Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Water3
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
79     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
80     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
81     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
82     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
83     __m256d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
84     __m256d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
85     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
86     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
87     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
88     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
89     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
90     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          ewitab;
100     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
102     real             *ewtab;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
126     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
127     beta2            = _mm256_mul_pd(beta,beta);
128     beta3            = _mm256_mul_pd(beta,beta2);
129
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
137     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
138     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     jq0              = _mm256_set1_pd(charge[inr+0]);
142     jq1              = _mm256_set1_pd(charge[inr+1]);
143     jq2              = _mm256_set1_pd(charge[inr+2]);
144     vdwjidx0A        = 2*vdwtype[inr+0];
145     qq00             = _mm256_mul_pd(iq0,jq0);
146     c6_00            = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A]);
147     c12_00           = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A+1]);
148     qq01             = _mm256_mul_pd(iq0,jq1);
149     qq02             = _mm256_mul_pd(iq0,jq2);
150     qq10             = _mm256_mul_pd(iq1,jq0);
151     qq11             = _mm256_mul_pd(iq1,jq1);
152     qq12             = _mm256_mul_pd(iq1,jq2);
153     qq20             = _mm256_mul_pd(iq2,jq0);
154     qq21             = _mm256_mul_pd(iq2,jq1);
155     qq22             = _mm256_mul_pd(iq2,jq2);
156
157     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
158     rcutoff_scalar   = fr->rcoulomb;
159     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
160     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
161
162     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
163     rvdw             = _mm256_set1_pd(fr->rvdw);
164
165     /* Avoid stupid compiler warnings */
166     jnrA = jnrB = jnrC = jnrD = 0;
167     j_coord_offsetA = 0;
168     j_coord_offsetB = 0;
169     j_coord_offsetC = 0;
170     j_coord_offsetD = 0;
171
172     outeriter        = 0;
173     inneriter        = 0;
174
175     for(iidx=0;iidx<4*DIM;iidx++)
176     {
177         scratch[iidx] = 0.0;
178     }
179
180     /* Start outer loop over neighborlists */
181     for(iidx=0; iidx<nri; iidx++)
182     {
183         /* Load shift vector for this list */
184         i_shift_offset   = DIM*shiftidx[iidx];
185
186         /* Load limits for loop over neighbors */
187         j_index_start    = jindex[iidx];
188         j_index_end      = jindex[iidx+1];
189
190         /* Get outer coordinate index */
191         inr              = iinr[iidx];
192         i_coord_offset   = DIM*inr;
193
194         /* Load i particle coords and add shift vector */
195         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
196                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
197
198         fix0             = _mm256_setzero_pd();
199         fiy0             = _mm256_setzero_pd();
200         fiz0             = _mm256_setzero_pd();
201         fix1             = _mm256_setzero_pd();
202         fiy1             = _mm256_setzero_pd();
203         fiz1             = _mm256_setzero_pd();
204         fix2             = _mm256_setzero_pd();
205         fiy2             = _mm256_setzero_pd();
206         fiz2             = _mm256_setzero_pd();
207
208         /* Reset potential sums */
209         velecsum         = _mm256_setzero_pd();
210         vvdwsum          = _mm256_setzero_pd();
211
212         /* Start inner kernel loop */
213         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
214         {
215
216             /* Get j neighbor index, and coordinate index */
217             jnrA             = jjnr[jidx];
218             jnrB             = jjnr[jidx+1];
219             jnrC             = jjnr[jidx+2];
220             jnrD             = jjnr[jidx+3];
221             j_coord_offsetA  = DIM*jnrA;
222             j_coord_offsetB  = DIM*jnrB;
223             j_coord_offsetC  = DIM*jnrC;
224             j_coord_offsetD  = DIM*jnrD;
225
226             /* load j atom coordinates */
227             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
228                                                  x+j_coord_offsetC,x+j_coord_offsetD,
229                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
230
231             /* Calculate displacement vector */
232             dx00             = _mm256_sub_pd(ix0,jx0);
233             dy00             = _mm256_sub_pd(iy0,jy0);
234             dz00             = _mm256_sub_pd(iz0,jz0);
235             dx01             = _mm256_sub_pd(ix0,jx1);
236             dy01             = _mm256_sub_pd(iy0,jy1);
237             dz01             = _mm256_sub_pd(iz0,jz1);
238             dx02             = _mm256_sub_pd(ix0,jx2);
239             dy02             = _mm256_sub_pd(iy0,jy2);
240             dz02             = _mm256_sub_pd(iz0,jz2);
241             dx10             = _mm256_sub_pd(ix1,jx0);
242             dy10             = _mm256_sub_pd(iy1,jy0);
243             dz10             = _mm256_sub_pd(iz1,jz0);
244             dx11             = _mm256_sub_pd(ix1,jx1);
245             dy11             = _mm256_sub_pd(iy1,jy1);
246             dz11             = _mm256_sub_pd(iz1,jz1);
247             dx12             = _mm256_sub_pd(ix1,jx2);
248             dy12             = _mm256_sub_pd(iy1,jy2);
249             dz12             = _mm256_sub_pd(iz1,jz2);
250             dx20             = _mm256_sub_pd(ix2,jx0);
251             dy20             = _mm256_sub_pd(iy2,jy0);
