Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwNone_GeomW3W3_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3W3_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water3-Water3
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwNone_GeomW3W3_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
95     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
96     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
97     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
98     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m256d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
100     __m256d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
101     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
102     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
103     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
104     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
105     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
106     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
107     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
108     real             *charge;
109     __m128i          ewitab;
110     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
112     real             *ewtab;
113     __m256d          dummy_mask,cutoff_mask;
114     __m128           tmpmask0,tmpmask1;
115     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
116     __m256d          one     = _mm256_set1_pd(1.0);
117     __m256d          two     = _mm256_set1_pd(2.0);
118     x                = xx[0];
119     f                = ff[0];
120
121     nri              = nlist->nri;
122     iinr             = nlist->iinr;
123     jindex           = nlist->jindex;
124     jjnr             = nlist->jjnr;
125     shiftidx         = nlist->shift;
126     gid              = nlist->gid;
127     shiftvec         = fr->shift_vec[0];
128     fshift           = fr->fshift[0];
129     facel            = _mm256_set1_pd(fr->epsfac);
130     charge           = mdatoms->chargeA;
131
132     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
133     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
134     beta2            = _mm256_mul_pd(beta,beta);
135     beta3            = _mm256_mul_pd(beta,beta2);
136
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
144     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
145     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
146
147     jq0              = _mm256_set1_pd(charge[inr+0]);
148     jq1              = _mm256_set1_pd(charge[inr+1]);
149     jq2              = _mm256_set1_pd(charge[inr+2]);
150     qq00             = _mm256_mul_pd(iq0,jq0);
151     qq01             = _mm256_mul_pd(iq0,jq1);
152     qq02             = _mm256_mul_pd(iq0,jq2);
153     qq10             = _mm256_mul_pd(iq1,jq0);
154     qq11             = _mm256_mul_pd(iq1,jq1);
155     qq12             = _mm256_mul_pd(iq1,jq2);
156     qq20             = _mm256_mul_pd(iq2,jq0);
157     qq21             = _mm256_mul_pd(iq2,jq1);
158     qq22             = _mm256_mul_pd(iq2,jq2);
159
160     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
161     rcutoff_scalar   = fr->rcoulomb;
162     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
163     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
164
165     /* Avoid stupid compiler warnings */
166     jnrA = jnrB = jnrC = jnrD = 0;
167     j_coord_offsetA = 0;
168     j_coord_offsetB = 0;
169     j_coord_offsetC = 0;
170     j_coord_offsetD = 0;
171
172     outeriter        = 0;
173     inneriter        = 0;
174
175     for(iidx=0;iidx<4*DIM;iidx++)
176     {
177         scratch[iidx] = 0.0;
178     }
179
180     /* Start outer loop over neighborlists */
181     for(iidx=0; iidx<nri; iidx++)
182     {
183         /* Load shift vector for this list */
184         i_shift_offset   = DIM*shiftidx[iidx];
185
186         /* Load limits for loop over neighbors */
187         j_index_start    = jindex[iidx];
188         j_index_end      = jindex[iidx+1];
189
190         /* Get outer coordinate index */
191         inr              = iinr[iidx];
192         i_coord_offset   = DIM*inr;
193
194         /* Load i particle coords and add shift vector */
195         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
196                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
197
198         fix0             = _mm256_setzero_pd();
199         fiy0             = _mm256_setzero_pd();
200         fiz0             = _mm256_setzero_pd();
201         fix1             = _mm256_setzero_pd();
202         fiy1             = _mm256_setzero_pd();
203         fiz1             = _mm256_setzero_pd();
204         fix2             = _mm256_setzero_pd();
205         fiy2             = _mm256_setzero_pd();
206         fiz2             = _mm256_setzero_pd();
207
208         /* Reset potential sums */
209         velecsum         = _mm256_setzero_pd();
210
211         /* Start inner kernel loop */
212         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
213         {
214
215             /* Get j neighbor index, and coordinate index */
216             jnrA             = jjnr[jidx];
217             jnrB             = jjnr[jidx+1];
218             jnrC             = jjnr[jidx+2];
219             jnrD             = jjnr[jidx+3];
220             j_coord_offsetA  = DIM*jnrA;
221             j_coord_offsetB  = DIM*jnrB;
222             j_coord_offsetC  = DIM*jnrC;
223             j_coord_offsetD  = DIM*jnrD;
224
225             /* load j atom coordinates */
226             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
227                                                  x+j_coord_offsetC,x+j_coord_offsetD,
228                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
229
230             /* Calculate displacement vector */
231             dx00             = _mm256_sub_pd(ix0,jx0);
232             dy00             = _mm256_sub_pd(iy0,jy0);
233             dz00             = _mm256_sub_pd(iz0,jz0);
234             dx01             = _mm256_sub_pd(ix0,jx1);
235             dy01             = _mm256_sub_pd(iy0,jy1);
236             dz01             = _mm256_sub_pd(iz0,jz1);
237             dx02             = _mm256_sub_pd(ix0,jx2);
238             dy02             = _mm256_sub_pd(iy0,jy2);
239             dz02             = _mm256_sub_pd(iz0,jz2);
240             dx10             = _mm256_sub_pd(ix1,jx0);
241             dy10             = _mm256_sub_pd(iy1,jy0);
242             dz10             = _mm256_sub_pd(iz1,jz0);
243             dx11             = _mm256_sub_pd(ix1,jx1);
244             dy11             = _mm256_sub_pd(iy1,jy1);
245             dz11             = _mm256_sub_pd(iz1,jz1);
246             dx12             = _mm256_sub_pd(ix1,jx2);
247             dy12             = _mm256_sub_pd(iy1,jy2);
248             dz12             = _mm256_sub_pd(iz1,jz2);
249             dx20             = _mm256_sub_pd(ix2,jx0);
250             dy20             = _mm256_sub_pd(iy2,jy0);
251             dz20             = _mm256_sub_pd(iz2,jz0);
252             dx21             = _mm256_sub_pd(ix2,jx1);
253             dy21             = _mm256_sub_pd(iy2,jy1);
254             dz21             = _mm256_sub_pd(iz2,jz1);
255             dx22             = _mm256_sub_pd(ix2,jx2);
256             dy22             = _mm256_sub_pd(iy2,jy2);
257             dz22             = _mm256_sub_pd(iz2,jz2);
258
259             /* Calculate squared distance and things based on it */
260             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
261             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
262             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
263             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
264             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
265             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
266             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
267             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
268             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
269
270             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
271             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
272             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
273             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
274             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
275             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
276             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
277             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
278             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
279
280             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
281             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
282             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
283             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
284             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
285             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
286             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
287             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
288             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
289
290             fjx0             = _mm256_setzero_pd();
291             fjy0             = _mm256_setzero_pd();
292             fjz0             = _mm256_setzero_pd();
293             fjx1             = _mm256_setzero_pd();
294             fjy1             = _mm256_setzero_pd();
295             fjz1             = _mm256_setzero_pd();
296             fjx2             = _mm256_setzero_pd();
297             fjy2             = _mm256_setzero_pd();
298             fjz2             = _mm256_setzero_pd();
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             if (gmx_mm256_any_lt(rsq00,rcutoff2))
305             {
306
307             r00              = _mm256_mul_pd(rsq00,rinv00);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm256_mul_pd(r00,ewtabscale);
313             ewitab           = _mm256_cvttpd_epi32(ewrt);
314             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
318             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
319             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
320             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
321             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
322             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
323             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
324             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
325
326             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velec            = _mm256_and_pd(velec,cutoff_mask);
330             velecsum         = _mm256_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             fscal            = _mm256_and_pd(fscal,cutoff_mask);
335
336             /* Calculate temporary vectorial force */
337             tx               = _mm256_mul_pd(fscal,dx00);
338             ty               = _mm256_mul_pd(fscal,dy00);
339             tz               = _mm256_mul_pd(fscal,dz00);
340
341             /* Update vectorial force */
342             fix0             = _mm256_add_pd(fix0,tx);
343             fiy0             = _mm256_add_pd(fiy0,ty);
344             fiz0             = _mm256_add_pd(fiz0,tz);
345
346             fjx0             = _mm256_add_pd(fjx0,tx);
347             fjy0             = _mm256_add_pd(fjy0,ty);
348             fjz0             = _mm256_add_pd(fjz0,tz);
349
350             }
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             if (gmx_mm256_any_lt(rsq01,rcutoff2))
357             {
358
359             r01              = _mm256_mul_pd(rsq01,rinv01);
360
361             /* EWALD ELECTROSTATICS */
362
363             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364             ewrt             = _mm256_mul_pd(r01,ewtabscale);
365             ewitab           = _mm256_cvttpd_epi32(ewrt);
366             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
367             ewitab           = _mm_slli_epi32(ewitab,2);
368             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
369             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
370             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
371             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
372             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
373             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
374             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
375             velec            = _mm256_mul_pd(qq01,_mm256_sub_pd(_mm256_sub_pd(rinv01,sh_ewald),velec));
376             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
377
378             cutoff_mask      = _mm256_cmp_pd(rsq01,rcutoff2,_CMP_LT_OQ);
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velec            = _mm256_and_pd(velec,cutoff_mask);
382             velecsum         = _mm256_add_pd(velecsum,velec);
383
384             fscal            = felec;
385
386             fscal            = _mm256_and_pd(fscal,cutoff_mask);
387
388             /* Calculate temporary vectorial force */
389             tx               = _mm256_mul_pd(fscal,dx01);
390             ty               = _mm256_mul_pd(fscal,dy01);
391             tz               = _mm256_mul_pd(fscal,dz01);
392
393             /* Update vectorial force */
394             fix0             = _mm256_add_pd(fix0,tx);
395             fiy0             = _mm256_add_pd(fiy0,ty);
396             fiz0             = _mm256_add_pd(fiz0,tz);
397
398             fjx1             = _mm256_add_pd(fjx1,tx);
399             fjy1             = _mm256_add_pd(fjy1,ty);
400             fjz1             = _mm256_add_pd(fjz1,tz);
401
402             }
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             if (gmx_mm256_any_lt(rsq02,rcutoff2))
409             {
410
411             r02              = _mm256_mul_pd(rsq02,rinv02);
412
413             /* EWALD ELECTROSTATICS */
414
415             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
416             ewrt             = _mm256_mul_pd(r02,ewtabscale);
417             ewitab           = _mm256_cvttpd_epi32(ewrt);
418             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
419             ewitab           = _mm_slli_epi32(ewitab,2);
420             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
421             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
422             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
423             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
424             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
425             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
426             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
427             velec            = _mm256_mul_pd(qq02,_mm256_sub_pd(_mm256_sub_pd(rinv02,sh_ewald),velec));
428             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
429
430             cutoff_mask      = _mm256_cmp_pd(rsq02,rcutoff2,_CMP_LT_OQ);
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velec            = _mm256_and_pd(velec,cutoff_mask);
434             velecsum         = _mm256_add_pd(velecsum,velec);
435
