Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m128i          ewitab;
107     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
109     real             *ewtab;
110     __m256d          dummy_mask,cutoff_mask;
111     __m128           tmpmask0,tmpmask1;
112     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
113     __m256d          one     = _mm256_set1_pd(1.0);
114     __m256d          two     = _mm256_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
133     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
134     beta2            = _mm256_mul_pd(beta,beta);
135     beta3            = _mm256_mul_pd(beta,beta2);
136
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
144     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
145     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
146     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
147
148     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
149     rcutoff_scalar   = fr->rcoulomb;
150     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
151     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
152
153     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
154     rvdw             = _mm256_set1_pd(fr->rvdw);
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = jnrC = jnrD = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160     j_coord_offsetC = 0;
161     j_coord_offsetD = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     for(iidx=0;iidx<4*DIM;iidx++)
167     {
168         scratch[iidx] = 0.0;
169     }
170
171     /* Start outer loop over neighborlists */
172     for(iidx=0; iidx<nri; iidx++)
173     {
174         /* Load shift vector for this list */
175         i_shift_offset   = DIM*shiftidx[iidx];
176
177         /* Load limits for loop over neighbors */
178         j_index_start    = jindex[iidx];
179         j_index_end      = jindex[iidx+1];
180
181         /* Get outer coordinate index */
182         inr              = iinr[iidx];
183         i_coord_offset   = DIM*inr;
184
185         /* Load i particle coords and add shift vector */
186         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
187                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
188
189         fix0             = _mm256_setzero_pd();
190         fiy0             = _mm256_setzero_pd();
191         fiz0             = _mm256_setzero_pd();
192         fix1             = _mm256_setzero_pd();
193         fiy1             = _mm256_setzero_pd();
194         fiz1             = _mm256_setzero_pd();
195         fix2             = _mm256_setzero_pd();
196         fiy2             = _mm256_setzero_pd();
197         fiz2             = _mm256_setzero_pd();
198         fix3             = _mm256_setzero_pd();
199         fiy3             = _mm256_setzero_pd();
200         fiz3             = _mm256_setzero_pd();
201
202         /* Reset potential sums */
203         velecsum         = _mm256_setzero_pd();
204         vvdwsum          = _mm256_setzero_pd();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             j_coord_offsetA  = DIM*jnrA;
216             j_coord_offsetB  = DIM*jnrB;
217             j_coord_offsetC  = DIM*jnrC;
218             j_coord_offsetD  = DIM*jnrD;
219
220             /* load j atom coordinates */
221             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
222                                                  x+j_coord_offsetC,x+j_coord_offsetD,
223                                                  &jx0,&jy0,&jz0);
224
225             /* Calculate displacement vector */
226             dx00             = _mm256_sub_pd(ix0,jx0);
227             dy00             = _mm256_sub_pd(iy0,jy0);
228             dz00             = _mm256_sub_pd(iz0,jz0);
229             dx10             = _mm256_sub_pd(ix1,jx0);
230             dy10             = _mm256_sub_pd(iy1,jy0);
231             dz10             = _mm256_sub_pd(iz1,jz0);
232             dx20             = _mm256_sub_pd(ix2,jx0);
233             dy20             = _mm256_sub_pd(iy2,jy0);
234             dz20             = _mm256_sub_pd(iz2,jz0);
235             dx30             = _mm256_sub_pd(ix3,jx0);
236             dy30             = _mm256_sub_pd(iy3,jy0);
237             dz30             = _mm256_sub_pd(iz3,jz0);
238
239             /* Calculate squared distance and things based on it */
240             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
241             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
242             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
243             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
244
245             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
246             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
247             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
248
249             rinvsq00         = gmx_mm256_inv_pd(rsq00);
250             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
251             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
252             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
253
254             /* Load parameters for j particles */
255             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
256                                                                  charge+jnrC+0,charge+jnrD+0);
257             vdwjidx0A        = 2*vdwtype[jnrA+0];
258             vdwjidx0B        = 2*vdwtype[jnrB+0];
259             vdwjidx0C        = 2*vdwtype[jnrC+0];
260             vdwjidx0D        = 2*vdwtype[jnrD+0];
261
262             fjx0             = _mm256_setzero_pd();
263             fjy0             = _mm256_setzero_pd();
264             fjz0             = _mm256_setzero_pd();
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             if (gmx_mm256_any_lt(rsq00,rcutoff2))
271             {
272
273             /* Compute parameters for interactions between i and j atoms */
274             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
275                                             vdwioffsetptr0+vdwjidx0B,
276                                             vdwioffsetptr0+vdwjidx0C,
277                                             vdwioffsetptr0+vdwjidx0D,
278                                             &c6_00,&c12_00);
279
280             /* LENNARD-JONES DISPERSION/REPULSION */
281
282             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
283             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
284             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
285             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
286                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
287             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
288
289             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
293             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
294
295             fscal            = fvdw;
296
297             fscal            = _mm256_and_pd(fscal,cutoff_mask);
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm256_mul_pd(fscal,dx00);
301             ty               = _mm256_mul_pd(fscal,dy00);
302             tz               = _mm256_mul_pd(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm256_add_pd(fix0,tx);
306             fiy0             = _mm256_add_pd(fiy0,ty);
307             fiz0             = _mm256_add_pd(fiz0,tz);
308
309             fjx0             = _mm256_add_pd(fjx0,tx);
310             fjy0             = _mm256_add_pd(fjy0,ty);
311             fjz0             = _mm256_add_pd(fjz0,tz);
312
313             }