252             dz20             = _mm256_sub_pd(iz2,jz0);
253             dx21             = _mm256_sub_pd(ix2,jx1);
254             dy21             = _mm256_sub_pd(iy2,jy1);
255             dz21             = _mm256_sub_pd(iz2,jz1);
256             dx22             = _mm256_sub_pd(ix2,jx2);
257             dy22             = _mm256_sub_pd(iy2,jy2);
258             dz22             = _mm256_sub_pd(iz2,jz2);
259
260             /* Calculate squared distance and things based on it */
261             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
262             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
263             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
264             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
265             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
266             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
267             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
268             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
269             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
270
271             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
272             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
273             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
274             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
275             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
276             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
277             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
278             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
279             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
280
281             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
282             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
283             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
284             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
285             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
286             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
287             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
288             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
289             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
290
291             fjx0             = _mm256_setzero_pd();
292             fjy0             = _mm256_setzero_pd();
293             fjz0             = _mm256_setzero_pd();
294             fjx1             = _mm256_setzero_pd();
295             fjy1             = _mm256_setzero_pd();
296             fjz1             = _mm256_setzero_pd();
297             fjx2             = _mm256_setzero_pd();
298             fjy2             = _mm256_setzero_pd();
299             fjz2             = _mm256_setzero_pd();
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             if (gmx_mm256_any_lt(rsq00,rcutoff2))
306             {
307
308             r00              = _mm256_mul_pd(rsq00,rinv00);
309
310             /* EWALD ELECTROSTATICS */
311
312             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
313             ewrt             = _mm256_mul_pd(r00,ewtabscale);
314             ewitab           = _mm256_cvttpd_epi32(ewrt);
315             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
316             ewitab           = _mm_slli_epi32(ewitab,2);
317             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
318             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
319             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
320             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
321             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
322             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
323             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
324             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
325             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
326
327             /* LENNARD-JONES DISPERSION/REPULSION */
328
329             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
330             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
331             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
332             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
333                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
334             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
335
336             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velec            = _mm256_and_pd(velec,cutoff_mask);
340             velecsum         = _mm256_add_pd(velecsum,velec);
341             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
342             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
343
344             fscal            = _mm256_add_pd(felec,fvdw);
345
346             fscal            = _mm256_and_pd(fscal,cutoff_mask);
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm256_mul_pd(fscal,dx00);
350             ty               = _mm256_mul_pd(fscal,dy00);
351             tz               = _mm256_mul_pd(fscal,dz00);
352
353             /* Update vectorial force */
354             fix0             = _mm256_add_pd(fix0,tx);
355             fiy0             = _mm256_add_pd(fiy0,ty);
356             fiz0             = _mm256_add_pd(fiz0,tz);
357
358             fjx0             = _mm256_add_pd(fjx0,tx);
359             fjy0             = _mm256_add_pd(fjy0,ty);
360             fjz0             = _mm256_add_pd(fjz0,tz);
361
362             }
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             if (gmx_mm256_any_lt(rsq01,rcutoff2))
369             {
370
371             r01              = _mm256_mul_pd(rsq01,rinv01);
372
373             /* EWALD ELECTROSTATICS */
374
375             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
376             ewrt             = _mm256_mul_pd(r01,ewtabscale);
377             ewitab           = _mm256_cvttpd_epi32(ewrt);
378             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
379             ewitab           = _mm_slli_epi32(ewitab,2);
380             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