436             fscal            = felec;
437
438             fscal            = _mm256_and_pd(fscal,cutoff_mask);
439
440             /* Calculate temporary vectorial force */
441             tx               = _mm256_mul_pd(fscal,dx02);
442             ty               = _mm256_mul_pd(fscal,dy02);
443             tz               = _mm256_mul_pd(fscal,dz02);
444
445             /* Update vectorial force */
446             fix0             = _mm256_add_pd(fix0,tx);
447             fiy0             = _mm256_add_pd(fiy0,ty);
448             fiz0             = _mm256_add_pd(fiz0,tz);
449
450             fjx2             = _mm256_add_pd(fjx2,tx);
451             fjy2             = _mm256_add_pd(fjy2,ty);
452             fjz2             = _mm256_add_pd(fjz2,tz);
453
454             }
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             if (gmx_mm256_any_lt(rsq10,rcutoff2))
461             {
462
463             r10              = _mm256_mul_pd(rsq10,rinv10);
464
465             /* EWALD ELECTROSTATICS */
466
467             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
468             ewrt             = _mm256_mul_pd(r10,ewtabscale);
469             ewitab           = _mm256_cvttpd_epi32(ewrt);
470             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
471             ewitab           = _mm_slli_epi32(ewitab,2);
472             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
473             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
474             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
475             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
476             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
477             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
478             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
479             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
480             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
481
482             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
483
484             /* Update potential sum for this i atom from the interaction with this j atom. */
485             velec            = _mm256_and_pd(velec,cutoff_mask);
486             velecsum         = _mm256_add_pd(velecsum,velec);
487
488             fscal            = felec;
489
490             fscal            = _mm256_and_pd(fscal,cutoff_mask);
491
492             /* Calculate temporary vectorial force */
493             tx               = _mm256_mul_pd(fscal,dx10);
494             ty               = _mm256_mul_pd(fscal,dy10);
495             tz               = _mm256_mul_pd(fscal,dz10);
496
497             /* Update vectorial force */
498             fix1             = _mm256_add_pd(fix1,tx);
499             fiy1             = _mm256_add_pd(fiy1,ty);
500             fiz1             = _mm256_add_pd(fiz1,tz);
501
502             fjx0             = _mm256_add_pd(fjx0,tx);
503             fjy0             = _mm256_add_pd(fjy0,ty);
504             fjz0             = _mm256_add_pd(fjz0,tz);
505
506             }
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             if (gmx_mm256_any_lt(rsq11,rcutoff2))
513             {
514
515             r11              = _mm256_mul_pd(rsq11,rinv11);
516
517             /* EWALD ELECTROSTATICS */
518
519             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
520             ewrt             = _mm256_mul_pd(r11,ewtabscale);
521             ewitab           = _mm256_cvttpd_epi32(ewrt);
522             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
523             ewitab           = _mm_slli_epi32(ewitab,2);
524             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
525             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
526             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
527             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
528             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
529             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
530             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
531             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(_mm256_sub_pd(rinv11,sh_ewald),velec));
532             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
533
534             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
535
536             /* Update potential sum for this i atom from the interaction with this j atom. */
537             velec            = _mm256_and_pd(velec,cutoff_mask);
538             velecsum         = _mm256_add_pd(velecsum,velec);
539
540             fscal            = felec;
541
542             fscal            = _mm256_and_pd(fscal,cutoff_mask);
543
544             /* Calculate temporary vectorial force */
545             tx               = _mm256_mul_pd(fscal,dx11);
546             ty               = _mm256_mul_pd(fscal,dy11);
547             tz               = _mm256_mul_pd(fscal,dz11);
548
549             /* Update vectorial force */
550             fix1             = _mm256_add_pd(fix1,tx);
551             fiy1             = _mm256_add_pd(fiy1,ty);
552             fiz1             = _mm256_add_pd(fiz1,tz);
553
554             fjx1             = _mm256_add_pd(fjx1,tx);
555             fjy1             = _mm256_add_pd(fjy1,ty);
556             fjz1             = _mm256_add_pd(fjz1,tz);
557
558             }
559
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             if (gmx_mm256_any_lt(rsq12,rcutoff2))
565             {
566
567             r12              = _mm256_mul_pd(rsq12,rinv12);
568
569             /* EWALD ELECTROSTATICS */
570
571             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572             ewrt             = _mm256_mul_pd(r12,ewtabscale);
573             ewitab           = _mm256_cvttpd_epi32(ewrt);
574             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
575             ewitab           = _mm_slli_epi32(ewitab,2);
576             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
577             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
578             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
579             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
580             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
581             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
582             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
583             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(_mm256_sub_pd(rinv12,sh_ewald),velec));
584             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
585
586             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
587
588             /* Update potential sum for this i atom from the interaction with this j atom. */
589             velec            = _mm256_and_pd(velec,cutoff_mask);
590             velecsum         = _mm256_add_pd(velecsum,velec);
591
592             fscal            = felec;
593
594             fscal            = _mm256_and_pd(fscal,cutoff_mask);
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm256_mul_pd(fscal,dx12);
598             ty               = _mm256_mul_pd(fscal,dy12);
599             tz               = _mm256_mul_pd(fscal,dz12);
600
601             /* Update vectorial force */
602             fix1             = _mm256_add_pd(fix1,tx);
603             fiy1             = _mm256_add_pd(fiy1,ty);
604             fiz1             = _mm256_add_pd(fiz1,tz);
605
606             fjx2             = _mm256_add_pd(fjx2,tx);
607             fjy2             = _mm256_add_pd(fjy2,ty);
608             fjz2             = _mm256_add_pd(fjz2,tz);
609
610             }
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             if (gmx_mm256_any_lt(rsq20,rcutoff2))
617             {
618
619             r20              = _mm256_mul_pd(rsq20,rinv20);
620
621             /* EWALD ELECTROSTATICS */
622
623             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
624             ewrt             = _mm256_mul_pd(r20,ewtabscale);
625             ewitab           = _mm256_cvttpd_epi32(ewrt);
626             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
627             ewitab           = _mm_slli_epi32(ewitab,2);
628             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
629             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
630             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
631             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
632             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
633             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
634             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
635             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
636             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
637
638             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
639
640             /* Update potential sum for this i atom from the interaction with this j atom. */
641             velec            = _mm256_and_pd(velec,cutoff_mask);
642             velecsum         = _mm256_add_pd(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _mm256_and_pd(fscal,cutoff_mask);
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm256_mul_pd(fscal,dx20);
650             ty               = _mm256_mul_pd(fscal,dy20);
651             tz               = _mm256_mul_pd(fscal,dz20);
652
653             /* Update vectorial force */
654             fix2             = _mm256_add_pd(fix2,tx);
655             fiy2             = _mm256_add_pd(fiy2,ty);
656             fiz2             = _mm256_add_pd(fiz2,tz);
657
658             fjx0             = _mm256_add_pd(fjx0,tx);
659             fjy0             = _mm256_add_pd(fjy0,ty);
660             fjz0             = _mm256_add_pd(fjz0,tz);
661
662             }
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             if (gmx_mm256_any_lt(rsq21,rcutoff2))
669             {
670
671             r21              = _mm256_mul_pd(rsq21,rinv21);
672
673             /* EWALD ELECTROSTATICS */
674
675             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
676             ewrt             = _mm256_mul_pd(r21,ewtabscale);
677             ewitab           = _mm256_cvttpd_epi32(ewrt);
678             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
679             ewitab           = _mm_slli_epi32(ewitab,2);
680             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
681             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
682             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
683             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
684             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
685             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
686             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
687             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(_mm256_sub_pd(rinv21,sh_ewald),velec));
688             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
689
690             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
691
692             /* Update potential sum for this i atom from the interaction with this j atom. */
693             velec            = _mm256_and_pd(velec,cutoff_mask);
694             velecsum         = _mm256_add_pd(velecsum,velec);
695
696             fscal            = felec;
697
698             fscal            = _mm256_and_pd(fscal,cutoff_mask);
699
700             /* Calculate temporary vectorial force */
701             tx               = _mm256_mul_pd(fscal,dx21);
702             ty               = _mm256_mul_pd(fscal,dy21);
703             tz               = _mm256_mul_pd(fscal,dz21);
704
705             /* Update vectorial force */
706             fix2             = _mm256_add_pd(fix2,tx);
707             fiy2             = _mm256_add_pd(fiy2,ty);
708             fiz2             = _mm256_add_pd(fiz2,tz);
709
710             fjx1             = _mm256_add_pd(fjx1,tx);
711             fjy1             = _mm256_add_pd(fjy1,ty);
712             fjz1             = _mm256_add_pd(fjz1,tz);
713
714             }
715
716             /**************************
717              * CALCULATE INTERACTIONS *
718              **************************/
719
720             if (gmx_mm256_any_lt(rsq22,rcutoff2))
721             {
722
723             r22              = _mm256_mul_pd(rsq22,rinv22);
724
725             /* EWALD ELECTROSTATICS */
726
727             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
728             ewrt             = _mm256_mul_pd(r22,ewtabscale);
729             ewitab           = _mm256_cvttpd_epi32(ewrt);
730             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
731             ewitab           = _mm_slli_epi32(ewitab,2);
732             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
733             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
734             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
735             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
736             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
737             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
738             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
739             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(_mm256_sub_pd(rinv22,sh_ewald),velec));
740             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
741
742             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
743
744             /* Update potential sum for this i atom from the interaction with this j atom. */
745             velec            = _mm256_and_pd(velec,cutoff_mask);
746             velecsum         = _mm256_add_pd(velecsum,velec);
747
748             fscal            = felec;
749
750             fscal            = _mm256_and_pd(fscal,cutoff_mask);
751
752             /* Calculate temporary vectorial force */
753             tx               = _mm256_mul_pd(fscal,dx22);
754             ty               = _mm256_mul_pd(fscal,dy22);
755             tz               = _mm256_mul_pd(fscal,dz22);
756
757             /* Update vectorial force */
758             fix2             = _mm256_add_pd(fix2,tx);
759             fiy2             = _mm256_add_pd(fiy2,ty);
760             fiz2             = _mm256_add_pd(fiz2,tz);
761
762             fjx2             = _mm256_add_pd(fjx2,tx);
763             fjy2             = _mm256_add_pd(fjy2,ty);
764             fjz2             = _mm256_add_pd(fjz2,tz);
765
766             }
767
768             fjptrA             = f+j_coord_offsetA;
769             fjptrB             = f+j_coord_offsetB;
770             fjptrC             = f+j_coord_offsetC;
771             fjptrD             = f+j_coord_offsetD;
772
773             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
774                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
775
776             /* Inner loop uses 414 flops */
777         }
778
779         if(jidx<j_index_end)
780         {
781
782             /* Get j neighbor index, and coordinate index */
783             jnrlistA         = jjnr[jidx];
784             jnrlistB         = jjnr[jidx+1];
785             jnrlistC         = jjnr[jidx+2];
786             jnrlistD         = jjnr[jidx+3];
787             /* Sign of each element will be negative for non-real atoms.