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             if (gmx_mm256_any_lt(rsq10,rcutoff2))
320             {
321
322             r10              = _mm256_mul_pd(rsq10,rinv10);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq10             = _mm256_mul_pd(iq1,jq0);
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _mm256_mul_pd(r10,ewtabscale);
331             ewitab           = _mm256_cvttpd_epi32(ewrt);
332             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
333             ewitab           = _mm_slli_epi32(ewitab,2);
334             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
335             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
336             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
337             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
338             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
339             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
340             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
341             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
342             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
343
344             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velec            = _mm256_and_pd(velec,cutoff_mask);
348             velecsum         = _mm256_add_pd(velecsum,velec);
349
350             fscal            = felec;
351
352             fscal            = _mm256_and_pd(fscal,cutoff_mask);
353
354             /* Calculate temporary vectorial force */
355             tx               = _mm256_mul_pd(fscal,dx10);
356             ty               = _mm256_mul_pd(fscal,dy10);
357             tz               = _mm256_mul_pd(fscal,dz10);
358
359             /* Update vectorial force */
360             fix1             = _mm256_add_pd(fix1,tx);
361             fiy1             = _mm256_add_pd(fiy1,ty);
362             fiz1             = _mm256_add_pd(fiz1,tz);
363
364             fjx0             = _mm256_add_pd(fjx0,tx);
365             fjy0             = _mm256_add_pd(fjy0,ty);
366             fjz0             = _mm256_add_pd(fjz0,tz);
367
368             }
369
370             /**************************
371              * CALCULATE INTERACTIONS *
372              **************************/
373
374             if (gmx_mm256_any_lt(rsq20,rcutoff2))
375             {
376
377             r20              = _mm256_mul_pd(rsq20,rinv20);
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq20             = _mm256_mul_pd(iq2,jq0);
381
382             /* EWALD ELECTROSTATICS */
383
384             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
385             ewrt             = _mm256_mul_pd(r20,ewtabscale);
386             ewitab           = _mm256_cvttpd_epi32(ewrt);
387             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
388             ewitab           = _mm_slli_epi32(ewitab,2);
389             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
390             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
391             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
392             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
393             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
394             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
395             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
396             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
397             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
398
399             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velec            = _mm256_and_pd(velec,cutoff_mask);
403             velecsum         = _mm256_add_pd(velecsum,velec);
404
405             fscal            = felec;
406
407             fscal            = _mm256_and_pd(fscal,cutoff_mask);
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm256_mul_pd(fscal,dx20);
411             ty               = _mm256_mul_pd(fscal,dy20);
412             tz               = _mm256_mul_pd(fscal,dz20);
413
414             /* Update vectorial force */
415             fix2             = _mm256_add_pd(fix2,tx);
416             fiy2             = _mm256_add_pd(fiy2,ty);
417             fiz2             = _mm256_add_pd(fiz2,tz);
418
419             fjx0             = _mm256_add_pd(fjx0,tx);
420             fjy0             = _mm256_add_pd(fjy0,ty);
421             fjz0             = _mm256_add_pd(fjz0,tz);
422
423             }
424
425             /**************************
426              * CALCULATE INTERACTIONS *
427              **************************/
428
429             if (gmx_mm256_any_lt(rsq30,rcutoff2))
430             {
431
432             r30              = _mm256_mul_pd(rsq30,rinv30);
433
434             /* Compute parameters for interactions between i and j atoms */
435             qq30             = _mm256_mul_pd(iq3,jq0);
436
437             /* EWALD ELECTROSTATICS */
438
439             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
440             ewrt             = _mm256_mul_pd(r30,ewtabscale);
441             ewitab           = _mm256_cvttpd_epi32(ewrt);
442             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
443             ewitab           = _mm_slli_epi32(ewitab,2);
444             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
445             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
446             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
447             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
448             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
449             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
450             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
451             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_sub_pd(rinv30,sh_ewald),velec));
452             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
453
454             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm256_and_pd(velec,cutoff_mask);
458             velecsum         = _mm256_add_pd(velecsum,velec);
459
460             fscal            = felec;
461
462             fscal            = _mm256_and_pd(fscal,cutoff_mask);
463
464             /* Calculate temporary vectorial force */
465             tx               = _mm256_mul_pd(fscal,dx30);
466             ty               = _mm256_mul_pd(fscal,dy30);
467             tz               = _mm256_mul_pd(fscal,dz30);
468
469             /* Update vectorial force */
470             fix3             = _mm256_add_pd(fix3,tx);
471             fiy3             = _mm256_add_pd(fiy3,ty);
472             fiz3             = _mm256_add_pd(fiz3,tz);
473
474             fjx0             = _mm256_add_pd(fjx0,tx);
475             fjy0             = _mm256_add_pd(fjy0,ty);
476             fjz0             = _mm256_add_pd(fjz0,tz);
477
478             }
479
480             fjptrA             = f+j_coord_offsetA;
481             fjptrB             = f+j_coord_offsetB;
482             fjptrC             = f+j_coord_offsetC;
483             fjptrD             = f+j_coord_offsetD;
484
485             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
486
487             /* Inner loop uses 182 flops */
488         }
489
490         if(jidx<j_index_end)
491         {
492
493             /* Get j neighbor index, and coordinate index */
494             jnrlistA         = jjnr[jidx];
495             jnrlistB         = jjnr[jidx+1];
496             jnrlistC         = jjnr[jidx+2];
497             jnrlistD         = jjnr[jidx+3];
498             /* Sign of each element will be negative for non-real atoms.
