Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m128i          ewitab;
109     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
111     real             *ewtab;
112     __m256d          dummy_mask,cutoff_mask;
113     __m128           tmpmask0,tmpmask1;
114     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
115     __m256d          one     = _mm256_set1_pd(1.0);
116     __m256d          two     = _mm256_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
135     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
136     beta2            = _mm256_mul_pd(beta,beta);
137     beta3            = _mm256_mul_pd(beta,beta2);
138
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
146     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
147     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
148     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
149
150     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
151     rcutoff_scalar   = fr->rcoulomb;
152     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
153     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
154
155     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
156     rvdw             = _mm256_set1_pd(fr->rvdw);
157
158     /* Avoid stupid compiler warnings */
159     jnrA = jnrB = jnrC = jnrD = 0;
160     j_coord_offsetA = 0;
161     j_coord_offsetB = 0;
162     j_coord_offsetC = 0;
163     j_coord_offsetD = 0;
164
165     outeriter        = 0;
166     inneriter        = 0;
167
168     for(iidx=0;iidx<4*DIM;iidx++)
169     {
170         scratch[iidx] = 0.0;
171     }
172
173     /* Start outer loop over neighborlists */
174     for(iidx=0; iidx<nri; iidx++)
175     {
176         /* Load shift vector for this list */
177         i_shift_offset   = DIM*shiftidx[iidx];
178
179         /* Load limits for loop over neighbors */
180         j_index_start    = jindex[iidx];
181         j_index_end      = jindex[iidx+1];
182
183         /* Get outer coordinate index */
184         inr              = iinr[iidx];
185         i_coord_offset   = DIM*inr;
186
187         /* Load i particle coords and add shift vector */
188         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
189                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
190
191         fix0             = _mm256_setzero_pd();
192         fiy0             = _mm256_setzero_pd();
193         fiz0             = _mm256_setzero_pd();
194         fix1             = _mm256_setzero_pd();
195         fiy1             = _mm256_setzero_pd();
196         fiz1             = _mm256_setzero_pd();
197         fix2             = _mm256_setzero_pd();
198         fiy2             = _mm256_setzero_pd();
199         fiz2             = _mm256_setzero_pd();
200         fix3             = _mm256_setzero_pd();
201         fiy3             = _mm256_setzero_pd();
202         fiz3             = _mm256_setzero_pd();
203
204         /* Reset potential sums */
205         velecsum         = _mm256_setzero_pd();
206         vvdwsum          = _mm256_setzero_pd();
207
208         /* Start inner kernel loop */
209         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
210         {
211
212             /* Get j neighbor index, and coordinate index */
213             jnrA             = jjnr[jidx];
214             jnrB             = jjnr[jidx+1];
215             jnrC             = jjnr[jidx+2];
216             jnrD             = jjnr[jidx+3];
217             j_coord_offsetA  = DIM*jnrA;
218             j_coord_offsetB  = DIM*jnrB;
219             j_coord_offsetC  = DIM*jnrC;
220             j_coord_offsetD  = DIM*jnrD;
221
222             /* load j atom coordinates */
223             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
224                                                  x+j_coord_offsetC,x+j_coord_offsetD,
225                                                  &jx0,&jy0,&jz0);
226
227             /* Calculate displacement vector */
228             dx00             = _mm256_sub_pd(ix0,jx0);
229             dy00             = _mm256_sub_pd(iy0,jy0);
230             dz00             = _mm256_sub_pd(iz0,jz0);
231             dx10             = _mm256_sub_pd(ix1,jx0);
232             dy10             = _mm256_sub_pd(iy1,jy0);
233             dz10             = _mm256_sub_pd(iz1,jz0);
234             dx20             = _mm256_sub_pd(ix2,jx0);
235             dy20             = _mm256_sub_pd(iy2,jy0);
236             dz20             = _mm256_sub_pd(iz2,jz0);
237             dx30             = _mm256_sub_pd(ix3,jx0);
238             dy30             = _mm256_sub_pd(iy3,jy0);
239             dz30             = _mm256_sub_pd(iz3,jz0);
240
241             /* Calculate squared distance and things based on it */
242             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
243             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
244             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
245             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
246
247             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
248             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
249             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
250
251             rinvsq00         = gmx_mm256_inv_pd(rsq00);
252             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
253             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
254             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
255
256             /* Load parameters for j particles */
257             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
258                                                                  charge+jnrC+0,charge+jnrD+0);
259             vdwjidx0A        = 2*vdwtype[jnrA+0];
260             vdwjidx0B        = 2*vdwtype[jnrB+0];
261             vdwjidx0C        = 2*vdwtype[jnrC+0];
262             vdwjidx0D        = 2*vdwtype[jnrD+0];
263
264             fjx0             = _mm256_setzero_pd();
265             fjy0             = _mm256_setzero_pd();
266             fjz0             = _mm256_setzero_pd();
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             if (gmx_mm256_any_lt(rsq00,rcutoff2))
273             {
274
275             /* Compute parameters for interactions between i and j atoms */
276             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
277                                             vdwioffsetptr0+vdwjidx0B,
278                                             vdwioffsetptr0+vdwjidx0C,
279                                             vdwioffsetptr0+vdwjidx0D,
280                                             &c6_00,&c12_00);
281
282             /* LENNARD-JONES DISPERSION/REPULSION */
283
284             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
285             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
286             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
287             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
288                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
289             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
290
291             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
295             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
296
297             fscal            = fvdw;
298
299             fscal            = _mm256_and_pd(fscal,cutoff_mask);
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm256_mul_pd(fscal,dx00);
303             ty               = _mm256_mul_pd(fscal,dy00);
304             tz               = _mm256_mul_pd(fscal,dz00);
305
306             /* Update vectorial force */
307             fix0             = _mm256_add_pd(fix0,tx);
308             fiy0             = _mm256_add_pd(fiy0,ty);
309             fiz0             = _mm256_add_pd(fiz0,tz);
310
311             fjx0             = _mm256_add_pd(fjx0,tx);