788              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
789              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
790              */
791             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
792
793             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
794             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
795             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
796
797             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
798             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
799             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
800             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
801             j_coord_offsetA  = DIM*jnrA;
802             j_coord_offsetB  = DIM*jnrB;
803             j_coord_offsetC  = DIM*jnrC;
804             j_coord_offsetD  = DIM*jnrD;
805
806             /* load j atom coordinates */
807             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
808                                                  x+j_coord_offsetC,x+j_coord_offsetD,
809                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
810
811             /* Calculate displacement vector */
812             dx00             = _mm256_sub_pd(ix0,jx0);
813             dy00             = _mm256_sub_pd(iy0,jy0);
814             dz00             = _mm256_sub_pd(iz0,jz0);
815             dx01             = _mm256_sub_pd(ix0,jx1);
816             dy01             = _mm256_sub_pd(iy0,jy1);
817             dz01             = _mm256_sub_pd(iz0,jz1);
818             dx02             = _mm256_sub_pd(ix0,jx2);
819             dy02             = _mm256_sub_pd(iy0,jy2);
820             dz02             = _mm256_sub_pd(iz0,jz2);
821             dx10             = _mm256_sub_pd(ix1,jx0);
822             dy10             = _mm256_sub_pd(iy1,jy0);
823             dz10             = _mm256_sub_pd(iz1,jz0);
824             dx11             = _mm256_sub_pd(ix1,jx1);
825             dy11             = _mm256_sub_pd(iy1,jy1);
826             dz11             = _mm256_sub_pd(iz1,jz1);
827             dx12             = _mm256_sub_pd(ix1,jx2);
828             dy12             = _mm256_sub_pd(iy1,jy2);
829             dz12             = _mm256_sub_pd(iz1,jz2);
830             dx20             = _mm256_sub_pd(ix2,jx0);
831             dy20             = _mm256_sub_pd(iy2,jy0);
832             dz20             = _mm256_sub_pd(iz2,jz0);
833             dx21             = _mm256_sub_pd(ix2,jx1);
834             dy21             = _mm256_sub_pd(iy2,jy1);
835             dz21             = _mm256_sub_pd(iz2,jz1);
836             dx22             = _mm256_sub_pd(ix2,jx2);
837             dy22             = _mm256_sub_pd(iy2,jy2);
838             dz22             = _mm256_sub_pd(iz2,jz2);
839
840             /* Calculate squared distance and things based on it */
841             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
842             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
843             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
844             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
845             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
846             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
847             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
848             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
849             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
850
851             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
852             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
853             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
854             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
855             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
856             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
857             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
858             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
859             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
860
861             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
862             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
863             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
864             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
865             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
866             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
867             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
868             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
869             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
870
871             fjx0             = _mm256_setzero_pd();
872             fjy0             = _mm256_setzero_pd();
873             fjz0             = _mm256_setzero_pd();
874             fjx1             = _mm256_setzero_pd();
875             fjy1             = _mm256_setzero_pd();
876             fjz1             = _mm256_setzero_pd();
877             fjx2             = _mm256_setzero_pd();
878             fjy2             = _mm256_setzero_pd();
879             fjz2             = _mm256_setzero_pd();
880
881             /**************************
882              * CALCULATE INTERACTIONS *
883              **************************/
884
885             if (gmx_mm256_any_lt(rsq00,rcutoff2))
886             {
887
888             r00              = _mm256_mul_pd(rsq00,rinv00);
889             r00              = _mm256_andnot_pd(dummy_mask,r00);
890
891             /* EWALD ELECTROSTATICS */
892
893             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
894             ewrt             = _mm256_mul_pd(r00,ewtabscale);
895             ewitab           = _mm256_cvttpd_epi32(ewrt);
896             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
897             ewitab           = _mm_slli_epi32(ewitab,2);
898             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
899             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
900             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
901             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
902             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
903             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
904             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
905             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
906             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
907
908             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
909
910             /* Update potential sum for this i atom from the interaction with this j atom. */
911             velec            = _mm256_and_pd(velec,cutoff_mask);
912             velec            = _mm256_andnot_pd(dummy_mask,velec);
913             velecsum         = _mm256_add_pd(velecsum,velec);
914
915             fscal            = felec;
916
917             fscal            = _mm256_and_pd(fscal,cutoff_mask);
918
919             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
920
921             /* Calculate temporary vectorial force */
922             tx               = _mm256_mul_pd(fscal,dx00);
923             ty               = _mm256_mul_pd(fscal,dy00);
924             tz               = _mm256_mul_pd(fscal,dz00);
925
926             /* Update vectorial force */
927             fix0             = _mm256_add_pd(fix0,tx);
928             fiy0             = _mm256_add_pd(fiy0,ty);
929             fiz0             = _mm256_add_pd(fiz0,tz);
930
931             fjx0             = _mm256_add_pd(fjx0,tx);
932             fjy0             = _mm256_add_pd(fjy0,ty);
933             fjz0             = _mm256_add_pd(fjz0,tz);
934
935             }
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             if (gmx_mm256_any_lt(rsq01,rcutoff2))
942             {
943
944             r01              = _mm256_mul_pd(rsq01,rinv01);
945             r01              = _mm256_andnot_pd(dummy_mask,r01);
946
947             /* EWALD ELECTROSTATICS */
948
949             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
950             ewrt             = _mm256_mul_pd(r01,ewtabscale);
951             ewitab           = _mm256_cvttpd_epi32(ewrt);
952             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
953             ewitab           = _mm_slli_epi32(ewitab,2);
954             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
955             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
956             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
957             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
958             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
959             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
960             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
961             velec            = _mm256_mul_pd(qq01,_mm256_sub_pd(_mm256_sub_pd(rinv01,sh_ewald),velec));
962             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
963
964             cutoff_mask      = _mm256_cmp_pd(rsq01,rcutoff2,_CMP_LT_OQ);
965
966             /* Update potential sum for this i atom from the interaction with this j atom. */
967             velec            = _mm256_and_pd(velec,cutoff_mask);
968             velec            = _mm256_andnot_pd(dummy_mask,velec);
969             velecsum         = _mm256_add_pd(velecsum,velec);
970
971             fscal            = felec;
972
973             fscal            = _mm256_and_pd(fscal,cutoff_mask);
974
975             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
976
977             /* Calculate temporary vectorial force */
978             tx               = _mm256_mul_pd(fscal,dx01);
979             ty               = _mm256_mul_pd(fscal,dy01);
980             tz               = _mm256_mul_pd(fscal,dz01);
981
982             /* Update vectorial force */
983             fix0             = _mm256_add_pd(fix0,tx);
984             fiy0             = _mm256_add_pd(fiy0,ty);
985             fiz0             = _mm256_add_pd(fiz0,tz);
986
987             fjx1             = _mm256_add_pd(fjx1,tx);
988             fjy1             = _mm256_add_pd(fjy1,ty);
989             fjz1             = _mm256_add_pd(fjz1,tz);
990
991             }
992
993             /**************************
994              * CALCULATE INTERACTIONS *
995              **************************/
996
997             if (gmx_mm256_any_lt(rsq02,rcutoff2))
998             {
999
1000             r02              = _mm256_mul_pd(rsq02,rinv02);
1001             r02              = _mm256_andnot_pd(dummy_mask,r02);
1002
1003             /* EWALD ELECTROSTATICS */
1004
1005             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1006             ewrt             = _mm256_mul_pd(r02,ewtabscale);
1007             ewitab           = _mm256_cvttpd_epi32(ewrt);
1008             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1009             ewitab           = _mm_slli_epi32(ewitab,2);
1010             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1011             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1012             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1013             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1014             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1015             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1016             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1017             velec            = _mm256_mul_pd(qq02,_mm256_sub_pd(_mm256_sub_pd(rinv02,sh_ewald),velec));
1018             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
1019
1020             cutoff_mask      = _mm256_cmp_pd(rsq02,rcutoff2,_CMP_LT_OQ);
1021
1022             /* Update potential sum for this i atom from the interaction with this j atom. */
1023             velec            = _mm256_and_pd(velec,cutoff_mask);
1024             velec            = _mm256_andnot_pd(dummy_mask,velec);
1025             velecsum         = _mm256_add_pd(velecsum,velec);
1026
1027             fscal            = felec;
1028
1029             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1030
1031             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1032
1033             /* Calculate temporary vectorial force */
1034             tx               = _mm256_mul_pd(fscal,dx02);
1035             ty               = _mm256_mul_pd(fscal,dy02);
1036             tz               = _mm256_mul_pd(fscal,dz02);
1037
1038             /* Update vectorial force */
1039             fix0             = _mm256_add_pd(fix0,tx);
1040             fiy0             = _mm256_add_pd(fiy0,ty);
1041             fiz0             = _mm256_add_pd(fiz0,tz);
1042
1043             fjx2             = _mm256_add_pd(fjx2,tx);
1044             fjy2             = _mm256_add_pd(fjy2,ty);
1045             fjz2             = _mm256_add_pd(fjz2,tz);
1046
1047             }
1048
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1054             {
1055
1056             r10              = _mm256_mul_pd(rsq10,rinv10);
1057             r10              = _mm256_andnot_pd(dummy_mask,r10);
1058
1059             /* EWALD ELECTROSTATICS */
1060
1061             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1062             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1063             ewitab           = _mm256_cvttpd_epi32(ewrt);
1064             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1065             ewitab           = _mm_slli_epi32(ewitab,2);
1066             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1067             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1068             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1069             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1070             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1071             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1072             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1073             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
1074             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1075
1076             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1077
1078             /* Update potential sum for this i atom from the interaction with this j atom. */
1079             velec            = _mm256_and_pd(velec,cutoff_mask);
1080             velec            = _mm256_andnot_pd(dummy_mask,velec);
1081             velecsum         = _mm256_add_pd(velecsum,velec);
1082
1083             fscal            = felec;
1084
1085             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1086
1087             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1088
1089             /* Calculate temporary vectorial force */
1090             tx               = _mm256_mul_pd(fscal,dx10);
1091             ty               = _mm256_mul_pd(fscal,dy10);
1092             tz               = _mm256_mul_pd(fscal,dz10);
1093
1094             /* Update vectorial force */
1095             fix1             = _mm256_add_pd(fix1,tx);
1096             fiy1             = _mm256_add_pd(fiy1,ty);
1097             fiz1             = _mm256_add_pd(fiz1,tz);
1098
1099             fjx0             = _mm256_add_pd(fjx0,tx);
1100             fjy0             = _mm256_add_pd(fjy0,ty);
1101             fjz0             = _mm256_add_pd(fjz0,tz);
1102
1103             }
1104
1105             /**************************