499              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
500              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
501              */
502             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
503
504             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
505             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
506             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
507
508             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
509             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
510             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
511             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
512             j_coord_offsetA  = DIM*jnrA;
513             j_coord_offsetB  = DIM*jnrB;
514             j_coord_offsetC  = DIM*jnrC;
515             j_coord_offsetD  = DIM*jnrD;
516
517             /* load j atom coordinates */
518             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
519                                                  x+j_coord_offsetC,x+j_coord_offsetD,
520                                                  &jx0,&jy0,&jz0);
521
522             /* Calculate displacement vector */
523             dx00             = _mm256_sub_pd(ix0,jx0);
524             dy00             = _mm256_sub_pd(iy0,jy0);
525             dz00             = _mm256_sub_pd(iz0,jz0);
526             dx10             = _mm256_sub_pd(ix1,jx0);
527             dy10             = _mm256_sub_pd(iy1,jy0);
528             dz10             = _mm256_sub_pd(iz1,jz0);
529             dx20             = _mm256_sub_pd(ix2,jx0);
530             dy20             = _mm256_sub_pd(iy2,jy0);
531             dz20             = _mm256_sub_pd(iz2,jz0);
532             dx30             = _mm256_sub_pd(ix3,jx0);
533             dy30             = _mm256_sub_pd(iy3,jy0);
534             dz30             = _mm256_sub_pd(iz3,jz0);
535
536             /* Calculate squared distance and things based on it */
537             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
538             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
539             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
540             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
541
542             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
543             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
544             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
545
546             rinvsq00         = gmx_mm256_inv_pd(rsq00);
547             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
548             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
549             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
550
551             /* Load parameters for j particles */
552             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
553                                                                  charge+jnrC+0,charge+jnrD+0);
554             vdwjidx0A        = 2*vdwtype[jnrA+0];
555             vdwjidx0B        = 2*vdwtype[jnrB+0];
556             vdwjidx0C        = 2*vdwtype[jnrC+0];
557             vdwjidx0D        = 2*vdwtype[jnrD+0];
558
559             fjx0             = _mm256_setzero_pd();
560             fjy0             = _mm256_setzero_pd();
561             fjz0             = _mm256_setzero_pd();
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             if (gmx_mm256_any_lt(rsq00,rcutoff2))
568             {
569
570             /* Compute parameters for interactions between i and j atoms */
571             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
572                                             vdwioffsetptr0+vdwjidx0B,
573                                             vdwioffsetptr0+vdwjidx0C,
574                                             vdwioffsetptr0+vdwjidx0D,
575                                             &c6_00,&c12_00);
576
577             /* LENNARD-JONES DISPERSION/REPULSION */
578
579             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
580             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
581             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
582             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
583                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
584             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
585
586             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
587
588             /* Update potential sum for this i atom from the interaction with this j atom. */
589             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
590             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
591             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
592
593             fscal            = fvdw;
594
595             fscal            = _mm256_and_pd(fscal,cutoff_mask);
596
597             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
598
599             /* Calculate temporary vectorial force */
600             tx               = _mm256_mul_pd(fscal,dx00);
601             ty               = _mm256_mul_pd(fscal,dy00);
602             tz               = _mm256_mul_pd(fscal,dz00);
603
604             /* Update vectorial force */
605             fix0             = _mm256_add_pd(fix0,tx);
606             fiy0             = _mm256_add_pd(fiy0,ty);
607             fiz0             = _mm256_add_pd(fiz0,tz);
608
609             fjx0             = _mm256_add_pd(fjx0,tx);
610             fjy0             = _mm256_add_pd(fjy0,ty);
611             fjz0             = _mm256_add_pd(fjz0,tz);
612
613             }
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             if (gmx_mm256_any_lt(rsq10,rcutoff2))
620             {
621
622             r10              = _mm256_mul_pd(rsq10,rinv10);
623             r10              = _mm256_andnot_pd(dummy_mask,r10);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq10             = _mm256_mul_pd(iq1,jq0);
627
628             /* EWALD ELECTROSTATICS */
629
630             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
631             ewrt             = _mm256_mul_pd(r10,ewtabscale);
632             ewitab           = _mm256_cvttpd_epi32(ewrt);
633             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
634             ewitab           = _mm_slli_epi32(ewitab,2);
635             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
636             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
637             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
638             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
639             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
640             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
641             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
642             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
643             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
644
645             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
646
647             /* Update potential sum for this i atom from the interaction with this j atom. */
648             velec            = _mm256_and_pd(velec,cutoff_mask);
649             velec            = _mm256_andnot_pd(dummy_mask,velec);
650             velecsum         = _mm256_add_pd(velecsum,velec);
651
652             fscal            = felec;
653
654             fscal            = _mm256_and_pd(fscal,cutoff_mask);
655
656             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
657
658             /* Calculate temporary vectorial force */
659             tx               = _mm256_mul_pd(fscal,dx10);
660             ty               = _mm256_mul_pd(fscal,dy10);
661             tz               = _mm256_mul_pd(fscal,dz10);
662
663             /* Update vectorial force */
664             fix1             = _mm256_add_pd(fix1,tx);
665             fiy1             = _mm256_add_pd(fiy1,ty);