312             fjy0             = _mm256_add_pd(fjy0,ty);
313             fjz0             = _mm256_add_pd(fjz0,tz);
314
315             }
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             if (gmx_mm256_any_lt(rsq10,rcutoff2))
322             {
323
324             r10              = _mm256_mul_pd(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm256_mul_pd(iq1,jq0);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332             ewrt             = _mm256_mul_pd(r10,ewtabscale);
333             ewitab           = _mm256_cvttpd_epi32(ewrt);
334             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
335             ewitab           = _mm_slli_epi32(ewitab,2);
336             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
337             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
338             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
339             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
340             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
341             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
342             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
343             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
344             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
345
346             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velec            = _mm256_and_pd(velec,cutoff_mask);
350             velecsum         = _mm256_add_pd(velecsum,velec);
351
352             fscal            = felec;
353
354             fscal            = _mm256_and_pd(fscal,cutoff_mask);
355
356             /* Calculate temporary vectorial force */
357             tx               = _mm256_mul_pd(fscal,dx10);
358             ty               = _mm256_mul_pd(fscal,dy10);
359             tz               = _mm256_mul_pd(fscal,dz10);
360
361             /* Update vectorial force */
362             fix1             = _mm256_add_pd(fix1,tx);
363             fiy1             = _mm256_add_pd(fiy1,ty);
364             fiz1             = _mm256_add_pd(fiz1,tz);
365
366             fjx0             = _mm256_add_pd(fjx0,tx);
367             fjy0             = _mm256_add_pd(fjy0,ty);
368             fjz0             = _mm256_add_pd(fjz0,tz);
369
370             }
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             if (gmx_mm256_any_lt(rsq20,rcutoff2))
377             {
378
379             r20              = _mm256_mul_pd(rsq20,rinv20);
380
381             /* Compute parameters for interactions between i and j atoms */
382             qq20             = _mm256_mul_pd(iq2,jq0);
383
384             /* EWALD ELECTROSTATICS */
385
386             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
387             ewrt             = _mm256_mul_pd(r20,ewtabscale);
388             ewitab           = _mm256_cvttpd_epi32(ewrt);
389             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
390             ewitab           = _mm_slli_epi32(ewitab,2);
391             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
392             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
393             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
394             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
395             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
396             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
397             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
398             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
399             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
400
401             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velec            = _mm256_and_pd(velec,cutoff_mask);
405             velecsum         = _mm256_add_pd(velecsum,velec);
406
407             fscal            = felec;
408
409             fscal            = _mm256_and_pd(fscal,cutoff_mask);
410
411             /* Calculate temporary vectorial force */
412             tx               = _mm256_mul_pd(fscal,dx20);
413             ty               = _mm256_mul_pd(fscal,dy20);
414             tz               = _mm256_mul_pd(fscal,dz20);
415
416             /* Update vectorial force */
417             fix2             = _mm256_add_pd(fix2,tx);
418             fiy2             = _mm256_add_pd(fiy2,ty);
419             fiz2             = _mm256_add_pd(fiz2,tz);
420
421             fjx0             = _mm256_add_pd(fjx0,tx);
422             fjy0             = _mm256_add_pd(fjy0,ty);
423             fjz0             = _mm256_add_pd(fjz0,tz);
424
425             }
426
427             /**************************
428              * CALCULATE INTERACTIONS *
429              **************************/
430
431             if (gmx_mm256_any_lt(rsq30,rcutoff2))
432             {
433
434             r30              = _mm256_mul_pd(rsq30,rinv30);
435
436             /* Compute parameters for interactions between i and j atoms */
437             qq30             = _mm256_mul_pd(iq3,jq0);
438
439             /* EWALD ELECTROSTATICS */
440
441             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
442             ewrt             = _mm256_mul_pd(r30,ewtabscale);
443             ewitab           = _mm256_cvttpd_epi32(ewrt);
444             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
445             ewitab           = _mm_slli_epi32(ewitab,2);
446             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
447             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
448             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
449             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
450             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
451             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
452             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
453             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_sub_pd(rinv30,sh_ewald),velec));
454             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
455
456             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
457
458             /* Update potential sum for this i atom from the interaction with this j atom. */
459             velec            = _mm256_and_pd(velec,cutoff_mask);
460             velecsum         = _mm256_add_pd(velecsum,velec);
461
462             fscal            = felec;
463
464             fscal            = _mm256_and_pd(fscal,cutoff_mask);
465
466             /* Calculate temporary vectorial force */
467             tx               = _mm256_mul_pd(fscal,dx30);
468             ty               = _mm256_mul_pd(fscal,dy30);
469             tz               = _mm256_mul_pd(fscal,dz30);
470
471             /* Update vectorial force */
472             fix3             = _mm256_add_pd(fix3,tx);
473             fiy3             = _mm256_add_pd(fiy3,ty);
474             fiz3             = _mm256_add_pd(fiz3,tz);
475
476             fjx0             = _mm256_add_pd(fjx0,tx);
477             fjy0             = _mm256_add_pd(fjy0,ty);
478             fjz0             = _mm256_add_pd(fjz0,tz);
479
480             }
481
482             fjptrA             = f+j_coord_offsetA;
483             fjptrB             = f+j_coord_offsetB;
484             fjptrC             = f+j_coord_offsetC;
485             fjptrD             = f+j_coord_offsetD;
486
487             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
488
489             /* Inner loop uses 182 flops */
490         }
491
492         if(jidx<j_index_end)
493         {
494
495             /* Get j neighbor index, and coordinate index */
496             jnrlistA         = jjnr[jidx];
497             jnrlistB         = jjnr[jidx+1];
498             jnrlistC         = jjnr[jidx+2];
499             jnrlistD         = jjnr[jidx+3];
500             /* Sign of each element will be negative for non-real atoms.
