           = _mm256_cvttpd_epi32(ewrt);
1085             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1086             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1087                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1088                                             &ewtabF,&ewtabFn);
1089             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1090             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1091
1092             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1093
1094             fscal            = felec;
1095
1096             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1097
1098             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1099
1100             /* Calculate temporary vectorial force */
1101             tx               = _mm256_mul_pd(fscal,dx10);
1102             ty               = _mm256_mul_pd(fscal,dy10);
1103             tz               = _mm256_mul_pd(fscal,dz10);
1104
1105             /* Update vectorial force */
1106             fix1             = _mm256_add_pd(fix1,tx);
1107             fiy1             = _mm256_add_pd(fiy1,ty);
1108             fiz1             = _mm256_add_pd(fiz1,tz);
1109
1110             fjx0             = _mm256_add_pd(fjx0,tx);
1111             fjy0             = _mm256_add_pd(fjy0,ty);
1112             fjz0             = _mm256_add_pd(fjz0,tz);
1113
1114             }
1115
1116             /**************************
1117              * CALCULATE INTERACTIONS *
1118              **************************/
1119
1120             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1121             {
1122
1123             r20              = _mm256_mul_pd(rsq20,rinv20);
1124             r20              = _mm256_andnot_pd(dummy_mask,r20);
1125
1126             /* Compute parameters for interactions between i and j atoms */
1127             qq20             = _mm256_mul_pd(iq2,jq0);
1128
1129             /* EWALD ELECTROSTATICS */
1130
1131             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1132             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1133             ewitab           = _mm256_cvttpd_epi32(ewrt);
1134             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1135             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1136                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1137                                             &ewtabF,&ewtabFn);
1138             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1139             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1140
1141             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1142
1143             fscal            = felec;
1144
1145             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1146
1147             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1148
1149             /* Calculate temporary vectorial force */
1150             tx               = _mm256_mul_pd(fscal,dx20);
1151             ty               = _mm256_mul_pd(fscal,dy20);
1152             tz               = _mm256_mul_pd(fscal,dz20);
1153
1154             /* Update vectorial force */
1155             fix2             = _mm256_add_pd(fix2,tx);
1156             fiy2             = _mm256_add_pd(fiy2,ty);
1157             fiz2             = _mm256_add_pd(fiz2,tz);
1158
1159             fjx0             = _mm256_add_pd(fjx0,tx);
1160             fjy0             = _mm256_add_pd(fjy0,ty);
1161             fjz0             = _mm256_add_pd(fjz0,tz);
1162
1163             }
1164
1165             /**************************
1166              * CALCULATE INTERACTIONS *
1167              **************************/
1168
1169             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1170             {
1171
1172             r30              = _mm256_mul_pd(rsq30,rinv30);
1173             r30              = _mm256_andnot_pd(dummy_mask,r30);
1174
1175             /* Compute parameters for interactions between i and j atoms */
1176             qq30             = _mm256_mul_pd(iq3,jq0);
1177
1178             /* EWALD ELECTROSTATICS */
1179
1180             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1181             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1182             ewitab           = _mm256_cvttpd_epi32(ewrt);
1183             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1184             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1185                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1186                                             &ewtabF,&ewtabFn);
1187             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1188             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1189
1190             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1191
1192             fscal            = felec;
1193
1194             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1195
1196             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1197
1198             /* Calculate temporary vectorial force */
1199             tx               = _mm256_mul_pd(fscal,dx30);
1200             ty               = _mm256_mul_pd(fscal,dy30);
1201             tz               = _mm256_mul_pd(fscal,dz30);
1202
1203             /* Update vectorial force */
1204             fix3             = _mm256_add_pd(fix3,tx);
1205             fiy3             = _mm256_add_pd(fiy3,ty);
1206             fiz3             = _mm256_add_pd(fiz3,tz);
1207
1208             fjx0             = _mm256_add_pd(fjx0,tx);
1209             fjy0             = _mm256_add_pd(fjy0,ty);
1210             fjz0             = _mm256_add_pd(fjz0,tz);
1211
1212             }
1213
1214             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1215             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1216             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1217             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1218
1219             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1220
1221             /* Inner loop uses 123 flops */
1222         }
1223
1224         /* End of innermost loop */
1225
1226         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1227                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1228
1229         /* Increment number of inner iterations */
1230         inneriter                  += j_index_end - j_index_start;
1231
1232         /* Outer loop uses 18 flops */
1233     }
1234
1235     /* Increment number of outer iterations */
1236     outeriter        += nri;
1237
1238     /* Update outer/inner flops */
1239
1240     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*123);
1241 }