666             fiz1             = _mm256_add_pd(fiz1,tz);
667
668             fjx0             = _mm256_add_pd(fjx0,tx);
669             fjy0             = _mm256_add_pd(fjy0,ty);
670             fjz0             = _mm256_add_pd(fjz0,tz);
671
672             }
673
674             /**************************
675              * CALCULATE INTERACTIONS *
676              **************************/
677
678             if (gmx_mm256_any_lt(rsq20,rcutoff2))
679             {
680
681             r20              = _mm256_mul_pd(rsq20,rinv20);
682             r20              = _mm256_andnot_pd(dummy_mask,r20);
683
684             /* Compute parameters for interactions between i and j atoms */
685             qq20             = _mm256_mul_pd(iq2,jq0);
686
687             /* EWALD ELECTROSTATICS */
688
689             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
690             ewrt             = _mm256_mul_pd(r20,ewtabscale);
691             ewitab           = _mm256_cvttpd_epi32(ewrt);
692             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
693             ewitab           = _mm_slli_epi32(ewitab,2);
694             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
695             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
696             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
697             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
698             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
699             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
700             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
701             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
702             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
703
704             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
705
706             /* Update potential sum for this i atom from the interaction with this j atom. */
707             velec            = _mm256_and_pd(velec,cutoff_mask);
708             velec            = _mm256_andnot_pd(dummy_mask,velec);
709             velecsum         = _mm256_add_pd(velecsum,velec);
710
711             fscal            = felec;
712
713             fscal            = _mm256_and_pd(fscal,cutoff_mask);
714
715             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
716
717             /* Calculate temporary vectorial force */
718             tx               = _mm256_mul_pd(fscal,dx20);
719             ty               = _mm256_mul_pd(fscal,dy20);
720             tz               = _mm256_mul_pd(fscal,dz20);
721
722             /* Update vectorial force */
723             fix2             = _mm256_add_pd(fix2,tx);
724             fiy2             = _mm256_add_pd(fiy2,ty);
725             fiz2             = _mm256_add_pd(fiz2,tz);
726
727             fjx0             = _mm256_add_pd(fjx0,tx);
728             fjy0             = _mm256_add_pd(fjy0,ty);
729             fjz0             = _mm256_add_pd(fjz0,tz);
730
731             }
732
733             /**************************
734              * CALCULATE INTERACTIONS *
735              **************************/
736
737             if (gmx_mm256_any_lt(rsq30,rcutoff2))
738             {
739
740             r30              = _mm256_mul_pd(rsq30,rinv30);
741             r30              = _mm256_andnot_pd(dummy_mask,r30);
742
743             /* Compute parameters for interactions between i and j atoms */
744             qq30             = _mm256_mul_pd(iq3,jq0);
745
746             /* EWALD ELECTROSTATICS */
747
748             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
749             ewrt             = _mm256_mul_pd(r30,ewtabscale);
750             ewitab           = _mm256_cvttpd_epi32(ewrt);
751             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
752             ewitab           = _mm_slli_epi32(ewitab,2);
753             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
754             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
755             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
756             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
757             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
758             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
759             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
760             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_sub_pd(rinv30,sh_ewald),velec));
761             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
762
763             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
764
765             /* Update potential sum for this i atom from the interaction with this j atom. */
766             velec            = _mm256_and_pd(velec,cutoff_mask);
767             velec            = _mm256_andnot_pd(dummy_mask,velec);
768             velecsum         = _mm256_add_pd(velecsum,velec);
769
770             fscal            = felec;
771
772             fscal            = _mm256_and_pd(fscal,cutoff_mask);
773
774             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
775
776             /* Calculate temporary vectorial force */
777             tx               = _mm256_mul_pd(fscal,dx30);
778             ty               = _mm256_mul_pd(fscal,dy30);
779             tz               = _mm256_mul_pd(fscal,dz30);
780
781             /* Update vectorial force */
782             fix3             = _mm256_add_pd(fix3,tx);
783             fiy3             = _mm256_add_pd(fiy3,ty);
784             fiz3             = _mm256_add_pd(fiz3,tz);
785
786             fjx0             = _mm256_add_pd(fjx0,tx);
787             fjy0             = _mm256_add_pd(fjy0,ty);
788             fjz0             = _mm256_add_pd(fjz0,tz);
789
790             }
791
792             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
793             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
794             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
795             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
796
797             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
798
799             /* Inner loop uses 185 flops */
800         }
801
802         /* End of innermost loop */
803
804         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
805                                                  f+i_coord_offset,fshift+i_shift_offset);
806
807         ggid                        = gid[iidx];
808         /* Update potential energies */
809         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
810         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
811
812         /* Increment number of inner iterations */
813         inneriter                  += j_index_end - j_index_start;
814
815         /* Outer loop uses 26 flops */
816     }
817
818     /* Increment number of outer iterations */
819     outeriter        += nri;
820
821     /* Update outer/inner flops */
822
823     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*185);
824 }
825 /*
826  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_double
827  * Electrostatics interaction: Ewald
828  * VdW interaction:            LennardJones
829  * Geometry:                   Water4-Particle
830  * Calculate force/pot:        Force
831  */
832 void
833 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_double
834                     (t_nblist                    * gmx_restrict       nlist,
835                      rvec                        * gmx_restrict          xx,
836                      rvec                        * gmx_restrict          ff,
837                      t_forcerec                  * gmx_restrict          fr,
838                      t_mdatoms                   * gmx_restrict     mdatoms,
839                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
840                      t_nrnb                      * gmx_restrict        nrnb)
841 {
842     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
843      * just 0 for non-waters.