501              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
502              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
503              */
504             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
505
506             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
507             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
508             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
509
510             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
511             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
512             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
513             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
514             j_coord_offsetA  = DIM*jnrA;
515             j_coord_offsetB  = DIM*jnrB;
516             j_coord_offsetC  = DIM*jnrC;
517             j_coord_offsetD  = DIM*jnrD;
518
519             /* load j atom coordinates */
520             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
521                                                  x+j_coord_offsetC,x+j_coord_offsetD,
522                                                  &jx0,&jy0,&jz0);
523
524             /* Calculate displacement vector */
525             dx00             = _mm256_sub_pd(ix0,jx0);
526             dy00             = _mm256_sub_pd(iy0,jy0);
527             dz00             = _mm256_sub_pd(iz0,jz0);
528             dx10             = _mm256_sub_pd(ix1,jx0);
529             dy10             = _mm256_sub_pd(iy1,jy0);
530             dz10             = _mm256_sub_pd(iz1,jz0);
531             dx20             = _mm256_sub_pd(ix2,jx0);
532             dy20             = _mm256_sub_pd(iy2,jy0);
533             dz20             = _mm256_sub_pd(iz2,jz0);
534             dx30             = _mm256_sub_pd(ix3,jx0);
535             dy30             = _mm256_sub_pd(iy3,jy0);
536             dz30             = _mm256_sub_pd(iz3,jz0);
537
538             /* Calculate squared distance and things based on it */
539             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
540             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
541             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
542             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
543
544             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
545             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
546             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
547
548             rinvsq00         = gmx_mm256_inv_pd(rsq00);
549             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
550             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
551             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
552
553             /* Load parameters for j particles */
554             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
555                                                                  charge+jnrC+0,charge+jnrD+0);
556             vdwjidx0A        = 2*vdwtype[jnrA+0];
557             vdwjidx0B        = 2*vdwtype[jnrB+0];
558             vdwjidx0C        = 2*vdwtype[jnrC+0];
559             vdwjidx0D        = 2*vdwtype[jnrD+0];
560
561             fjx0             = _mm256_setzero_pd();
562             fjy0             = _mm256_setzero_pd();
563             fjz0             = _mm256_setzero_pd();
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             if (gmx_mm256_any_lt(rsq00,rcutoff2))
570             {
571
572             /* Compute parameters for interactions between i and j atoms */
573             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
574                                             vdwioffsetptr0+vdwjidx0B,
575                                             vdwioffsetptr0+vdwjidx0C,
576                                             vdwioffsetptr0+vdwjidx0D,
577                                             &c6_00,&c12_00);
578
579             /* LENNARD-JONES DISPERSION/REPULSION */
580
581             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
582             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
583             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
584             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
585                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
586             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
587
588             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
589
590             /* Update potential sum for this i atom from the interaction with this j atom. */
591             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
592             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
593             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
594
595             fscal            = fvdw;
596
597             fscal            = _mm256_and_pd(fscal,cutoff_mask);
598
599             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm256_mul_pd(fscal,dx00);
603             ty               = _mm256_mul_pd(fscal,dy00);
604             tz               = _mm256_mul_pd(fscal,dz00);
605
606             /* Update vectorial force */
607             fix0             = _mm256_add_pd(fix0,tx);
608             fiy0             = _mm256_add_pd(fiy0,ty);
609             fiz0             = _mm256_add_pd(fiz0,tz);
610
611             fjx0             = _mm256_add_pd(fjx0,tx);
612             fjy0             = _mm256_add_pd(fjy0,ty);
613             fjz0             = _mm256_add_pd(fjz0,tz);
614
615             }
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             if (gmx_mm256_any_lt(rsq10,rcutoff2))
622             {
623
624             r10              = _mm256_mul_pd(rsq10,rinv10);
625             r10              = _mm256_andnot_pd(dummy_mask,r10);
626
627             /* Compute parameters for interactions between i and j atoms */
628             qq10             = _mm256_mul_pd(iq1,jq0);
629
630             /* EWALD ELECTROSTATICS */
631
632             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
633             ewrt             = _mm256_mul_pd(r10,ewtabscale);
634             ewitab           = _mm256_cvttpd_epi32(ewrt);
635             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
636             ewitab           = _mm_slli_epi32(ewitab,2);
637             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
638             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
639             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
640             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
641             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
642             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
643             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
644             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
645             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
646
647             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
648
649             /* Update potential sum for this i atom from the interaction with this j atom. */
650             velec            = _mm256_and_pd(velec,cutoff_mask);
651             velec            = _mm256_andnot_pd(dummy_mask,velec);
652             velecsum         = _mm256_add_pd(velecsum,velec);
653
654             fscal            = felec;
655
656             fscal            = _mm256_and_pd(fscal,cutoff_mask);
657
658             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
659
660             /* Calculate temporary vectorial force */
661             tx               = _mm256_mul_pd(fscal,dx10);
662             ty               = _mm256_mul_pd(fscal,dy10);
663             tz               = _mm256_mul_pd(fscal,dz10);
664
665             /* Update vectorial force */
666             fix1             = _mm256_add_pd(fix1,tx);
667             fiy1             = _mm256_add_pd(fiy1,ty);