1106              * CALCULATE INTERACTIONS *
1107              **************************/
1108
1109             if (gmx_mm256_any_lt(rsq11,rcutoff2))
1110             {
1111
1112             r11              = _mm256_mul_pd(rsq11,rinv11);
1113             r11              = _mm256_andnot_pd(dummy_mask,r11);
1114
1115             /* EWALD ELECTROSTATICS */
1116
1117             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1118             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1119             ewitab           = _mm256_cvttpd_epi32(ewrt);
1120             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1121             ewitab           = _mm_slli_epi32(ewitab,2);
1122             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1123             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1124             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1125             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1126             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1127             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1128             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1129             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(_mm256_sub_pd(rinv11,sh_ewald),velec));
1130             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1131
1132             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
1133
1134             /* Update potential sum for this i atom from the interaction with this j atom. */
1135             velec            = _mm256_and_pd(velec,cutoff_mask);
1136             velec            = _mm256_andnot_pd(dummy_mask,velec);
1137             velecsum         = _mm256_add_pd(velecsum,velec);
1138
1139             fscal            = felec;
1140
1141             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1142
1143             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1144
1145             /* Calculate temporary vectorial force */
1146             tx               = _mm256_mul_pd(fscal,dx11);
1147             ty               = _mm256_mul_pd(fscal,dy11);
1148             tz               = _mm256_mul_pd(fscal,dz11);
1149
1150             /* Update vectorial force */
1151             fix1             = _mm256_add_pd(fix1,tx);
1152             fiy1             = _mm256_add_pd(fiy1,ty);
1153             fiz1             = _mm256_add_pd(fiz1,tz);
1154
1155             fjx1             = _mm256_add_pd(fjx1,tx);
1156             fjy1             = _mm256_add_pd(fjy1,ty);
1157             fjz1             = _mm256_add_pd(fjz1,tz);
1158
1159             }
1160
1161             /**************************
1162              * CALCULATE INTERACTIONS *
1163              **************************/
1164
1165             if (gmx_mm256_any_lt(rsq12,rcutoff2))
1166             {
1167
1168             r12              = _mm256_mul_pd(rsq12,rinv12);
1169             r12              = _mm256_andnot_pd(dummy_mask,r12);
1170
1171             /* EWALD ELECTROSTATICS */
1172
1173             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1174             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1175             ewitab           = _mm256_cvttpd_epi32(ewrt);
1176             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1177             ewitab           = _mm_slli_epi32(ewitab,2);
1178             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1179             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1180             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1181             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1182             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1183             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1184             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1185             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(_mm256_sub_pd(rinv12,sh_ewald),velec));
1186             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1187
1188             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
1189
1190             /* Update potential sum for this i atom from the interaction with this j atom. */
1191             velec            = _mm256_and_pd(velec,cutoff_mask);
1192             velec            = _mm256_andnot_pd(dummy_mask,velec);
1193             velecsum         = _mm256_add_pd(velecsum,velec);
1194
1195             fscal            = felec;
1196
1197             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1198
1199             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1200
1201             /* Calculate temporary vectorial force */
1202             tx               = _mm256_mul_pd(fscal,dx12);
1203             ty               = _mm256_mul_pd(fscal,dy12);
1204             tz               = _mm256_mul_pd(fscal,dz12);
1205
1206             /* Update vectorial force */
1207             fix1             = _mm256_add_pd(fix1,tx);
1208             fiy1             = _mm256_add_pd(fiy1,ty);
1209             fiz1             = _mm256_add_pd(fiz1,tz);
1210
1211             fjx2             = _mm256_add_pd(fjx2,tx);
1212             fjy2             = _mm256_add_pd(fjy2,ty);
1213             fjz2             = _mm256_add_pd(fjz2,tz);
1214
1215             }
1216
1217             /**************************
1218              * CALCULATE INTERACTIONS *
1219              **************************/
1220
1221             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1222             {
1223
1224             r20              = _mm256_mul_pd(rsq20,rinv20);
1225             r20              = _mm256_andnot_pd(dummy_mask,r20);
1226
1227             /* EWALD ELECTROSTATICS */
1228
1229             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1230             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1231             ewitab           = _mm256_cvttpd_epi32(ewrt);
1232             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1233             ewitab           = _mm_slli_epi32(ewitab,2);
1234             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1235             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1236             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1237             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1238             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1239             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1240             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1241             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
1242             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1243
1244             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1245
1246             /* Update potential sum for this i atom from the interaction with this j atom. */
1247             velec            = _mm256_and_pd(velec,cutoff_mask);
1248             velec            = _mm256_andnot_pd(dummy_mask,velec);
1249             velecsum         = _mm256_add_pd(velecsum,velec);
1250
1251             fscal            = felec;
1252
1253             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1254
1255             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1256
1257             /* Calculate temporary vectorial force */
1258             tx               = _mm256_mul_pd(fscal,dx20);
1259             ty               = _mm256_mul_pd(fscal,dy20);
1260             tz               = _mm256_mul_pd(fscal,dz20);
1261
1262             /* Update vectorial force */
1263             fix2             = _mm256_add_pd(fix2,tx);
1264             fiy2             = _mm256_add_pd(fiy2,ty);
1265             fiz2             = _mm256_add_pd(fiz2,tz);
1266
1267             fjx0             = _mm256_add_pd(fjx0,tx);
1268             fjy0             = _mm256_add_pd(fjy0,ty);
1269             fjz0             = _mm256_add_pd(fjz0,tz);
1270
1271             }
1272
1273             /**************************
1274              * CALCULATE INTERACTIONS *
1275              **************************/
1276
1277             if (gmx_mm256_any_lt(rsq21,rcutoff2))
1278             {
1279
1280             r21              = _mm256_mul_pd(rsq21,rinv21);
1281             r21              = _mm256_andnot_pd(dummy_mask,r21);
1282
1283             /* EWALD ELECTROSTATICS */
1284
1285             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1286             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1287             ewitab           = _mm256_cvttpd_epi32(ewrt);
1288             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1289             ewitab           = _mm_slli_epi32(ewitab,2);
1290             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1291             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1292             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1293             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1294             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1295             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1296             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1297             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(_mm256_sub_pd(rinv21,sh_ewald),velec));
1298             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1299
1300             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
1301
1302             /* Update potential sum for this i atom from the interaction with this j atom. */
1303             velec            = _mm256_and_pd(velec,cutoff_mask);
1304             velec            = _mm256_andnot_pd(dummy_mask,velec);
1305             velecsum         = _mm256_add_pd(velecsum,velec);
1306
1307             fscal            = felec;
1308
1309             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1310
1311             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1312
1313             /* Calculate temporary vectorial force */
1314             tx               = _mm256_mul_pd(fscal,dx21);
1315             ty               = _mm256_mul_pd(fscal,dy21);
1316             tz               = _mm256_mul_pd(fscal,dz21);
1317
1318             /* Update vectorial force */
1319             fix2             = _mm256_add_pd(fix2,tx);
1320             fiy2             = _mm256_add_pd(fiy2,ty);
1321             fiz2             = _mm256_add_pd(fiz2,tz);
1322
1323             fjx1             = _mm256_add_pd(fjx1,tx);
1324             fjy1             = _mm256_add_pd(fjy1,ty);
1325             fjz1             = _mm256_add_pd(fjz1,tz);
1326
1327             }
1328
1329             /**************************
1330              * CALCULATE INTERACTIONS *
1331              **************************/
1332
1333             if (gmx_mm256_any_lt(rsq22,rcutoff2))
1334             {
1335
1336             r22              = _mm256_mul_pd(rsq22,rinv22);
1337             r22              = _mm256_andnot_pd(dummy_mask,r22);
1338
1339             /* EWALD ELECTROSTATICS */
1340
1341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1342             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1343             ewitab           = _mm256_cvttpd_epi32(ewrt);
1344             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1345             ewitab           = _mm_slli_epi32(ewitab,2);
1346             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1347             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1348             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1349             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1350             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1351             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1352             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1353             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(_mm256_sub_pd(rinv22,sh_ewald),velec));
1354             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1355
1356             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
1357
1358             /* Update potential sum for this i atom from the interaction with this j atom. */
1359             velec            = _mm256_and_pd(velec,cutoff_mask);
1360             velec            = _mm256_andnot_pd(dummy_mask,velec);
1361             velecsum         = _mm256_add_pd(velecsum,velec);
1362
1363             fscal            = felec;
1364
1365             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1366
1367             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1368
1369             /* Calculate temporary vectorial force */
1370             tx               = _mm256_mul_pd(fscal,dx22);
1371             ty               = _mm256_mul_pd(fscal,dy22);
1372             tz               = _mm256_mul_pd(fscal,dz22);
1373
1374             /* Update vectorial force */
1375             fix2             = _mm256_add_pd(fix2,tx);
1376             fiy2             = _mm256_add_pd(fiy2,ty);
1377             fiz2             = _mm256_add_pd(fiz2,tz);
1378
1379             fjx2             = _mm256_add_pd(fjx2,tx);
1380             fjy2             = _mm256_add_pd(fjy2,ty);
1381             fjz2             = _mm256_add_pd(fjz2,tz);
1382
1383             }
1384
1385             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1386             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1387             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1388             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1389
1390             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
1391                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1392
1393             /* Inner loop uses 423 flops */
1394         }
1395
1396         /* End of innermost loop */
1397
1398         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1399                                                  f+i_coord_offset,fshift+i_shift_offset);
1400
1401         ggid                        = gid[iidx];
1402         /* Update potential energies */
1403         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1404
1405         /* Increment number of inner iterations */
1406         inneriter                  += j_index_end - j_index_start;
1407
1408         /* Outer loop uses 19 flops */
1409     }
1410
1411     /* Increment number of outer iterations */
1412     outeriter        += nri;
1413
1414     /* Update outer/inner flops */
1415
1416     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*19 + inneriter*423);
1417 }
1418 /*
1419  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3W3_F_avx_256_double
1420  * Electrostatics interaction: Ewald
1421  * VdW interaction:            None
1422  * Geometry:                   Water3-Water3
1423  * Calculate force/pot:        Force
1424  */
1425 void
1426 nb_kernel_ElecEwSh_VdwNone_GeomW3W3_F_avx_256_double
1427                     (t_nblist                    * gmx_restrict       nlist,
1428                      rvec                        * gmx_restrict          xx,
1429                      rvec                        * gmx_restrict          ff,
1430                      t_forcerec                  * gmx_restrict          fr,
1431                      t_mdatoms                   * gmx_restrict     mdatoms,
1432                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1433                      t_nrnb                      * gmx_restrict        nrnb)
1434 {
1435     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1436      * just 0 for non-waters.