844      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
845      * jnr indices corresponding to data put in the four positions in the SIMD register.
846      */
847     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
848     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
849     int              jnrA,jnrB,jnrC,jnrD;
850     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
851     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
852     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
853     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
854     real             rcutoff_scalar;
855     real             *shiftvec,*fshift,*x,*f;
856     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
857     real             scratch[4*DIM];
858     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
859     real *           vdwioffsetptr0;
860     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
861     real *           vdwioffsetptr1;
862     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
863     real *           vdwioffsetptr2;
864     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
865     real *           vdwioffsetptr3;
866     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
867     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
868     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
869     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
870     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
871     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
872     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
873     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
874     real             *charge;
875     int              nvdwtype;
876     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
877     int              *vdwtype;
878     real             *vdwparam;
879     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
880     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
881     __m128i          ewitab;
882     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
883     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
884     real             *ewtab;
885     __m256d          dummy_mask,cutoff_mask;
886     __m128           tmpmask0,tmpmask1;
887     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
888     __m256d          one     = _mm256_set1_pd(1.0);
889     __m256d          two     = _mm256_set1_pd(2.0);
890     x                = xx[0];
891     f                = ff[0];
892
893     nri              = nlist->nri;
894     iinr             = nlist->iinr;
895     jindex           = nlist->jindex;
896     jjnr             = nlist->jjnr;
897     shiftidx         = nlist->shift;
898     gid              = nlist->gid;
899     shiftvec         = fr->shift_vec[0];
900     fshift           = fr->fshift[0];
901     facel            = _mm256_set1_pd(fr->epsfac);
902     charge           = mdatoms->chargeA;
903     nvdwtype         = fr->ntype;
904     vdwparam         = fr->nbfp;
905     vdwtype          = mdatoms->typeA;
906
907     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
908     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
909     beta2            = _mm256_mul_pd(beta,beta);
910     beta3            = _mm256_mul_pd(beta,beta2);
911
912     ewtab            = fr->ic->tabq_coul_F;
913     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
914     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
915
916     /* Setup water-specific parameters */
917     inr              = nlist->iinr[0];
918     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
919     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
920     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
921     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
922
923     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
924     rcutoff_scalar   = fr->rcoulomb;
925     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
926     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
927
928     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
929     rvdw             = _mm256_set1_pd(fr->rvdw);
930
931     /* Avoid stupid compiler warnings */
932     jnrA = jnrB = jnrC = jnrD = 0;
933     j_coord_offsetA = 0;
934     j_coord_offsetB = 0;
935     j_coord_offsetC = 0;
936     j_coord_offsetD = 0;
937
938     outeriter        = 0;
939     inneriter        = 0;
940
941     for(iidx=0;iidx<4*DIM;iidx++)
942     {
943         scratch[iidx] = 0.0;
944     }
945
946     /* Start outer loop over neighborlists */
947     for(iidx=0; iidx<nri; iidx++)
948     {
949         /* Load shift vector for this list */
950         i_shift_offset   = DIM*shiftidx[iidx];
951
952         /* Load limits for loop over neighbors */
953         j_index_start    = jindex[iidx];
954         j_index_end      = jindex[iidx+1];
955
956         /* Get outer coordinate index */
957         inr              = iinr[iidx];
958         i_coord_offset   = DIM*inr;
959
960         /* Load i particle coords and add shift vector */
961         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
962                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
963
964         fix0             = _mm256_setzero_pd();
965         fiy0             = _mm256_setzero_pd();
966         fiz0             = _mm256_setzero_pd();
967         fix1             = _mm256_setzero_pd();
968         fiy1             = _mm256_setzero_pd();
969         fiz1             = _mm256_setzero_pd();
970         fix2             = _mm256_setzero_pd();
971         fiy2             = _mm256_setzero_pd();
972         fiz2             = _mm256_setzero_pd();
973         fix3             = _mm256_setzero_pd();
974         fiy3             = _mm256_setzero_pd();
975         fiz3             = _mm256_setzero_pd();
976
977         /* Start inner kernel loop */
978         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
979         {
980
981             /* Get j neighbor index, and coordinate index */
982             jnrA             = jjnr[jidx];
983             jnrB             = jjnr[jidx+1];
984             jnrC             = jjnr[jidx+2];
985             jnrD             = jjnr[jidx+3];
986             j_coord_offsetA  = DIM*jnrA;
987             j_coord_offsetB  = DIM*jnrB;
988             j_coord_offsetC  = DIM*jnrC;
989             j_coord_offsetD  = DIM*jnrD;
990
991             /* load j atom coordinates */
992             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
993                                                  x+j_coord_offsetC,x+j_coord_offsetD,
994                                                  &jx0,&jy0,&jz0);
995
996             /* Calculate displacement vector */
997             dx00             = _mm256_sub_pd(ix0,jx0);
998             dy00             = _mm256_sub_pd(iy0,jy0);
999             dz00             = _mm256_sub_pd(iz0,jz0);
1000             dx10             = _mm256_sub_pd(ix1,jx0);
1001             dy10             = _mm256_sub_pd(iy1,jy0);
1002             dz10             = _mm256_sub_pd(iz1,jz0);
1003             dx20             = _mm256_sub_pd(ix2,jx0);
1004             dy20             = _mm256_sub_pd(iy2,jy0);
1005             dz20             = _mm256_sub_pd(iz2,jz0);
1006             dx30             = _mm256_sub_pd(ix3,jx0);
1007             dy30             = _mm256_sub_pd(iy3,jy0);
1008             dz30             = _mm256_sub_pd(iz3,jz0);