668             fiz1             = _mm256_add_pd(fiz1,tz);
669
670             fjx0             = _mm256_add_pd(fjx0,tx);
671             fjy0             = _mm256_add_pd(fjy0,ty);
672             fjz0             = _mm256_add_pd(fjz0,tz);
673
674             }
675
676             /**************************
677              * CALCULATE INTERACTIONS *
678              **************************/
679
680             if (gmx_mm256_any_lt(rsq20,rcutoff2))
681             {
682
683             r20              = _mm256_mul_pd(rsq20,rinv20);
684             r20              = _mm256_andnot_pd(dummy_mask,r20);
685
686             /* Compute parameters for interactions between i and j atoms */
687             qq20             = _mm256_mul_pd(iq2,jq0);
688
689             /* EWALD ELECTROSTATICS */
690
691             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
692             ewrt             = _mm256_mul_pd(r20,ewtabscale);
693             ewitab           = _mm256_cvttpd_epi32(ewrt);
694             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
695             ewitab           = _mm_slli_epi32(ewitab,2);
696             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
697             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
698             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
699             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
700             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
701             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
702             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
703             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
704             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
705
706             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
707
708             /* Update potential sum for this i atom from the interaction with this j atom. */
709             velec            = _mm256_and_pd(velec,cutoff_mask);
710             velec            = _mm256_andnot_pd(dummy_mask,velec);
711             velecsum         = _mm256_add_pd(velecsum,velec);
712
713             fscal            = felec;
714
715             fscal            = _mm256_and_pd(fscal,cutoff_mask);
716
717             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
718
719             /* Calculate temporary vectorial force */
720             tx               = _mm256_mul_pd(fscal,dx20);
721             ty               = _mm256_mul_pd(fscal,dy20);
722             tz               = _mm256_mul_pd(fscal,dz20);
723
724             /* Update vectorial force */
725             fix2             = _mm256_add_pd(fix2,tx);
726             fiy2             = _mm256_add_pd(fiy2,ty);
727             fiz2             = _mm256_add_pd(fiz2,tz);
728
729             fjx0             = _mm256_add_pd(fjx0,tx);
730             fjy0             = _mm256_add_pd(fjy0,ty);
731             fjz0             = _mm256_add_pd(fjz0,tz);
732
733             }
734
735             /**************************
736              * CALCULATE INTERACTIONS *
737              **************************/
738
739             if (gmx_mm256_any_lt(rsq30,rcutoff2))
740             {
741
742             r30              = _mm256_mul_pd(rsq30,rinv30);
743             r30              = _mm256_andnot_pd(dummy_mask,r30);
744
745             /* Compute parameters for interactions between i and j atoms */
746             qq30             = _mm256_mul_pd(iq3,jq0);
747
748             /* EWALD ELECTROSTATICS */
749
750             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
751             ewrt             = _mm256_mul_pd(r30,ewtabscale);
752             ewitab           = _mm256_cvttpd_epi32(ewrt);
753             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
754             ewitab           = _mm_slli_epi32(ewitab,2);
755             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
756             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
757             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
758             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
759             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
760             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
761             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
762             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_sub_pd(rinv30,sh_ewald),velec));
763             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
764
765             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
766
767             /* Update potential sum for this i atom from the interaction with this j atom. */
768             velec            = _mm256_and_pd(velec,cutoff_mask);
769             velec            = _mm256_andnot_pd(dummy_mask,velec);
770             velecsum         = _mm256_add_pd(velecsum,velec);
771
772             fscal            = felec;
773
774             fscal            = _mm256_and_pd(fscal,cutoff_mask);
775
776             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
777
778             /* Calculate temporary vectorial force */
779             tx               = _mm256_mul_pd(fscal,dx30);
780             ty               = _mm256_mul_pd(fscal,dy30);
781             tz               = _mm256_mul_pd(fscal,dz30);
782
783             /* Update vectorial force */
784             fix3             = _mm256_add_pd(fix3,tx);
785             fiy3             = _mm256_add_pd(fiy3,ty);
786             fiz3             = _mm256_add_pd(fiz3,tz);
787
788             fjx0             = _mm256_add_pd(fjx0,tx);
789             fjy0             = _mm256_add_pd(fjy0,ty);
790             fjz0             = _mm256_add_pd(fjz0,tz);
791
792             }
793
794             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
795             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
796             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
797             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
798
799             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
800
801             /* Inner loop uses 185 flops */
802         }
803
804         /* End of innermost loop */
805
806         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
807                                                  f+i_coord_offset,fshift+i_shift_offset);
808
809         ggid                        = gid[iidx];
810         /* Update potential energies */
811         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
812         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
813
814         /* Increment number of inner iterations */
815         inneriter                  += j_index_end - j_index_start;
816
817         /* Outer loop uses 26 flops */
818     }
819
820     /* Increment number of outer iterations */
821     outeriter        += nri;
822
823     /* Update outer/inner flops */
824
825     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*185);
826 }
827 /*
828  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_double
829  * Electrostatics interaction: Ewald
830  * VdW interaction:            LennardJones
831  * Geometry:                   Water4-Particle
832  * Calculate force/pot:        Force
833  */
834 void
835 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_double
836                     (t_nblist                    * gmx_restrict       nlist,
837                      rvec                        * gmx_restrict          xx,
838                      rvec                        * gmx_restrict          ff,
839                      t_forcerec                  * gmx_restrict          fr,
840                      t_mdatoms                   * gmx_restrict     mdatoms,
841                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
842                      t_nrnb                      * gmx_restrict        nrnb)
843 {
844     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
845      * just 0 for non-waters.