381             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
382             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
383             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
384             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
385             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
386             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
387             velec            = _mm256_mul_pd(qq01,_mm256_sub_pd(_mm256_sub_pd(rinv01,sh_ewald),velec));
388             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
389
390             cutoff_mask      = _mm256_cmp_pd(rsq01,rcutoff2,_CMP_LT_OQ);
391
392             /* Update potential sum for this i atom from the interaction with this j atom. */
393             velec            = _mm256_and_pd(velec,cutoff_mask);
394             velecsum         = _mm256_add_pd(velecsum,velec);
395
396             fscal            = felec;
397
398             fscal            = _mm256_and_pd(fscal,cutoff_mask);
399
400             /* Calculate temporary vectorial force */
401             tx               = _mm256_mul_pd(fscal,dx01);
402             ty               = _mm256_mul_pd(fscal,dy01);
403             tz               = _mm256_mul_pd(fscal,dz01);
404
405             /* Update vectorial force */
406             fix0             = _mm256_add_pd(fix0,tx);
407             fiy0             = _mm256_add_pd(fiy0,ty);
408             fiz0             = _mm256_add_pd(fiz0,tz);
409
410             fjx1             = _mm256_add_pd(fjx1,tx);
411             fjy1             = _mm256_add_pd(fjy1,ty);
412             fjz1             = _mm256_add_pd(fjz1,tz);
413
414             }
415
416             /**************************
417              * CALCULATE INTERACTIONS *
418              **************************/
419
420             if (gmx_mm256_any_lt(rsq02,rcutoff2))
421             {
422
423             r02              = _mm256_mul_pd(rsq02,rinv02);
424
425             /* EWALD ELECTROSTATICS */
426
427             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
428             ewrt             = _mm256_mul_pd(r02,ewtabscale);
429             ewitab           = _mm256_cvttpd_epi32(ewrt);
430             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
431             ewitab           = _mm_slli_epi32(ewitab,2);
432             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
433             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
434             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
435             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
436             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
437             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
438             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
439             velec            = _mm256_mul_pd(qq02,_mm256_sub_pd(_mm256_sub_pd(rinv02,sh_ewald),velec));
440             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
441
442             cutoff_mask      = _mm256_cmp_pd(rsq02,rcutoff2,_CMP_LT_OQ);
443
444             /* Update potential sum for this i atom from the interaction with this j atom. */
445             velec            = _mm256_and_pd(velec,cutoff_mask);
446             velecsum         = _mm256_add_pd(velecsum,velec);
447
448             fscal            = felec;
449
450             fscal            = _mm256_and_pd(fscal,cutoff_mask);
451
452             /* Calculate temporary vectorial force */
453             tx               = _mm256_mul_pd(fscal,dx02);
454             ty               = _mm256_mul_pd(fscal,dy02);
455             tz               = _mm256_mul_pd(fscal,dz02);
456
457             /* Update vectorial force */
458             fix0             = _mm256_add_pd(fix0,tx);
459             fiy0             = _mm256_add_pd(fiy0,ty);
460             fiz0             = _mm256_add_pd(fiz0,tz);
461
462             fjx2             = _mm256_add_pd(fjx2,tx);
463             fjy2             = _mm256_add_pd(fjy2,ty);
464             fjz2             = _mm256_add_pd(fjz2,tz);
465
466             }
467
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             if (gmx_mm256_any_lt(rsq10,rcutoff2))
473             {
474
475             r10              = _mm256_mul_pd(rsq10,rinv10);
476
477             /* EWALD ELECTROSTATICS */
478
479             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
480             ewrt             = _mm256_mul_pd(r10,ewtabscale);
481             ewitab           = _mm256_cvttpd_epi32(ewrt);
482             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
483             ewitab           = _mm_slli_epi32(ewitab,2);
484             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
485             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
486             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
487             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
488             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
489             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
490             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
491             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
492             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
493
494             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
495
496             /* Update potential sum for this i atom from the interaction with this j atom. */
497             velec            = _mm256_and_pd(velec,cutoff_mask);
498             velecsum         = _mm256_add_pd(velecsum,velec);
499
500             fscal            = felec;
501
502             fscal            = _mm256_and_pd(fscal,cutoff_mask);
503
504             /* Calculate temporary vectorial force */
505             tx               = _mm256_mul_pd(fscal,dx10);
506             ty               = _mm256_mul_pd(fscal,dy10);
507             tz               = _mm256_mul_pd(fscal,dz10);
508
509             /* Update vectorial force */
510             fix1             = _mm256_add_pd(fix1,tx);
511             fiy1             = _mm256_add_pd(fiy1,ty);
512             fiz1             = _mm256_add_pd(fiz1,tz);
513
514             fjx0             = _mm256_add_pd(fjx0,tx);