1009
1010             /* Calculate squared distance and things based on it */
1011             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1012             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1013             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1014             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1015
1016             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1017             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1018             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1019
1020             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1021             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1022             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1023             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1024
1025             /* Load parameters for j particles */
1026             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1027                                                                  charge+jnrC+0,charge+jnrD+0);
1028             vdwjidx0A        = 2*vdwtype[jnrA+0];
1029             vdwjidx0B        = 2*vdwtype[jnrB+0];
1030             vdwjidx0C        = 2*vdwtype[jnrC+0];
1031             vdwjidx0D        = 2*vdwtype[jnrD+0];
1032
1033             fjx0             = _mm256_setzero_pd();
1034             fjy0             = _mm256_setzero_pd();
1035             fjz0             = _mm256_setzero_pd();
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1042             {
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1046                                             vdwioffsetptr0+vdwjidx0B,
1047                                             vdwioffsetptr0+vdwjidx0C,
1048                                             vdwioffsetptr0+vdwjidx0D,
1049                                             &c6_00,&c12_00);
1050
1051             /* LENNARD-JONES DISPERSION/REPULSION */
1052
1053             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1054             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1055
1056             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1057
1058             fscal            = fvdw;
1059
1060             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1061
1062             /* Calculate temporary vectorial force */
1063             tx               = _mm256_mul_pd(fscal,dx00);
1064             ty               = _mm256_mul_pd(fscal,dy00);
1065             tz               = _mm256_mul_pd(fscal,dz00);
1066
1067             /* Update vectorial force */
1068             fix0             = _mm256_add_pd(fix0,tx);
1069             fiy0             = _mm256_add_pd(fiy0,ty);
1070             fiz0             = _mm256_add_pd(fiz0,tz);
1071
1072             fjx0             = _mm256_add_pd(fjx0,tx);
1073             fjy0             = _mm256_add_pd(fjy0,ty);
1074             fjz0             = _mm256_add_pd(fjz0,tz);
1075
1076             }
1077
1078             /**************************
1079              * CALCULATE INTERACTIONS *
1080              **************************/
1081
1082             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1083             {
1084
1085             r10              = _mm256_mul_pd(rsq10,rinv10);
1086
1087             /* Compute parameters for interactions between i and j atoms */
1088             qq10             = _mm256_mul_pd(iq1,jq0);
1089
1090             /* EWALD ELECTROSTATICS */
1091
1092             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1093             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1094             ewitab           = _mm256_cvttpd_epi32(ewrt);
1095             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1096             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1097                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1098                                             &ewtabF,&ewtabFn);
1099             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1100             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1101
1102             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1103
1104             fscal            = felec;
1105
1106             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1107
1108             /* Calculate temporary vectorial force */
1109             tx               = _mm256_mul_pd(fscal,dx10);
1110             ty               = _mm256_mul_pd(fscal,dy10);
1111             tz               = _mm256_mul_pd(fscal,dz10);
1112
1113             /* Update vectorial force */
1114             fix1             = _mm256_add_pd(fix1,tx);
1115             fiy1             = _mm256_add_pd(fiy1,ty);
1116             fiz1             = _mm256_add_pd(fiz1,tz);
1117
1118             fjx0             = _mm256_add_pd(fjx0,tx);
1119             fjy0             = _mm256_add_pd(fjy0,ty);
1120             fjz0             = _mm256_add_pd(fjz0,tz);
1121
1122             }
1123
1124             /**************************
1125              * CALCULATE INTERACTIONS *
1126              **************************/
1127
1128             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1129             {
1130
1131             r20              = _mm256_mul_pd(rsq20,rinv20);
1132
1133             /* Compute parameters for interactions between i and j atoms */
1134             qq20             = _mm256_mul_pd(iq2,jq0);
1135
1136             /* EWALD ELECTROSTATICS */
1137
1138             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1139             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1140             ewitab           = _mm256_cvttpd_epi32(ewrt);
1141             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1142             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1143                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1144                                             &ewtabF,&ewtabFn);
1145             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1146             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1147
1148             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1149
1150             fscal            = felec;
1151
1152             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1153
1154             /* Calculate temporary vectorial force */
1155             tx               = _mm256_mul_pd(fscal,dx20);
1156             ty               = _mm256_mul_pd(fscal,dy20);
1157             tz               = _mm256_mul_pd(fscal,dz20);
1158
1159             /* Update vectorial force */
1160             fix2             = _mm256_add_pd(fix2,tx);
1161             fiy2             = _mm256_add_pd(fiy2,ty);
1162             fiz2             = _mm256_add_pd(fiz2,tz);
1163
1164             fjx0             = _mm256_add_pd(fjx0,tx);
1165             fjy0             = _mm256_add_pd(fjy0,ty);
1166             fjz0             = _mm256_add_pd(fjz0,tz);
1167
1168             }
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1175             {
1176
1177             r30              = _mm256_mul_pd(rsq30,rinv30);
1178
1179             /* Compute parameters for interactions between i and j atoms */
1180             qq30             = _mm256_mul_pd(iq3,jq0);
1181
1182             /* EWALD ELECTROSTATICS */
1183
1184             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1185             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1186             ewitab           = _mm256_cvttpd_epi32(ewrt);