846      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
847      * jnr indices corresponding to data put in the four positions in the SIMD register.
848      */
849     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
850     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
851     int              jnrA,jnrB,jnrC,jnrD;
852     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
853     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
854     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
855     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
856     real             rcutoff_scalar;
857     real             *shiftvec,*fshift,*x,*f;
858     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
859     real             scratch[4*DIM];
860     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
861     real *           vdwioffsetptr0;
862     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
863     real *           vdwioffsetptr1;
864     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
865     real *           vdwioffsetptr2;
866     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
867     real *           vdwioffsetptr3;
868     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
869     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
870     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
871     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
872     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
873     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
874     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
875     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
876     real             *charge;
877     int              nvdwtype;
878     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
879     int              *vdwtype;
880     real             *vdwparam;
881     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
882     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
883     __m128i          ewitab;
884     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
885     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
886     real             *ewtab;
887     __m256d          dummy_mask,cutoff_mask;
888     __m128           tmpmask0,tmpmask1;
889     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
890     __m256d          one     = _mm256_set1_pd(1.0);
891     __m256d          two     = _mm256_set1_pd(2.0);
892     x                = xx[0];
893     f                = ff[0];
894
895     nri              = nlist->nri;
896     iinr             = nlist->iinr;
897     jindex           = nlist->jindex;
898     jjnr             = nlist->jjnr;
899     shiftidx         = nlist->shift;
900     gid              = nlist->gid;
901     shiftvec         = fr->shift_vec[0];
902     fshift           = fr->fshift[0];
903     facel            = _mm256_set1_pd(fr->epsfac);
904     charge           = mdatoms->chargeA;
905     nvdwtype         = fr->ntype;
906     vdwparam         = fr->nbfp;
907     vdwtype          = mdatoms->typeA;
908
909     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
910     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
911     beta2            = _mm256_mul_pd(beta,beta);
912     beta3            = _mm256_mul_pd(beta,beta2);
913
914     ewtab            = fr->ic->tabq_coul_F;
915     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
916     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
917
918     /* Setup water-specific parameters */
919     inr              = nlist->iinr[0];
920     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
921     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
922     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
923     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
924
925     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
926     rcutoff_scalar   = fr->rcoulomb;
927     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
928     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
929
930     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
931     rvdw             = _mm256_set1_pd(fr->rvdw);
932
933     /* Avoid stupid compiler warnings */
934     jnrA = jnrB = jnrC = jnrD = 0;
935     j_coord_offsetA = 0;
936     j_coord_offsetB = 0;
937     j_coord_offsetC = 0;
938     j_coord_offsetD = 0;
939
940     outeriter        = 0;
941     inneriter        = 0;
942
943     for(iidx=0;iidx<4*DIM;iidx++)
944     {
945         scratch[iidx] = 0.0;
946     }
947
948     /* Start outer loop over neighborlists */
949     for(iidx=0; iidx<nri; iidx++)
950     {
951         /* Load shift vector for this list */
952         i_shift_offset   = DIM*shiftidx[iidx];
953
954         /* Load limits for loop over neighbors */
955         j_index_start    = jindex[iidx];
956         j_index_end      = jindex[iidx+1];
957
958         /* Get outer coordinate index */
959         inr              = iinr[iidx];
960         i_coord_offset   = DIM*inr;
961
962         /* Load i particle coords and add shift vector */
963         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
964                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
965
966         fix0             = _mm256_setzero_pd();
967         fiy0             = _mm256_setzero_pd();
968         fiz0             = _mm256_setzero_pd();
969         fix1             = _mm256_setzero_pd();
970         fiy1             = _mm256_setzero_pd();
971         fiz1             = _mm256_setzero_pd();
972         fix2             = _mm256_setzero_pd();
973         fiy2             = _mm256_setzero_pd();
974         fiz2             = _mm256_setzero_pd();
975         fix3             = _mm256_setzero_pd();
976         fiy3             = _mm256_setzero_pd();
977         fiz3             = _mm256_setzero_pd();
978
979         /* Start inner kernel loop */
980         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
981         {
982
983             /* Get j neighbor index, and coordinate index */
984             jnrA             = jjnr[jidx];
985             jnrB             = jjnr[jidx+1];
986             jnrC             = jjnr[jidx+2];
987             jnrD             = jjnr[jidx+3];
988             j_coord_offsetA  = DIM*jnrA;
989             j_coord_offsetB  = DIM*jnrB;
990             j_coord_offsetC  = DIM*jnrC;
991             j_coord_offsetD  = DIM*jnrD;
992
993             /* load j atom coordinates */
994             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
995                                                  x+j_coord_offsetC,x+j_coord_offsetD,
996                                                  &jx0,&jy0,&jz0);
997
998             /* Calculate displacement vector */
999             dx00             = _mm256_sub_pd(ix0,jx0);
1000             dy00             = _mm256_sub_pd(iy0,jy0);
1001             dz00             = _mm256_sub_pd(iz0,jz0);
1002             dx10             = _mm256_sub_pd(ix1,jx0);
1003             dy10             = _mm256_sub_pd(iy1,jy0);
1004             dz10             = _mm256_sub_pd(iz1,jz0);
1005             dx20             = _mm256_sub_pd(ix2,jx0);
1006             dy20             = _mm256_sub_pd(iy2,jy0);
1007             dz20             = _mm256_sub_pd(iz2,jz0);
1008             dx30             = _mm256_sub_pd(ix3,jx0);
1009             dy30             = _mm256_sub_pd(iy3,jy0);
1010             dz30             = _mm256_sub_pd(iz3,jz0);
1011