515             fjy0             = _mm256_add_pd(fjy0,ty);
516             fjz0             = _mm256_add_pd(fjz0,tz);
517
518             }
519
520             /**************************
521              * CALCULATE INTERACTIONS *
522              **************************/
523
524             if (gmx_mm256_any_lt(rsq11,rcutoff2))
525             {
526
527             r11              = _mm256_mul_pd(rsq11,rinv11);
528
529             /* EWALD ELECTROSTATICS */
530
531             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
532             ewrt             = _mm256_mul_pd(r11,ewtabscale);
533             ewitab           = _mm256_cvttpd_epi32(ewrt);
534             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
535             ewitab           = _mm_slli_epi32(ewitab,2);
536             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
537             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
538             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
539             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
540             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
541             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
542             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
543             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(_mm256_sub_pd(rinv11,sh_ewald),velec));
544             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
545
546             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _mm256_and_pd(velec,cutoff_mask);
550             velecsum         = _mm256_add_pd(velecsum,velec);
551
552             fscal            = felec;
553
554             fscal            = _mm256_and_pd(fscal,cutoff_mask);
555
556             /* Calculate temporary vectorial force */
557             tx               = _mm256_mul_pd(fscal,dx11);
558             ty               = _mm256_mul_pd(fscal,dy11);
559             tz               = _mm256_mul_pd(fscal,dz11);
560
561             /* Update vectorial force */
562             fix1             = _mm256_add_pd(fix1,tx);
563             fiy1             = _mm256_add_pd(fiy1,ty);
564             fiz1             = _mm256_add_pd(fiz1,tz);
565
566             fjx1             = _mm256_add_pd(fjx1,tx);
567             fjy1             = _mm256_add_pd(fjy1,ty);
568             fjz1             = _mm256_add_pd(fjz1,tz);
569
570             }
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             if (gmx_mm256_any_lt(rsq12,rcutoff2))
577             {
578
579             r12              = _mm256_mul_pd(rsq12,rinv12);
580
581             /* EWALD ELECTROSTATICS */
582
583             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
584             ewrt             = _mm256_mul_pd(r12,ewtabscale);
585             ewitab           = _mm256_cvttpd_epi32(ewrt);
586             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
587             ewitab           = _mm_slli_epi32(ewitab,2);
588             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
589             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
590             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
591             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
592             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
593             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
594             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
595             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(_mm256_sub_pd(rinv12,sh_ewald),velec));
596             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
597
598             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm256_and_pd(velec,cutoff_mask);
602             velecsum         = _mm256_add_pd(velecsum,velec);
603
604             fscal            = felec;
605
606             fscal            = _mm256_and_pd(fscal,cutoff_mask);
607
608             /* Calculate temporary vectorial force */
609             tx               = _mm256_mul_pd(fscal,dx12);
610             ty               = _mm256_mul_pd(fscal,dy12);
611             tz               = _mm256_mul_pd(fscal,dz12);
612
613             /* Update vectorial force */
614             fix1             = _mm256_add_pd(fix1,tx);
615             fiy1             = _mm256_add_pd(fiy1,ty);
616             fiz1             = _mm256_add_pd(fiz1,tz);
617
618             fjx2             = _mm256_add_pd(fjx2,tx);
619             fjy2             = _mm256_add_pd(fjy2,ty);
620             fjz2             = _mm256_add_pd(fjz2,tz);
621
622             }
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             if (gmx_mm256_any_lt(rsq20,rcutoff2))
629             {
630
631             r20              = _mm256_mul_pd(rsq20,rinv20);
632
633             /* EWALD ELECTROSTATICS */
634
635             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
636             ewrt             = _mm256_mul_pd(r20,ewtabscale);
637             ewitab           = _mm256_cvttpd_epi32(ewrt);
638             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
639             ewitab           = _mm_slli_epi32(ewitab,2);
640             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
641             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
642             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
643             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
644             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
645             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
646             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
647             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
648             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
649
650             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
651
652             /* Update potential sum for this i atom from the interaction with this j atom. */
653             velec            = _mm256_and_pd(velec,cutoff_mask);
654             velecsum         = _mm256_add_pd(velecsum,velec);
655
656             fscal            = felec;
657
658             fscal            = _mm256_and_pd(fscal,cutoff_mask);
659
660             /* Calculate temporary vectorial force */