1187             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1188             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1189                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1190                                             &ewtabF,&ewtabFn);
1191             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1192             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1193
1194             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1195
1196             fscal            = felec;
1197
1198             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1199
1200             /* Calculate temporary vectorial force */
1201             tx               = _mm256_mul_pd(fscal,dx30);
1202             ty               = _mm256_mul_pd(fscal,dy30);
1203             tz               = _mm256_mul_pd(fscal,dz30);
1204
1205             /* Update vectorial force */
1206             fix3             = _mm256_add_pd(fix3,tx);
1207             fiy3             = _mm256_add_pd(fiy3,ty);
1208             fiz3             = _mm256_add_pd(fiz3,tz);
1209
1210             fjx0             = _mm256_add_pd(fjx0,tx);
1211             fjy0             = _mm256_add_pd(fjy0,ty);
1212             fjz0             = _mm256_add_pd(fjz0,tz);
1213
1214             }
1215
1216             fjptrA             = f+j_coord_offsetA;
1217             fjptrB             = f+j_coord_offsetB;
1218             fjptrC             = f+j_coord_offsetC;
1219             fjptrD             = f+j_coord_offsetD;
1220
1221             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1222
1223             /* Inner loop uses 150 flops */
1224         }
1225
1226         if(jidx<j_index_end)
1227         {
1228
1229             /* Get j neighbor index, and coordinate index */
1230             jnrlistA         = jjnr[jidx];
1231             jnrlistB         = jjnr[jidx+1];
1232             jnrlistC         = jjnr[jidx+2];
1233             jnrlistD         = jjnr[jidx+3];
1234             /* Sign of each element will be negative for non-real atoms.
1235              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1236              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1237              */
1238             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1239
1240             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1241             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1242             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1243
1244             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1245             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1246             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1247             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1248             j_coord_offsetA  = DIM*jnrA;
1249             j_coord_offsetB  = DIM*jnrB;
1250             j_coord_offsetC  = DIM*jnrC;
1251             j_coord_offsetD  = DIM*jnrD;
1252
1253             /* load j atom coordinates */
1254             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1255                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1256                                                  &jx0,&jy0,&jz0);
1257
1258             /* Calculate displacement vector */
1259             dx00             = _mm256_sub_pd(ix0,jx0);
1260             dy00             = _mm256_sub_pd(iy0,jy0);
1261             dz00             = _mm256_sub_pd(iz0,jz0);
1262             dx10             = _mm256_sub_pd(ix1,jx0);
1263             dy10             = _mm256_sub_pd(iy1,jy0);
1264             dz10             = _mm256_sub_pd(iz1,jz0);
1265             dx20             = _mm256_sub_pd(ix2,jx0);
1266             dy20             = _mm256_sub_pd(iy2,jy0);
1267             dz20             = _mm256_sub_pd(iz2,jz0);
1268             dx30             = _mm256_sub_pd(ix3,jx0);
1269             dy30             = _mm256_sub_pd(iy3,jy0);
1270             dz30             = _mm256_sub_pd(iz3,jz0);
1271
1272             /* Calculate squared distance and things based on it */
1273             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1274             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1275             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1276             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1277
1278             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1279             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1280             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1281
1282             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1283             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1284             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1285             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1286
1287             /* Load parameters for j particles */
1288             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1289                                                                  charge+jnrC+0,charge+jnrD+0);
1290             vdwjidx0A        = 2*vdwtype[jnrA+0];
1291             vdwjidx0B        = 2*vdwtype[jnrB+0];
1292             vdwjidx0C        = 2*vdwtype[jnrC+0];
1293             vdwjidx0D        = 2*vdwtype[jnrD+0];
1294
1295             fjx0             = _mm256_setzero_pd();
1296             fjy0             = _mm256_setzero_pd();
1297             fjz0             = _mm256_setzero_pd();
1298
1299             /**************************
1300              * CALCULATE INTERACTIONS *
1301              **************************/
1302
1303             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1304             {
1305
1306             /* Compute parameters for interactions between i and j atoms */
1307             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1308                                             vdwioffsetptr0+vdwjidx0B,
1309                                             vdwioffsetptr0+vdwjidx0C,
1310                                             vdwioffsetptr0+vdwjidx0D,
1311                                             &c6_00,&c12_00);
1312
1313             /* LENNARD-JONES DISPERSION/REPULSION */
1314
1315             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1316             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1317
1318             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1319
1320             fscal            = fvdw;
1321
1322             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1323
1324             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1325
1326             /* Calculate temporary vectorial force */
1327             tx               = _mm256_mul_pd(fscal,dx00);
1328             ty               = _mm256_mul_pd(fscal,dy00);
1329             tz               = _mm256_mul_pd(fscal,dz00);
1330
1331             /* Update vectorial force */
1332             fix0             = _mm256_add_pd(fix0,tx);
1333             fiy0             = _mm256_add_pd(fiy0,ty);
1334             fiz0             = _mm256_add_pd(fiz0,tz);
1335
1336             fjx0             = _mm256_add_pd(fjx0,tx);
1337             fjy0             = _mm256_add_pd(fjy0,ty);
1338             fjz0             = _mm256_add_pd(fjz0,tz);
1339
1340             }
1341