1012             /* Calculate squared distance and things based on it */
1013             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1014             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1015             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1016             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1017
1018             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1019             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1020             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1021
1022             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1023             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1024             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1025             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1026
1027             /* Load parameters for j particles */
1028             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1029                                                                  charge+jnrC+0,charge+jnrD+0);
1030             vdwjidx0A        = 2*vdwtype[jnrA+0];
1031             vdwjidx0B        = 2*vdwtype[jnrB+0];
1032             vdwjidx0C        = 2*vdwtype[jnrC+0];
1033             vdwjidx0D        = 2*vdwtype[jnrD+0];
1034
1035             fjx0             = _mm256_setzero_pd();
1036             fjy0             = _mm256_setzero_pd();
1037             fjz0             = _mm256_setzero_pd();
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1044             {
1045
1046             /* Compute parameters for interactions between i and j atoms */
1047             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1048                                             vdwioffsetptr0+vdwjidx0B,
1049                                             vdwioffsetptr0+vdwjidx0C,
1050                                             vdwioffsetptr0+vdwjidx0D,
1051                                             &c6_00,&c12_00);
1052
1053             /* LENNARD-JONES DISPERSION/REPULSION */
1054
1055             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1056             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1057
1058             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1059
1060             fscal            = fvdw;
1061
1062             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1063
1064             /* Calculate temporary vectorial force */
1065             tx               = _mm256_mul_pd(fscal,dx00);
1066             ty               = _mm256_mul_pd(fscal,dy00);
1067             tz               = _mm256_mul_pd(fscal,dz00);
1068
1069             /* Update vectorial force */
1070             fix0             = _mm256_add_pd(fix0,tx);
1071             fiy0             = _mm256_add_pd(fiy0,ty);
1072             fiz0             = _mm256_add_pd(fiz0,tz);
1073
1074             fjx0             = _mm256_add_pd(fjx0,tx);
1075             fjy0             = _mm256_add_pd(fjy0,ty);
1076             fjz0             = _mm256_add_pd(fjz0,tz);
1077
1078             }
1079
1080             /**************************
1081              * CALCULATE INTERACTIONS *
1082              **************************/
1083
1084             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1085             {
1086
1087             r10              = _mm256_mul_pd(rsq10,rinv10);
1088
1089             /* Compute parameters for interactions between i and j atoms */
1090             qq10             = _mm256_mul_pd(iq1,jq0);
1091
1092             /* EWALD ELECTROSTATICS */
1093
1094             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1095             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1096             ewitab           = _mm256_cvttpd_epi32(ewrt);
1097             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1098             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1099                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1100                                             &ewtabF,&ewtabFn);
1101             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1102             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1103
1104             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1105
1106             fscal            = felec;
1107
1108             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1109
1110             /* Calculate temporary vectorial force */
1111             tx               = _mm256_mul_pd(fscal,dx10);
1112             ty               = _mm256_mul_pd(fscal,dy10);
1113             tz               = _mm256_mul_pd(fscal,dz10);
1114
1115             /* Update vectorial force */
1116             fix1             = _mm256_add_pd(fix1,tx);
1117             fiy1             = _mm256_add_pd(fiy1,ty);
1118             fiz1             = _mm256_add_pd(fiz1,tz);
1119
1120             fjx0             = _mm256_add_pd(fjx0,tx);
1121             fjy0             = _mm256_add_pd(fjy0,ty);
1122             fjz0             = _mm256_add_pd(fjz0,tz);
1123
1124             }
1125
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1131             {
1132
1133             r20              = _mm256_mul_pd(rsq20,rinv20);
1134
1135             /* Compute parameters for interactions between i and j atoms */
1136             qq20             = _mm256_mul_pd(iq2,jq0);
1137
1138             /* EWALD ELECTROSTATICS */
1139
1140             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1141             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1142             ewitab           = _mm256_cvttpd_epi32(ewrt);
1143             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1144             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1145                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1146                                             &ewtabF,&ewtabFn);
1147             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1148             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1149
1150             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1151
1152             fscal            = felec;
1153
1154             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1155
1156             /* Calculate temporary vectorial force */
1157             tx               = _mm256_mul_pd(fscal,dx20);
1158             ty               = _mm256_mul_pd(fscal,dy20);
1159             tz               = _mm256_mul_pd(fscal,dz20);
1160
1161             /* Update vectorial force */
1162             fix2             = _mm256_add_pd(fix2,tx);
1163             fiy2             = _mm256_add_pd(fiy2,ty);
1164             fiz2             = _mm256_add_pd(fiz2,tz);
1165
1166             fjx0             = _mm256_add_pd(fjx0,tx);
1167             fjy0             = _mm256_add_pd(fjy0,ty);
1168             fjz0             = _mm256_add_pd(fjz0,tz);
1169
1170             }
1171
1172             /**************************
1173              * CALCULATE INTERACTIONS *
1174              **************************/
1175
1176             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1177             {
1178
1179             r30              = _mm256_mul_pd(rsq30,rinv30);
1180
1181             /* Compute parameters for interactions between i and j atoms */
1182             qq30             = _mm256_mul_pd(iq3,jq0);
1183
1184             /* EWALD ELECTROSTATICS */
1185