1437      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
1438      * jnr indices corresponding to data put in the four positions in the SIMD register.
1439      */
1440     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1441     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1442     int              jnrA,jnrB,jnrC,jnrD;
1443     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1444     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
1445     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1446     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1447     real             rcutoff_scalar;
1448     real             *shiftvec,*fshift,*x,*f;
1449     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1450     real             scratch[4*DIM];
1451     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1452     real *           vdwioffsetptr0;
1453     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1454     real *           vdwioffsetptr1;
1455     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1456     real *           vdwioffsetptr2;
1457     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1458     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1459     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1460     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1461     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1462     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1463     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1464     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1465     __m256d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1466     __m256d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1467     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1468     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1469     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1470     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1471     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1472     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1473     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
1474     real             *charge;
1475     __m128i          ewitab;
1476     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1477     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
1478     real             *ewtab;
1479     __m256d          dummy_mask,cutoff_mask;
1480     __m128           tmpmask0,tmpmask1;
1481     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
1482     __m256d          one     = _mm256_set1_pd(1.0);
1483     __m256d          two     = _mm256_set1_pd(2.0);
1484     x                = xx[0];
1485     f                = ff[0];
1486
1487     nri              = nlist->nri;
1488     iinr             = nlist->iinr;
1489     jindex           = nlist->jindex;
1490     jjnr             = nlist->jjnr;
1491     shiftidx         = nlist->shift;
1492     gid              = nlist->gid;
1493     shiftvec         = fr->shift_vec[0];
1494     fshift           = fr->fshift[0];
1495     facel            = _mm256_set1_pd(fr->epsfac);
1496     charge           = mdatoms->chargeA;
1497
1498     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
1499     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
1500     beta2            = _mm256_mul_pd(beta,beta);
1501     beta3            = _mm256_mul_pd(beta,beta2);
1502
1503     ewtab            = fr->ic->tabq_coul_F;
1504     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
1505     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
1506
1507     /* Setup water-specific parameters */
1508     inr              = nlist->iinr[0];
1509     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
1510     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
1511     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
1512
1513     jq0              = _mm256_set1_pd(charge[inr+0]);
1514     jq1              = _mm256_set1_pd(charge[inr+1]);
1515     jq2              = _mm256_set1_pd(charge[inr+2]);
1516     qq00             = _mm256_mul_pd(iq0,jq0);
1517     qq01             = _mm256_mul_pd(iq0,jq1);
1518     qq02             = _mm256_mul_pd(iq0,jq2);
1519     qq10             = _mm256_mul_pd(iq1,jq0);
1520     qq11             = _mm256_mul_pd(iq1,jq1);
1521     qq12             = _mm256_mul_pd(iq1,jq2);
1522     qq20             = _mm256_mul_pd(iq2,jq0);
1523     qq21             = _mm256_mul_pd(iq2,jq1);
1524     qq22             = _mm256_mul_pd(iq2,jq2);
1525
1526     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1527     rcutoff_scalar   = fr->rcoulomb;
1528     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
1529     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
1530
1531     /* Avoid stupid compiler warnings */
1532     jnrA = jnrB = jnrC = jnrD = 0;
1533     j_coord_offsetA = 0;
1534     j_coord_offsetB = 0;
1535     j_coord_offsetC = 0;
1536     j_coord_offsetD = 0;
1537
1538     outeriter        = 0;
1539     inneriter        = 0;
1540
1541     for(iidx=0;iidx<4*DIM;iidx++)
1542     {
1543         scratch[iidx] = 0.0;
1544     }
1545
1546     /* Start outer loop over neighborlists */
1547     for(iidx=0; iidx<nri; iidx++)
1548     {
1549         /* Load shift vector for this list */
1550         i_shift_offset   = DIM*shiftidx[iidx];
1551
1552         /* Load limits for loop over neighbors */
1553         j_index_start    = jindex[iidx];
1554         j_index_end      = jindex[iidx+1];
1555
1556         /* Get outer coordinate index */
1557         inr              = iinr[iidx];
1558         i_coord_offset   = DIM*inr;
1559
1560         /* Load i particle coords and add shift vector */
1561         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1562                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1563
1564         fix0             = _mm256_setzero_pd();
1565         fiy0             = _mm256_setzero_pd();
1566         fiz0             = _mm256_setzero_pd();
1567         fix1             = _mm256_setzero_pd();
1568         fiy1             = _mm256_setzero_pd();
1569         fiz1             = _mm256_setzero_pd();
1570         fix2             = _mm256_setzero_pd();
1571         fiy2             = _mm256_setzero_pd();
1572         fiz2             = _mm256_setzero_pd();
1573
1574         /* Start inner kernel loop */
1575         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1576         {
1577
1578             /* Get j neighbor index, and coordinate index */
1579             jnrA             = jjnr[jidx];
1580             jnrB             = jjnr[jidx+1];
1581             jnrC             = jjnr[jidx+2];
1582             jnrD             = jjnr[jidx+3];
1583             j_coord_offsetA  = DIM*jnrA;
1584             j_coord_offsetB  = DIM*jnrB;
1585             j_coord_offsetC  = DIM*jnrC;
1586             j_coord_offsetD  = DIM*jnrD;
1587
1588             /* load j atom coordinates */
1589             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1590                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1591                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1592
1593             /* Calculate displacement vector */
1594             dx00             = _mm256_sub_pd(ix0,jx0);
1595             dy00             = _mm256_sub_pd(iy0,jy0);
1596             dz00             = _mm256_sub_pd(iz0,jz0);
1597             dx01             = _mm256_sub_pd(ix0,jx1);
1598             dy01             = _mm256_sub_pd(iy0,jy1);
1599             dz01             = _mm256_sub_pd(iz0,jz1);
1600             dx02             = _mm256_sub_pd(ix0,jx2);
1601             dy02             = _mm256_sub_pd(iy0,jy2);
1602             dz02             = _mm256_sub_pd(iz0,jz2);
1603             dx10             = _mm256_sub_pd(ix1,jx0);
1604             dy10             = _mm256_sub_pd(iy1,jy0);
1605             dz10             = _mm256_sub_pd(iz1,jz0);
1606             dx11             = _mm256_sub_pd(ix1,jx1);
1607             dy11             = _mm256_sub_pd(iy1,jy1);
1608             dz11             = _mm256_sub_pd(iz1,jz1);
1609             dx12             = _mm256_sub_pd(ix1,jx2);
1610             dy12             = _mm256_sub_pd(iy1,jy2);
1611             dz12             = _mm256_sub_pd(iz1,jz2);
1612             dx20             = _mm256_sub_pd(ix2,jx0);
1613             dy20             = _mm256_sub_pd(iy2,jy0);
1614             dz20             = _mm256_sub_pd(iz2,jz0);
1615             dx21             = _mm256_sub_pd(ix2,jx1);
1616             dy21             = _mm256_sub_pd(iy2,jy1);
1617             dz21             = _mm256_sub_pd(iz2,jz1);
1618             dx22             = _mm256_sub_pd(ix2,jx2);
1619             dy22             = _mm256_sub_pd(iy2,jy2);
1620             dz22             = _mm256_sub_pd(iz2,jz2);
1621
1622             /* Calculate squared distance and things based on it */
1623             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1624             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
1625             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
1626             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1627             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1628             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1629             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1630             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1631             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1632
1633             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1634             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
1635             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
1636             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1637             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1638             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1639             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1640             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1641             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
1642
1643             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1644             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
1645             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
1646             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1647             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1648             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1649             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1650             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1651             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1652
1653             fjx0             = _mm256_setzero_pd();
1654             fjy0             = _mm256_setzero_pd();
1655             fjz0             = _mm256_setzero_pd();
1656             fjx1             = _mm256_setzero_pd();
1657             fjy1             = _mm256_setzero_pd();
1658             fjz1             = _mm256_setzero_pd();
1659             fjx2             = _mm256_setzero_pd();
1660             fjy2             = _mm256_setzero_pd();
1661             fjz2             = _mm256_setzero_pd();
1662
1663             /**************************
1664              * CALCULATE INTERACTIONS *
1665              **************************/
1666
1667             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1668             {
1669
1670             r00              = _mm256_mul_pd(rsq00,rinv00);
1671
1672             /* EWALD ELECTROSTATICS */
1673
1674             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1675             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1676             ewitab           = _mm256_cvttpd_epi32(ewrt);
1677             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1678             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1679                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1680                                             &ewtabF,&ewtabFn);
1681             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1682             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1683
1684             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1685
1686             fscal            = felec;
1687
1688             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1689
1690             /* Calculate temporary vectorial force */
1691             tx               = _mm256_mul_pd(fscal,dx00);
1692             ty               = _mm256_mul_pd(fscal,dy00);
1693             tz               = _mm256_mul_pd(fscal,dz00);
1694
1695             /* Update vectorial force */
1696             fix0             = _mm256_add_pd(fix0,tx);
1697             fiy0             = _mm256_add_pd(fiy0,ty);
1698             fiz0             = _mm256_add_pd(fiz0,tz);
1699
1700             fjx0             = _mm256_add_pd(fjx0,tx);
1701             fjy0             = _mm256_add_pd(fjy0,ty);
1702             fjz0             = _mm256_add_pd(fjz0,tz);
1703
1704             }
1705
1706             /**************************
1707              * CALCULATE INTERACTIONS *
1708              **************************/
1709
1710             if (gmx_mm256_any_lt(rsq01,rcutoff2))
1711             {
1712
1713             r01              = _mm256_mul_pd(rsq01,rinv01);
1714
1715             /* EWALD ELECTROSTATICS */
1716
1717             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1718             ewrt             = _mm256_mul_pd(r01,ewtabscale);
1719             ewitab           = _mm256_cvttpd_epi32(ewrt);
1720             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1721             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1722                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1723                                             &ewtabF,&ewtabFn);
1724             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1725             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
1726
1727             cutoff_mask      = _mm256_cmp_pd(rsq01,rcutoff2,_CMP_LT_OQ);
1728
1729             fscal            = felec;
1730
1731             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1732
1733             /* Calculate temporary vectorial force */