1342             /**************************
1343              * CALCULATE INTERACTIONS *
1344              **************************/
1345
1346             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1347             {
1348
1349             r10              = _mm256_mul_pd(rsq10,rinv10);
1350             r10              = _mm256_andnot_pd(dummy_mask,r10);
1351
1352             /* Compute parameters for interactions between i and j atoms */
1353             qq10             = _mm256_mul_pd(iq1,jq0);
1354
1355             /* EWALD ELECTROSTATICS */
1356
1357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1358             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1359             ewitab           = _mm256_cvttpd_epi32(ewrt);
1360             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1361             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1362                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1363                                             &ewtabF,&ewtabFn);
1364             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1365             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1366
1367             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1368
1369             fscal            = felec;
1370
1371             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1372
1373             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1374
1375             /* Calculate temporary vectorial force */
1376             tx               = _mm256_mul_pd(fscal,dx10);
1377             ty               = _mm256_mul_pd(fscal,dy10);
1378             tz               = _mm256_mul_pd(fscal,dz10);
1379
1380             /* Update vectorial force */
1381             fix1             = _mm256_add_pd(fix1,tx);
1382             fiy1             = _mm256_add_pd(fiy1,ty);
1383             fiz1             = _mm256_add_pd(fiz1,tz);
1384
1385             fjx0             = _mm256_add_pd(fjx0,tx);
1386             fjy0             = _mm256_add_pd(fjy0,ty);
1387             fjz0             = _mm256_add_pd(fjz0,tz);
1388
1389             }
1390
1391             /**************************
1392              * CALCULATE INTERACTIONS *
1393              **************************/
1394
1395             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1396             {
1397
1398             r20              = _mm256_mul_pd(rsq20,rinv20);
1399             r20              = _mm256_andnot_pd(dummy_mask,r20);
1400
1401             /* Compute parameters for interactions between i and j atoms */
1402             qq20             = _mm256_mul_pd(iq2,jq0);
1403
1404             /* EWALD ELECTROSTATICS */
1405
1406             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1407             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1408             ewitab           = _mm256_cvttpd_epi32(ewrt);
1409             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1410             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1411                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1412                                             &ewtabF,&ewtabFn);
1413             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1414             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1415
1416             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1417
1418             fscal            = felec;
1419
1420             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1421
1422             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1423
1424             /* Calculate temporary vectorial force */
1425             tx               = _mm256_mul_pd(fscal,dx20);
1426             ty               = _mm256_mul_pd(fscal,dy20);
1427             tz               = _mm256_mul_pd(fscal,dz20);
1428
1429             /* Update vectorial force */
1430             fix2             = _mm256_add_pd(fix2,tx);
1431             fiy2             = _mm256_add_pd(fiy2,ty);
1432             fiz2             = _mm256_add_pd(fiz2,tz);
1433
1434             fjx0             = _mm256_add_pd(fjx0,tx);
1435             fjy0             = _mm256_add_pd(fjy0,ty);
1436             fjz0             = _mm256_add_pd(fjz0,tz);
1437
1438             }
1439
1440             /**************************
1441              * CALCULATE INTERACTIONS *
1442              **************************/
1443
1444             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1445             {
1446
1447             r30              = _mm256_mul_pd(rsq30,rinv30);
1448             r30              = _mm256_andnot_pd(dummy_mask,r30);
1449
1450             /* Compute parameters for interactions between i and j atoms */
1451             qq30             = _mm256_mul_pd(iq3,jq0);
1452
1453             /* EWALD ELECTROSTATICS */
1454
1455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1456             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1457             ewitab           = _mm256_cvttpd_epi32(ewrt);
1458             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1459             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1460                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1461                                             &ewtabF,&ewtabFn);
1462             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1463             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1464
1465             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1466
1467             fscal            = felec;
1468
1469             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1470
1471             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1472
1473             /* Calculate temporary vectorial force */
1474             tx               = _mm256_mul_pd(fscal,dx30);
1475             ty               = _mm256_mul_pd(fscal,dy30);
1476             tz               = _mm256_mul_pd(fscal,dz30);
1477
1478             /* Update vectorial force */
1479             fix3             = _mm256_add_pd(fix3,tx);
1480             fiy3             = _mm256_add_pd(fiy3,ty);
1481             fiz3             = _mm256_add_pd(fiz3,tz);
1482
1483             fjx0             = _mm256_add_pd(fjx0,tx);
1484             fjy0             = _mm256_add_pd(fjy0,ty);
1485             fjz0             = _mm256_add_pd(fjz0,tz);
1486
1487             }
1488
1489             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1490             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1491             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1492             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1493
1494             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1495
1496             /* Inner loop uses 153 flops */
1497         }
1498
1499         /* End of innermost loop */
1500
1501         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1502                                                  f+i_coord_offset,fshift+i_shift_offset);
1503
1504         /* Increment number of inner iterations */
1505         inneriter                  += j_index_end - j_index_start;
1506
1507         /* Outer loop uses 24 flops */
1508     }
1509
1510     /* Increment number of outer iterations */
1511     outeriter        += nri;
1512
1513     /* Update outer/inner flops */
1514
1515     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*153);
1516 }