661             tx               = _mm256_mul_pd(fscal,dx20);
662             ty               = _mm256_mul_pd(fscal,dy20);
663             tz               = _mm256_mul_pd(fscal,dz20);
664
665             /* Update vectorial force */
666             fix2             = _mm256_add_pd(fix2,tx);
667             fiy2             = _mm256_add_pd(fiy2,ty);
668             fiz2             = _mm256_add_pd(fiz2,tz);
669
670             fjx0             = _mm256_add_pd(fjx0,tx);
671             fjy0             = _mm256_add_pd(fjy0,ty);
672             fjz0             = _mm256_add_pd(fjz0,tz);
673
674             }
675
676             /**************************
677              * CALCULATE INTERACTIONS *
678              **************************/
679
680             if (gmx_mm256_any_lt(rsq21,rcutoff2))
681             {
682
683             r21              = _mm256_mul_pd(rsq21,rinv21);
684
685             /* EWALD ELECTROSTATICS */
686
687             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
688             ewrt             = _mm256_mul_pd(r21,ewtabscale);
689             ewitab           = _mm256_cvttpd_epi32(ewrt);
690             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
691             ewitab           = _mm_slli_epi32(ewitab,2);
692             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
693             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
694             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
695             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
696             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
697             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
698             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
699             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(_mm256_sub_pd(rinv21,sh_ewald),velec));
700             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
701
702             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
703
704             /* Update potential sum for this i atom from the interaction with this j atom. */
705             velec            = _mm256_and_pd(velec,cutoff_mask);
706             velecsum         = _mm256_add_pd(velecsum,velec);
707
708             fscal            = felec;
709
710             fscal            = _mm256_and_pd(fscal,cutoff_mask);
711
712             /* Calculate temporary vectorial force */
713             tx               = _mm256_mul_pd(fscal,dx21);
714             ty               = _mm256_mul_pd(fscal,dy21);
715             tz               = _mm256_mul_pd(fscal,dz21);
716
717             /* Update vectorial force */
718             fix2             = _mm256_add_pd(fix2,tx);
719             fiy2             = _mm256_add_pd(fiy2,ty);
720             fiz2             = _mm256_add_pd(fiz2,tz);
721
722             fjx1             = _mm256_add_pd(fjx1,tx);
723             fjy1             = _mm256_add_pd(fjy1,ty);
724             fjz1             = _mm256_add_pd(fjz1,tz);
725
726             }
727
728             /**************************
729              * CALCULATE INTERACTIONS *
730              **************************/
731
732             if (gmx_mm256_any_lt(rsq22,rcutoff2))
733             {
734
735             r22              = _mm256_mul_pd(rsq22,rinv22);
736
737             /* EWALD ELECTROSTATICS */
738
739             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
740             ewrt             = _mm256_mul_pd(r22,ewtabscale);
741             ewitab           = _mm256_cvttpd_epi32(ewrt);
742             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
743             ewitab           = _mm_slli_epi32(ewitab,2);
744             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
745             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
746             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
747             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
748             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
749             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
750             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
751             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(_mm256_sub_pd(rinv22,sh_ewald),velec));
752             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
753
754             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
755
756             /* Update potential sum for this i atom from the interaction with this j atom. */
757             velec            = _mm256_and_pd(velec,cutoff_mask);
758             velecsum         = _mm256_add_pd(velecsum,velec);
759
760             fscal            = felec;
761
762             fscal            = _mm256_and_pd(fscal,cutoff_mask);
763
764             /* Calculate temporary vectorial force */
765             tx               = _mm256_mul_pd(fscal,dx22);
766             ty               = _mm256_mul_pd(fscal,dy22);
767             tz               = _mm256_mul_pd(fscal,dz22);
768
769             /* Update vectorial force */
770             fix2             = _mm256_add_pd(fix2,tx);
771             fiy2             = _mm256_add_pd(fiy2,ty);
772             fiz2             = _mm256_add_pd(fiz2,tz);
773
774             fjx2             = _mm256_add_pd(fjx2,tx);
775             fjy2             = _mm256_add_pd(fjy2,ty);
776             fjz2             = _mm256_add_pd(fjz2,tz);
777
778             }
779
780             fjptrA             = f+j_coord_offsetA;
781             fjptrB             = f+j_coord_offsetB;
782             fjptrC             = f+j_coord_offsetC;
783             fjptrD             = f+j_coord_offsetD;
784
785             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
786                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
787
788             /* Inner loop uses 432 flops */
789         }
790
791         if(jidx<j_index_end)
792         {
793
794             /* Get j neighbor index, and coordinate index */
795             jnrlistA         = jjnr[jidx];
796             jnrlistB         = jjnr[jidx+1];
797             jnrlistC         = jjnr[jidx+2];
798             jnrlistD         = jjnr[jidx+3];
799             /* Sign of each element will be negative for non-real atoms.