1186             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1187             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1188             ewitab           = _mm256_cvttpd_epi32(ewrt);
1189             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1190             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1191                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1192                                             &ewtabF,&ewtabFn);
1193             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1194             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1195
1196             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1197
1198             fscal            = felec;
1199
1200             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1201
1202             /* Calculate temporary vectorial force */
1203             tx               = _mm256_mul_pd(fscal,dx30);
1204             ty               = _mm256_mul_pd(fscal,dy30);
1205             tz               = _mm256_mul_pd(fscal,dz30);
1206
1207             /* Update vectorial force */
1208             fix3             = _mm256_add_pd(fix3,tx);
1209             fiy3             = _mm256_add_pd(fiy3,ty);
1210             fiz3             = _mm256_add_pd(fiz3,tz);
1211
1212             fjx0             = _mm256_add_pd(fjx0,tx);
1213             fjy0             = _mm256_add_pd(fjy0,ty);
1214             fjz0             = _mm256_add_pd(fjz0,tz);
1215
1216             }
1217
1218             fjptrA             = f+j_coord_offsetA;
1219             fjptrB             = f+j_coord_offsetB;
1220             fjptrC             = f+j_coord_offsetC;
1221             fjptrD             = f+j_coord_offsetD;
1222
1223             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1224
1225             /* Inner loop uses 150 flops */
1226         }
1227
1228         if(jidx<j_index_end)
1229         {
1230
1231             /* Get j neighbor index, and coordinate index */
1232             jnrlistA         = jjnr[jidx];
1233             jnrlistB         = jjnr[jidx+1];
1234             jnrlistC         = jjnr[jidx+2];
1235             jnrlistD         = jjnr[jidx+3];
1236             /* Sign of each element will be negative for non-real atoms.
1237              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1238              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1239              */
1240             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1241
1242             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1243             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1244             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1245
1246             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1247             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1248             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1249             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1250             j_coord_offsetA  = DIM*jnrA;
1251             j_coord_offsetB  = DIM*jnrB;
1252             j_coord_offsetC  = DIM*jnrC;
1253             j_coord_offsetD  = DIM*jnrD;
1254
1255             /* load j atom coordinates */
1256             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1257                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1258                                                  &jx0,&jy0,&jz0);
1259
1260             /* Calculate displacement vector */
1261             dx00             = _mm256_sub_pd(ix0,jx0);
1262             dy00             = _mm256_sub_pd(iy0,jy0);
1263             dz00             = _mm256_sub_pd(iz0,jz0);
1264             dx10             = _mm256_sub_pd(ix1,jx0);
1265             dy10             = _mm256_sub_pd(iy1,jy0);
1266             dz10             = _mm256_sub_pd(iz1,jz0);
1267             dx20             = _mm256_sub_pd(ix2,jx0);
1268             dy20             = _mm256_sub_pd(iy2,jy0);
1269             dz20             = _mm256_sub_pd(iz2,jz0);
1270             dx30             = _mm256_sub_pd(ix3,jx0);
1271             dy30             = _mm256_sub_pd(iy3,jy0);
1272             dz30             = _mm256_sub_pd(iz3,jz0);
1273
1274             /* Calculate squared distance and things based on it */
1275             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1276             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1277             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1278             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1279
1280             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1281             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1282             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1283
1284             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1285             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1286             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1287             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1288
1289             /* Load parameters for j particles */
1290             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1291                                                                  charge+jnrC+0,charge+jnrD+0);
1292             vdwjidx0A        = 2*vdwtype[jnrA+0];
1293             vdwjidx0B        = 2*vdwtype[jnrB+0];
1294             vdwjidx0C        = 2*vdwtype[jnrC+0];
1295             vdwjidx0D        = 2*vdwtype[jnrD+0];
1296
1297             fjx0             = _mm256_setzero_pd();
1298             fjy0             = _mm256_setzero_pd();
1299             fjz0             = _mm256_setzero_pd();
1300
1301             /**************************
1302              * CALCULATE INTERACTIONS *
1303              **************************/
1304
1305             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1306             {
1307
1308             /* Compute parameters for interactions between i and j atoms */
1309             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1310                                             vdwioffsetptr0+vdwjidx0B,
1311                                             vdwioffsetptr0+vdwjidx0C,
1312                                             vdwioffsetptr0+vdwjidx0D,
1313                                             &c6_00,&c12_00);
1314
1315             /* LENNARD-JONES DISPERSION/REPULSION */
1316
1317             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1318             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1319
1320             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1321
1322             fscal            = fvdw;
1323
1324             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1325
1326             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1327
1328             /* Calculate temporary vectorial force */
1329             tx               = _mm256_mul_pd(fscal,dx00);
1330             ty               = _mm256_mul_pd(fscal,dy00);
1331             tz               = _mm256_mul_pd(fscal,dz00);
1332
1333             /* Update vectorial force */
1334             fix0             = _mm256_add_pd(fix0,tx);
1335             fiy0             = _mm256_add_pd(fiy0,ty);
1336             fiz0             = _mm256_add_pd(fiz0,tz);
1337
1338             fjx0             = _mm256_add_pd(fjx0,tx);
1339             fjy0             = _mm256_add_pd(fjy0,ty);
1340             fjz0             = _mm256_add_pd(fjz0,tz);
1341
1342             }
1343