1734             tx               = _mm256_mul_pd(fscal,dx01);
1735             ty               = _mm256_mul_pd(fscal,dy01);
1736             tz               = _mm256_mul_pd(fscal,dz01);
1737
1738             /* Update vectorial force */
1739             fix0             = _mm256_add_pd(fix0,tx);
1740             fiy0             = _mm256_add_pd(fiy0,ty);
1741             fiz0             = _mm256_add_pd(fiz0,tz);
1742
1743             fjx1             = _mm256_add_pd(fjx1,tx);
1744             fjy1             = _mm256_add_pd(fjy1,ty);
1745             fjz1             = _mm256_add_pd(fjz1,tz);
1746
1747             }
1748
1749             /**************************
1750              * CALCULATE INTERACTIONS *
1751              **************************/
1752
1753             if (gmx_mm256_any_lt(rsq02,rcutoff2))
1754             {
1755
1756             r02              = _mm256_mul_pd(rsq02,rinv02);
1757
1758             /* EWALD ELECTROSTATICS */
1759
1760             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1761             ewrt             = _mm256_mul_pd(r02,ewtabscale);
1762             ewitab           = _mm256_cvttpd_epi32(ewrt);
1763             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1764             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1765                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1766                                             &ewtabF,&ewtabFn);
1767             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1768             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
1769
1770             cutoff_mask      = _mm256_cmp_pd(rsq02,rcutoff2,_CMP_LT_OQ);
1771
1772             fscal            = felec;
1773
1774             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1775
1776             /* Calculate temporary vectorial force */
1777             tx               = _mm256_mul_pd(fscal,dx02);
1778             ty               = _mm256_mul_pd(fscal,dy02);
1779             tz               = _mm256_mul_pd(fscal,dz02);
1780
1781             /* Update vectorial force */
1782             fix0             = _mm256_add_pd(fix0,tx);
1783             fiy0             = _mm256_add_pd(fiy0,ty);
1784             fiz0             = _mm256_add_pd(fiz0,tz);
1785
1786             fjx2             = _mm256_add_pd(fjx2,tx);
1787             fjy2             = _mm256_add_pd(fjy2,ty);
1788             fjz2             = _mm256_add_pd(fjz2,tz);
1789
1790             }
1791
1792             /**************************
1793              * CALCULATE INTERACTIONS *
1794              **************************/
1795
1796             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1797             {
1798
1799             r10              = _mm256_mul_pd(rsq10,rinv10);
1800
1801             /* EWALD ELECTROSTATICS */
1802
1803             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1804             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1805             ewitab           = _mm256_cvttpd_epi32(ewrt);
1806             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1807             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1808                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1809                                             &ewtabF,&ewtabFn);
1810             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1811             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1812
1813             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1814
1815             fscal            = felec;
1816
1817             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1818
1819             /* Calculate temporary vectorial force */
1820             tx               = _mm256_mul_pd(fscal,dx10);
1821             ty               = _mm256_mul_pd(fscal,dy10);
1822             tz               = _mm256_mul_pd(fscal,dz10);
1823
1824             /* Update vectorial force */
1825             fix1             = _mm256_add_pd(fix1,tx);
1826             fiy1             = _mm256_add_pd(fiy1,ty);
1827             fiz1             = _mm256_add_pd(fiz1,tz);
1828
1829             fjx0             = _mm256_add_pd(fjx0,tx);
1830             fjy0             = _mm256_add_pd(fjy0,ty);
1831             fjz0             = _mm256_add_pd(fjz0,tz);
1832
1833             }
1834
1835             /**************************
1836              * CALCULATE INTERACTIONS *
1837              **************************/
1838
1839             if (gmx_mm256_any_lt(rsq11,rcutoff2))
1840             {
1841
1842             r11              = _mm256_mul_pd(rsq11,rinv11);
1843
1844             /* EWALD ELECTROSTATICS */
1845
1846             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1847             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1848             ewitab           = _mm256_cvttpd_epi32(ewrt);
1849             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1850             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1851                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1852                                             &ewtabF,&ewtabFn);
1853             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1854             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1855
1856             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
1857
1858             fscal            = felec;
1859
1860             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1861
1862             /* Calculate temporary vectorial force */
1863             tx               = _mm256_mul_pd(fscal,dx11);
1864             ty               = _mm256_mul_pd(fscal,dy11);
1865             tz               = _mm256_mul_pd(fscal,dz11);
1866
1867             /* Update vectorial force */
1868             fix1             = _mm256_add_pd(fix1,tx);
1869             fiy1             = _mm256_add_pd(fiy1,ty);
1870             fiz1             = _mm256_add_pd(fiz1,tz);
1871
1872             fjx1             = _mm256_add_pd(fjx1,tx);
1873             fjy1             = _mm256_add_pd(fjy1,ty);
1874             fjz1             = _mm256_add_pd(fjz1,tz);
1875
1876             }
1877
1878             /**************************
1879              * CALCULATE INTERACTIONS *
1880              **************************/
1881
1882             if (gmx_mm256_any_lt(rsq12,rcutoff2))
1883             {
1884
1885             r12              = _mm256_mul_pd(rsq12,rinv12);
1886
1887             /* EWALD ELECTROSTATICS */
1888
1889             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1890             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1891             ewitab           = _mm256_cvttpd_epi32(ewrt);
1892             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1893             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1894                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1895                                             &ewtabF,&ewtabFn);
1896             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1897             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1898
1899             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
1900
1901             fscal            = felec;
1902
1903             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1904
1905             /* Calculate temporary vectorial force */
1906             tx               = _mm256_mul_pd(fscal,dx12);
1907             ty               = _mm256_mul_pd(fscal,dy12);
1908             tz               = _mm256_mul_pd(fscal,dz12);
1909
1910             /* Update vectorial force */
1911             fix1             = _mm256_add_pd(fix1,tx);
1912             fiy1             = _mm256_add_pd(fiy1,ty);
1913             fiz1             = _mm256_add_pd(fiz1,tz);
1914
1915             fjx2             = _mm256_add_pd(fjx2,tx);
1916             fjy2             = _mm256_add_pd(fjy2,ty);
1917             fjz2             = _mm256_add_pd(fjz2,tz);
1918
1919             }
1920
1921             /**************************
1922              * CALCULATE INTERACTIONS *
1923              **************************/
1924
1925             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1926             {
1927
1928             r20              = _mm256_mul_pd(rsq20,rinv20);
1929
1930             /* EWALD ELECTROSTATICS */
1931
1932             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1933             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1934             ewitab           = _mm256_cvttpd_epi32(ewrt);
1935             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1936             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1937                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1938                                             &ewtabF,&ewtabFn);
1939             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1940             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1941
1942             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1943
1944             fscal            = felec;
1945
1946             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1947
1948             /* Calculate temporary vectorial force */
1949             tx               = _mm256_mul_pd(fscal,dx20);
1950             ty               = _mm256_mul_pd(fscal,dy20);
1951             tz               = _mm256_mul_pd(fscal,dz20);
1952
1953             /* Update vectorial force */
1954             fix2             = _mm256_add_pd(fix2,tx);
1955             fiy2             = _mm256_add_pd(fiy2,ty);
1956             fiz2             = _mm256_add_pd(fiz2,tz);
1957
1958             fjx0             = _mm256_add_pd(fjx0,tx);
1959             fjy0             = _mm256_add_pd(fjy0,ty);
1960             fjz0             = _mm256_add_pd(fjz0,tz);
1961
1962             }
1963
1964             /**************************
1965              * CALCULATE INTERACTIONS *
1966              **************************/
1967
1968             if (gmx_mm256_any_lt(rsq21,rcutoff2))
1969             {
1970
1971             r21              = _mm256_mul_pd(rsq21,rinv21);
1972
1973             /* EWALD ELECTROSTATICS */
1974
1975             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1976             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1977             ewitab           = _mm256_cvttpd_epi32(ewrt);
1978             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1979             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1980                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1981                                             &ewtabF,&ewtabFn);
1982             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1983             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1984
1985             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
1986
1987             fscal            = felec;
1988
1989             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1990
1991             /* Calculate temporary vectorial force */
1992             tx               = _mm256_mul_pd(fscal,dx21);
1993             ty               = _mm256_mul_pd(fscal,dy21);
1994             tz               = _mm256_mul_pd(fscal,dz21);
1995
1996             /* Update vectorial force */
1997             fix2             = _mm256_add_pd(fix2,tx);
1998             fiy2             = _mm256_add_pd(fiy2,ty);
1999             fiz2             = _mm256_add_pd(fiz2,tz);
2000
2001             fjx1             = _mm256_add_pd(fjx1,tx);
2002             fjy1             = _mm256_add_pd(fjy1,ty);
2003             fjz1             = _mm256_add_pd(fjz1,tz);
2004
2005             }
2006
2007             /**************************
2008              * CALCULATE INTERACTIONS *
2009              **************************/
2010
2011             if (gmx_mm256_any_lt(rsq22,rcutoff2))
2012             {
2013
2014             r22              = _mm256_mul_pd(rsq22,rinv22);
2015
2016             /* EWALD ELECTROSTATICS */
2017
2018             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2019             ewrt             = _mm256_mul_pd(r22,ewtabscale);
2020             ewitab           = _mm256_cvttpd_epi32(ewrt);
2021             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2022             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2023                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2024                                             &ewtabF,&ewtabFn);
2025             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2026             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
2027
2028             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
2029
2030             fscal            = felec;
2031
2032             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2033
2034             /* Calculate temporary vectorial force */
2035             tx               = _mm256_mul_pd(fscal,dx22);
2036             ty               = _mm256_mul_pd(fscal,dy22);
2037             tz               = _mm256_mul_pd(fscal,dz22);
2038
2039             /* Update vectorial force */
2040             fix2             = _mm256_add_pd(fix2,tx);
2041             fiy2             = _mm256_add_pd(fiy2,ty);
2042             fiz2             = _mm256_add_pd(fiz2,tz);
2043
2044             fjx2             = _mm256_add_pd(fjx2,tx);
2045             fjy2             = _mm256_add_pd(fjy2,ty);
2046             fjz2             = _mm256_add_pd(fjz2,tz);
2047
2048             }
2049
2050             fjptrA             = f+j_coord_offsetA;
2051             fjptrB             = f+j_coord_offsetB;
2052             fjptrC             = f+j_coord_offsetC;
2053             fjptrD             = f+j_coord_offsetD;
2054
2055             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
2056                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2057
2058             /* Inner loop uses 351 flops */
2059         }
2060
2061         if(jidx<j_index_end)
2062         {
2063
2064             /* Get j neighbor index, and coordinate index */
2065             jnrlistA         = jjnr[jidx];
2066             jnrlistB         = jjnr[jidx+1];
2067             jnrlistC         = jjnr[jidx+2];
2068             jnrlistD         = jjnr[jidx+3];
2069             /* Sign of each element will be negative for non-real atoms.