800              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
801              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
802              */
803             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
804
805             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
806             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
807             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
808
809             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
810             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
811             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
812             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
813             j_coord_offsetA  = DIM*jnrA;
814             j_coord_offsetB  = DIM*jnrB;
815             j_coord_offsetC  = DIM*jnrC;
816             j_coord_offsetD  = DIM*jnrD;
817
818             /* load j atom coordinates */
819             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
820                                                  x+j_coord_offsetC,x+j_coord_offsetD,
821                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
822
823             /* Calculate displacement vector */
824             dx00             = _mm256_sub_pd(ix0,jx0);
825             dy00             = _mm256_sub_pd(iy0,jy0);
826             dz00             = _mm256_sub_pd(iz0,jz0);
827             dx01             = _mm256_sub_pd(ix0,jx1);
828             dy01             = _mm256_sub_pd(iy0,jy1);
829             dz01             = _mm256_sub_pd(iz0,jz1);
830             dx02             = _mm256_sub_pd(ix0,jx2);
831             dy02             = _mm256_sub_pd(iy0,jy2);
832             dz02             = _mm256_sub_pd(iz0,jz2);
833             dx10             = _mm256_sub_pd(ix1,jx0);
834             dy10             = _mm256_sub_pd(iy1,jy0);
835             dz10             = _mm256_sub_pd(iz1,jz0);
836             dx11             = _mm256_sub_pd(ix1,jx1);
837             dy11             = _mm256_sub_pd(iy1,jy1);
838             dz11             = _mm256_sub_pd(iz1,jz1);
839             dx12             = _mm256_sub_pd(ix1,jx2);
840             dy12             = _mm256_sub_pd(iy1,jy2);
841             dz12             = _mm256_sub_pd(iz1,jz2);
842             dx20             = _mm256_sub_pd(ix2,jx0);
843             dy20             = _mm256_sub_pd(iy2,jy0);
844             dz20             = _mm256_sub_pd(iz2,jz0);
845             dx21             = _mm256_sub_pd(ix2,jx1);
846             dy21             = _mm256_sub_pd(iy2,jy1);
847             dz21             = _mm256_sub_pd(iz2,jz1);
848             dx22             = _mm256_sub_pd(ix2,jx2);
849             dy22             = _mm256_sub_pd(iy2,jy2);
850             dz22             = _mm256_sub_pd(iz2,jz2);
851
852             /* Calculate squared distance and things based on it */
853             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
854             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
855             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
856             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
857             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
858             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
859             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
860             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
861             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
862
863             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
864             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
865             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
866             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
867             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
868             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
869             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
870             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
871             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
872
873             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
874             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
875             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
876             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
877             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
878             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
879             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
880             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
881             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
882
883             fjx0             = _mm256_setzero_pd();
884             fjy0             = _mm256_setzero_pd();
885             fjz0             = _mm256_setzero_pd();
886             fjx1             = _mm256_setzero_pd();
887             fjy1             = _mm256_setzero_pd();
888             fjz1             = _mm256_setzero_pd();
889             fjx2             = _mm256_setzero_pd();
890             fjy2             = _mm256_setzero_pd();
891             fjz2             = _mm256_setzero_pd();
892
893             /**************************
894              * CALCULATE INTERACTIONS *
895              **************************/
896
897             if (gmx_mm256_any_lt(rsq00,rcutoff2))
898             {
899
900             r00              = _mm256_mul_pd(rsq00,rinv00);
901             r00              = _mm256_andnot_pd(dummy_mask,r00);
902
903             /* EWALD ELECTROSTATICS */
904
905             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
906             ewrt             = _mm256_mul_pd(r00,ewtabscale);
907             ewitab           = _mm256_cvttpd_epi32(ewrt);
908             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