1344             /**************************
1345              * CALCULATE INTERACTIONS *
1346              **************************/
1347
1348             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1349             {
1350
1351             r10              = _mm256_mul_pd(rsq10,rinv10);
1352             r10              = _mm256_andnot_pd(dummy_mask,r10);
1353
1354             /* Compute parameters for interactions between i and j atoms */
1355             qq10             = _mm256_mul_pd(iq1,jq0);
1356
1357             /* EWALD ELECTROSTATICS */
1358
1359             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1360             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1361             ewitab           = _mm256_cvttpd_epi32(ewrt);
1362             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1363             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1364                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1365                                             &ewtabF,&ewtabFn);
1366             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1367             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1368
1369             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1370
1371             fscal            = felec;
1372
1373             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1374
1375             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1376
1377             /* Calculate temporary vectorial force */
1378             tx               = _mm256_mul_pd(fscal,dx10);
1379             ty               = _mm256_mul_pd(fscal,dy10);
1380             tz               = _mm256_mul_pd(fscal,dz10);
1381
1382             /* Update vectorial force */
1383             fix1             = _mm256_add_pd(fix1,tx);
1384             fiy1             = _mm256_add_pd(fiy1,ty);
1385             fiz1             = _mm256_add_pd(fiz1,tz);
1386
1387             fjx0             = _mm256_add_pd(fjx0,tx);
1388             fjy0             = _mm256_add_pd(fjy0,ty);
1389             fjz0             = _mm256_add_pd(fjz0,tz);
1390
1391             }
1392
1393             /**************************
1394              * CALCULATE INTERACTIONS *
1395              **************************/
1396
1397             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1398             {
1399
1400             r20              = _mm256_mul_pd(rsq20,rinv20);
1401             r20              = _mm256_andnot_pd(dummy_mask,r20);
1402
1403             /* Compute parameters for interactions between i and j atoms */
1404             qq20             = _mm256_mul_pd(iq2,jq0);
1405
1406             /* EWALD ELECTROSTATICS */
1407
1408             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1409             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1410             ewitab           = _mm256_cvttpd_epi32(ewrt);
1411             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1412             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1413                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1414                                             &ewtabF,&ewtabFn);
1415             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1416             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1417
1418             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1419
1420             fscal            = felec;
1421
1422             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1423
1424             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1425
1426             /* Calculate temporary vectorial force */
1427             tx               = _mm256_mul_pd(fscal,dx20);
1428             ty               = _mm256_mul_pd(fscal,dy20);
1429             tz               = _mm256_mul_pd(fscal,dz20);
1430
1431             /* Update vectorial force */
1432             fix2             = _mm256_add_pd(fix2,tx);
1433             fiy2             = _mm256_add_pd(fiy2,ty);
1434             fiz2             = _mm256_add_pd(fiz2,tz);
1435
1436             fjx0             = _mm256_add_pd(fjx0,tx);
1437             fjy0             = _mm256_add_pd(fjy0,ty);
1438             fjz0             = _mm256_add_pd(fjz0,tz);
1439
1440             }
1441
1442             /**************************
1443              * CALCULATE INTERACTIONS *
1444              **************************/
1445
1446             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1447             {
1448
1449             r30              = _mm256_mul_pd(rsq30,rinv30);
1450             r30              = _mm256_andnot_pd(dummy_mask,r30);
1451
1452             /* Compute parameters for interactions between i and j atoms */
1453             qq30             = _mm256_mul_pd(iq3,jq0);
1454
1455             /* EWALD ELECTROSTATICS */
1456
1457             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1458             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1459             ewitab           = _mm256_cvttpd_epi32(ewrt);
1460             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1461             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1462                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1463                                             &ewtabF,&ewtabFn);
1464             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1465             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1466
1467             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1468
1469             fscal            = felec;
1470
1471             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1472
1473             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1474
1475             /* Calculate temporary vectorial force */
1476             tx               = _mm256_mul_pd(fscal,dx30);
1477             ty               = _mm256_mul_pd(fscal,dy30);
1478             tz               = _mm256_mul_pd(fscal,dz30);
1479
1480             /* Update vectorial force */
1481             fix3             = _mm256_add_pd(fix3,tx);
1482             fiy3             = _mm256_add_pd(fiy3,ty);
1483             fiz3             = _mm256_add_pd(fiz3,tz);
1484
1485             fjx0             = _mm256_add_pd(fjx0,tx);
1486             fjy0             = _mm256_add_pd(fjy0,ty);
1487             fjz0             = _mm256_add_pd(fjz0,tz);
1488
1489             }
1490
1491             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1492             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1493             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1494             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1495
1496             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1497
1498             /* Inner loop uses 153 flops */
1499         }
1500
1501         /* End of innermost loop */
1502
1503         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1504                                                  f+i_coord_offset,fshift+i_shift_offset);
1505
1506         /* Increment number of inner iterations */
1507         inneriter                  += j_index_end - j_index_start;
1508
1509         /* Outer loop uses 24 flops */
1510     }
1511
1512     /* Increment number of outer iterations */
1513     outeriter        += nri;
1514
1515     /* Update outer/inner flops */
1516
1517     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*153);
1518 }