2070              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
2071              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
2072              */
2073             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
2074
2075             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
2076             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
2077             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
2078
2079             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
2080             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
2081             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
2082             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
2083             j_coord_offsetA  = DIM*jnrA;
2084             j_coord_offsetB  = DIM*jnrB;
2085             j_coord_offsetC  = DIM*jnrC;
2086             j_coord_offsetD  = DIM*jnrD;
2087
2088             /* load j atom coordinates */
2089             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
2090                                                  x+j_coord_offsetC,x+j_coord_offsetD,
2091                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
2092
2093             /* Calculate displacement vector */
2094             dx00             = _mm256_sub_pd(ix0,jx0);
2095             dy00             = _mm256_sub_pd(iy0,jy0);
2096             dz00             = _mm256_sub_pd(iz0,jz0);
2097             dx01             = _mm256_sub_pd(ix0,jx1);
2098             dy01             = _mm256_sub_pd(iy0,jy1);
2099             dz01             = _mm256_sub_pd(iz0,jz1);
2100             dx02             = _mm256_sub_pd(ix0,jx2);
2101             dy02             = _mm256_sub_pd(iy0,jy2);
2102             dz02             = _mm256_sub_pd(iz0,jz2);
2103             dx10             = _mm256_sub_pd(ix1,jx0);
2104             dy10             = _mm256_sub_pd(iy1,jy0);
2105             dz10             = _mm256_sub_pd(iz1,jz0);
2106             dx11             = _mm256_sub_pd(ix1,jx1);
2107             dy11             = _mm256_sub_pd(iy1,jy1);
2108             dz11             = _mm256_sub_pd(iz1,jz1);
2109             dx12             = _mm256_sub_pd(ix1,jx2);
2110             dy12             = _mm256_sub_pd(iy1,jy2);
2111             dz12             = _mm256_sub_pd(iz1,jz2);
2112             dx20             = _mm256_sub_pd(ix2,jx0);
2113             dy20             = _mm256_sub_pd(iy2,jy0);
2114             dz20             = _mm256_sub_pd(iz2,jz0);
2115             dx21             = _mm256_sub_pd(ix2,jx1);
2116             dy21             = _mm256_sub_pd(iy2,jy1);
2117             dz21             = _mm256_sub_pd(iz2,jz1);
2118             dx22             = _mm256_sub_pd(ix2,jx2);
2119             dy22             = _mm256_sub_pd(iy2,jy2);
2120             dz22             = _mm256_sub_pd(iz2,jz2);
2121
2122             /* Calculate squared distance and things based on it */
2123             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
2124             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
2125             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
2126             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
2127             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
2128             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
2129             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
2130             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
2131             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
2132
2133             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
2134             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
2135             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
2136             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
2137             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
2138             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
2139             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
2140             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
2141             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
2142
2143             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
2144             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
2145             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
2146             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
2147             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
2148             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
2149             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
2150             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
2151             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
2152
2153             fjx0             = _mm256_setzero_pd();
2154             fjy0             = _mm256_setzero_pd();
2155             fjz0             = _mm256_setzero_pd();
2156             fjx1             = _mm256_setzero_pd();
2157             fjy1             = _mm256_setzero_pd();
2158             fjz1             = _mm256_setzero_pd();
2159             fjx2             = _mm256_setzero_pd();
2160             fjy2             = _mm256_setzero_pd();
2161             fjz2             = _mm256_setzero_pd();
2162
2163             /**************************
2164              * CALCULATE INTERACTIONS *
2165              **************************/
2166
2167             if (gmx_mm256_any_lt(rsq00,rcutoff2))
2168             {
2169
2170             r00              = _mm256_mul_pd(rsq00,rinv00);
2171             r00              = _mm256_andnot_pd(dummy_mask,r00);
2172
2173             /* EWALD ELECTROSTATICS */
2174
2175             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2176             ewrt             = _mm256_mul_pd(r00,ewtabscale);
2177             ewitab           = _mm256_cvttpd_epi32(ewrt);
2178             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2179             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2180                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2181                                             &ewtabF,&ewtabFn);
2182             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2183             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
2184
2185             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
2186
2187             fscal            = felec;
2188
2189             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2190
2191             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2192
2193             /* Calculate temporary vectorial force */
2194             tx               = _mm256_mul_pd(fscal,dx00);
2195             ty               = _mm256_mul_pd(fscal,dy00);
2196             tz               = _mm256_mul_pd(fscal,dz00);
2197
2198             /* Update vectorial force */
2199             fix0             = _mm256_add_pd(fix0,tx);
2200             fiy0             = _mm256_add_pd(fiy0,ty);
2201             fiz0             = _mm256_add_pd(fiz0,tz);
2202
2203             fjx0             = _mm256_add_pd(fjx0,tx);
2204             fjy0             = _mm256_add_pd(fjy0,ty);
2205             fjz0             = _mm256_add_pd(fjz0,tz);
2206
2207             }
2208
2209             /**************************
2210              * CALCULATE INTERACTIONS *
2211              **************************/
2212
2213             if (gmx_mm256_any_lt(rsq01,rcutoff2))
2214             {
2215
2216             r01              = _mm256_mul_pd(rsq01,rinv01);
2217             r01              = _mm256_andnot_pd(dummy_mask,r01);
2218
2219             /* EWALD ELECTROSTATICS */
2220
2221             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2222             ewrt             = _mm256_mul_pd(r01,ewtabscale);
2223             ewitab           = _mm256_cvttpd_epi32(ewrt);
2224             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2225             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2226                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2227                                             &ewtabF,&ewtabFn);
2228             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2229             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
2230
2231             cutoff_mask      = _mm256_cmp_pd(rsq01,rcutoff2,_CMP_LT_OQ);
2232
2233             fscal            = felec;
2234
2235             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2236
2237             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2238
2239             /* Calculate temporary vectorial force */
2240             tx               = _mm256_mul_pd(fscal,dx01);
2241             ty               = _mm256_mul_pd(fscal,dy01);
2242             tz               = _mm256_mul_pd(fscal,dz01);
2243
2244             /* Update vectorial force */
2245             fix0             = _mm256_add_pd(fix0,tx);
2246             fiy0             = _mm256_add_pd(fiy0,ty);
2247             fiz0             = _mm256_add_pd(fiz0,tz);
2248
2249             fjx1             = _mm256_add_pd(fjx1,tx);
2250             fjy1             = _mm256_add_pd(fjy1,ty);
2251             fjz1             = _mm256_add_pd(fjz1,tz);
2252
2253             }
2254
2255             /**************************
2256              * CALCULATE INTERACTIONS *
2257              **************************/
2258
2259             if (gmx_mm256_any_lt(rsq02,rcutoff2))
2260             {
2261
2262             r02              = _mm256_mul_pd(rsq02,rinv02);
2263             r02              = _mm256_andnot_pd(dummy_mask,r02);
2264
2265             /* EWALD ELECTROSTATICS */
2266
2267             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2268             ewrt             = _mm256_mul_pd(r02,ewtabscale);
2269             ewitab           = _mm256_cvttpd_epi32(ewrt);
2270             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2271             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2272                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2273                                             &ewtabF,&ewtabFn);
2274             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2275             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
2276
2277             cutoff_mask      = _mm256_cmp_pd(rsq02,rcutoff2,_CMP_LT_OQ);
2278
2279             fscal            = felec;
2280
2281             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2282
2283             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2284
2285             /* Calculate temporary vectorial force */
2286             tx               = _mm256_mul_pd(fscal,dx02);
2287             ty               = _mm256_mul_pd(fscal,dy02);
2288             tz               = _mm256_mul_pd(fscal,dz02);
2289
2290             /* Update vectorial force */
2291             fix0             = _mm256_add_pd(fix0,tx);
2292             fiy0             = _mm256_add_pd(fiy0,ty);
2293             fiz0             = _mm256_add_pd(fiz0,tz);
2294
2295             fjx2             = _mm256_add_pd(fjx2,tx);
2296             fjy2             = _mm256_add_pd(fjy2,ty);
2297             fjz2             = _mm256_add_pd(fjz2,tz);
2298
2299             }
2300
2301             /**************************
2302              * CALCULATE INTERACTIONS *
2303              **************************/
2304
2305             if (gmx_mm256_any_lt(rsq10,rcutoff2))
2306             {
2307
2308             r10              = _mm256_mul_pd(rsq10,rinv10);
2309             r10              = _mm256_andnot_pd(dummy_mask,r10);
2310
2311             /* EWALD ELECTROSTATICS */
2312
2313             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2314             ewrt             = _mm256_mul_pd(r10,ewtabscale);
2315             ewitab           = _mm256_cvttpd_epi32(ewrt);
2316             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2317             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2318                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2319                                             &ewtabF,&ewtabFn);
2320             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2321             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
2322
2323             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
2324
2325             fscal            = felec;
2326
2327             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2328
2329             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2330
2331             /* Calculate temporary vectorial force */
2332             tx               = _mm256_mul_pd(fscal,dx10);
2333             ty               = _mm256_mul_pd(fscal,dy10);
2334             tz               = _mm256_mul_pd(fscal,dz10);
2335
2336             /* Update vectorial force */
2337             fix1             = _mm256_add_pd(fix1,tx);
2338             fiy1             = _mm256_add_pd(fiy1,ty);
2339             fiz1             = _mm256_add_pd(fiz1,tz);
2340
2341             fjx0             = _mm256_add_pd(fjx0,tx);
2342             fjy0             = _mm256_add_pd(fjy0,ty);
2343             fjz0             = _mm256_add_pd(fjz0,tz);
2344
2345             }
2346
2347             /**************************
2348              * CALCULATE INTERACTIONS *
2349              **************************/
2350
2351             if (gmx_mm256_any_lt(rsq11,rcutoff2))
2352             {
2353
2354             r11              = _mm256_mul_pd(rsq11,rinv11);
2355             r11              = _mm256_andnot_pd(dummy_mask,r11);
2356
2357             /* EWALD ELECTROSTATICS */
2358
2359             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2360             ewrt             = _mm256_mul_pd(r11,ewtabscale);
2361             ewitab           = _mm256_cvttpd_epi32(ewrt);
2362             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2363             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2364                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2365                                             &ewtabF,&ewtabFn);
2366             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2367             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
2368
2369             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
2370
2371             fscal            = felec;
2372
2373             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2374
2375             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2376
2377             /* Calculate temporary vectorial force */
2378             tx               = _mm256_mul_pd(fscal,dx11);
2379             ty               = _mm256_mul_pd(fscal,dy11);
2380             tz               = _mm256_mul_pd(fscal,dz11);
2381
2382             /* Update vectorial force */
2383             fix1             = _mm256_add_pd(fix1,tx);
2384             fiy1             = _mm256_add_pd(fiy1,ty);
2385             fiz1             = _mm256_add_pd(fiz1,tz);
2386
2387             fjx1             = _mm256_add_pd(fjx1,tx);
2388             fjy1             = _mm256_add_pd(fjy1,ty);
2389             fjz1             = _mm256_add_pd(fjz1,tz);
2390
2391             }
2392
2393             /**************************
2394              * CALCULATE INTERACTIONS *
2395              **************************/
2396
2397             if (gmx_mm256_any_lt(rsq12,rcutoff2))
2398             {
2399
2400             r12              = _mm256_mul_pd(rsq12,rinv12);
2401             r12              = _mm256_andnot_pd(dummy_mask,r12);
2402
2403             /* EWALD ELECTROSTATICS */
2404
2405             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2406             ewrt             = _mm256_mul_pd(r12,ewtabscale);
2407             ewitab           = _mm256_cvttpd_epi32(ewrt);
2408             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2409             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2410                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2411                                             &ewtabF,&ewtabFn);
2412             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2413             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
2414
2415             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
2416
2417             fscal            = felec;
2418
2419             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2420
2421             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2422
2423             /* Calculate temporary vectorial force */
2424             tx               = _mm256_mul_pd(fscal,dx12);
2425             ty               = _mm256_mul_pd(fscal,dy12);
2426             tz               = _mm256_mul_pd(fscal,dz12);
2427
2428             /* Update vectorial force */
2429             fix1             = _mm256_add_pd(fix1,tx);
2430             fiy1             = _mm256_add_pd(fiy1,ty);
2431             fiz1             = _mm256_add_pd(fiz1,tz);
2432
2433             fjx2             = _mm256_add_pd(fjx2,tx);
2434             fjy2             = _mm256_add_pd(fjy2,ty);
2435             fjz2             = _mm256_add_pd(fjz2,tz);
2436
2437             }
2438
2439             /**************************
2440              * CALCULATE INTERACTIONS *
2441              **************************/
2442
2443             if (gmx_mm256_any_lt(rsq20,rcutoff2))
2444             {
2445
2446             r20              = _mm256_mul_pd(rsq20,rinv20);
2447             r20              = _mm256_andnot_pd(dummy_mask,r20);
2448
2449             /* EWALD ELECTROSTATICS */
2450
2451             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2452             ewrt             = _mm256_mul_pd(r20,ewtabscale);
2453             ewitab           = _mm256_cvttpd_epi32(ewrt);
2454             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2455             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2456                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2457                                             &ewtabF,&ewtabFn);
2458             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2459             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
2460
2461             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
2462
2463             fscal            = felec;
2464
2465             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2466
2467             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2468
2469             /* Calculate temporary vectorial force */
2470             tx               = _mm256_mul_pd(fscal,dx20);
2471             ty               = _mm256_mul_pd(fscal,dy20);
2472             tz               = _mm256_mul_pd(fscal,dz20);
2473
2474             /* Update vectorial force */
2475             fix2             = _mm256_add_pd(fix2,tx);
2476             fiy2             = _mm256_add_pd(fiy2,ty);
2477             fiz2             = _mm256_add_pd(fiz2,tz);
2478
2479             fjx0             = _mm256_add_pd(fjx0,tx);
2480             fjy0             = _mm256_add_pd(fjy0,ty);
2481             fjz0             = _mm256_add_pd(fjz0,tz);
2482
2483             }
2484
2485             /**************************
2486              * CALCULATE INTERACTIONS *
2487              **************************/
2488
2489             if (gmx_mm256_any_lt(rsq21,rcutoff2))
2490             {
2491
2492             r21              = _mm256_mul_pd(rsq21,rinv21);
2493             r21              = _mm256_andnot_pd(dummy_mask,r21);
2494
2495             /* EWALD ELECTROSTATICS */
2496
2497             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2498             ewrt             = _mm256_mul_pd(r21,ewtabscale);
2499             ewitab           = _mm256_cvttpd_epi32(ewrt);
2500             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2501             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2502                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2503                                             &ewtabF,&ewtabFn);
2504             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2505             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
2506
2507             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
2508
2509             fscal            = felec;
2510
2511             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2512
2513             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2514
2515             /* Calculate temporary vectorial force */
2516             tx               = _mm256_mul_pd(fscal,dx21);
2517             ty               = _mm256_mul_pd(fscal,dy21);
2518             tz               = _mm256_mul_pd(fscal,dz21);
2519
2520             /* Update vectorial force */
2521             fix2             = _mm256_add_pd(fix2,tx);
2522             fiy2             = _mm256_add_pd(fiy2,ty);
2523             fiz2             = _mm256_add_pd(fiz2,tz);
2524
2525             fjx1             = _mm256_add_pd(fjx1,tx);
2526             fjy1             = _mm256_add_pd(fjy1,ty);
2527             fjz1             = _mm256_add_pd(fjz1,tz);
2528
2529             }
2530
2531             /**************************
2532              * CALCULATE INTERACTIONS *
2533              **************************/
2534
2535             if (gmx_mm256_any_lt(rsq22,rcutoff2))
2536             {
2537
2538             r22              = _mm256_mul_pd(rsq22,rinv22);
2539             r22              = _mm256_andnot_pd(dummy_mask,r22);
2540
2541             /* EWALD ELECTROSTATICS */
2542
2543             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2544             ewrt             = _mm256_mul_pd(r22,ewtabscale);
2545             ewitab           = _mm256_cvttpd_epi32(ewrt);
2546             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2547             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2548                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2549                                             &ewtabF,&ewtabFn);
2550             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2551             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
2552
2553             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
2554
2555             fscal            = felec;
2556
2557             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2558
2559             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2560
2561             /* Calculate temporary vectorial force */
2562             tx               = _mm256_mul_pd(fscal,dx22);
2563             ty               = _mm256_mul_pd(fscal,dy22);
2564             tz               = _mm256_mul_pd(fscal,dz22);
2565
2566             /* Update vectorial force */
2567             fix2             = _mm256_add_pd(fix2,tx);
2568             fiy2             = _mm256_add_pd(fiy2,ty);
2569             fiz2             = _mm256_add_pd(fiz2,tz);
2570
2571             fjx2             = _mm256_add_pd(fjx2,tx);
2572             fjy2             = _mm256_add_pd(fjy2,ty);
2573             fjz2             = _mm256_add_pd(fjz2,tz);
2574
2575             }
2576
2577             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2578             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2579             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2580             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2581
2582             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
2583                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2584
2585             /* Inner loop uses 360 flops */
2586         }
2587
2588         /* End of innermost loop */
2589
2590         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2591                                                  f+i_coord_offset,fshift+i_shift_offset);
2592
2593         /* Increment number of inner iterations */
2594         inneriter                  += j_index_end - j_index_start;
2595
2596         /* Outer loop uses 18 flops */
2597     }
2598
2599     /* Increment number of outer iterations */
2600     outeriter        += nri;
2601
2602     /* Update outer/inner flops */
2603
2604     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*18 + inneriter*360);
2605 }