909             ewitab           = _mm_slli_epi32(ewitab,2);
910             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
911             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
912             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
913             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
914             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
915             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
916             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
917             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
918             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
919
920             /* LENNARD-JONES DISPERSION/REPULSION */
921
922             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
923             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
924             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
925             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
926                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
927             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
928
929             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
930
931             /* Update potential sum for this i atom from the interaction with this j atom. */
932             velec            = _mm256_and_pd(velec,cutoff_mask);
933             velec            = _mm256_andnot_pd(dummy_mask,velec);
934             velecsum         = _mm256_add_pd(velecsum,velec);
935             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
936             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
937             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
938
939             fscal            = _mm256_add_pd(felec,fvdw);
940
941             fscal            = _mm256_and_pd(fscal,cutoff_mask);
942
943             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
944
945             /* Calculate temporary vectorial force */
946             tx               = _mm256_mul_pd(fscal,dx00);
947             ty               = _mm256_mul_pd(fscal,dy00);
948             tz               = _mm256_mul_pd(fscal,dz00);
949
950             /* Update vectorial force */
951             fix0             = _mm256_add_pd(fix0,tx);
952             fiy0             = _mm256_add_pd(fiy0,ty);
953             fiz0             = _mm256_add_pd(fiz0,tz);
954
955             fjx0             = _mm256_add_pd(fjx0,tx);
956             fjy0             = _mm256_add_pd(fjy0,ty);
957             fjz0             = _mm256_add_pd(fjz0,tz);
958
959             }
960
961             /**************************
962              * CALCULATE INTERACTIONS *
963              **************************/
964
965             if (gmx_mm256_any_lt(rsq01,rcutoff2))
966             {
967
968             r01              = _mm256_mul_pd(rsq01,rinv01);
969             r01              = _mm256_andnot_pd(dummy_mask,r01);
970
971             /* EWALD ELECTROSTATICS */
972
973             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
974             ewrt             = _mm256_mul_pd(r01,ewtabscale);
975             ewitab           = _mm256_cvttpd_epi32(ewrt);
976             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
977             ewitab           = _mm_slli_epi32(ewitab,2);
978             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
979             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
980             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
981             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
982             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
983             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
984             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
985             velec            = _mm256_mul_pd(qq01,_mm256_sub_pd(_mm256_sub_pd(rinv01,sh_ewald),velec));
986             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
987
988             cutoff_mask      = _mm256_cmp_pd(rsq01,rcutoff2,_CMP_LT_OQ);
989
990             /* Update potential sum for this i atom from the interaction with this j atom. */
991             velec            = _mm256_and_pd(velec,cutoff_mask);
992             velec            = _mm256_andnot_pd(dummy_mask,velec);
993             velecsum         = _mm256_add_pd(velecsum,velec);
994
995             fscal            = felec;
996
997             fscal            = _mm256_and_pd(fscal,cutoff_mask);
998
999             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1000
1001             /* Calculate temporary vectorial force */
1002             tx               = _mm256_mul_pd(fscal,dx01);
1003             ty               = _mm256_mul_pd(fscal,dy01);
1004             tz               = _mm256_mul_pd(fscal,dz01);
1005
1006             /* Update vectorial force */
1007             fix0             = _mm256_add_pd(fix0,tx);
1008             fiy0             = _mm256_add_pd(fiy0,ty);
1009             fiz0             = _mm256_add_pd(fiz0,tz);
1010
1011             fjx1             = _mm256_add_pd(fjx1,tx);
1012             fjy1             = _mm256_add_pd(fjy1,ty);
1013             fjz1             = _mm256_add_pd(fjz1,tz);
1014
1015             }
1016
1017             /**************************
1018              * CALCULATE INTERACTIONS *
1019              **************************/
1020
1021             if (gmx_mm256_any_lt(rsq02,rcutoff2))
1022             {
1023
1024             r02              = _mm256_mul_pd(rsq02,rinv02);
1025             r02              = _mm256_andnot_pd(dummy_mask,r02);
1026
1027             /* EWALD ELECTROSTATICS */
1028
1029             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1030             ewrt             = _mm256_mul_pd(r02,ewtabscale);
1031             ewitab           = _mm256_cvttpd_epi32(ewrt);
1032             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1033             ewitab           = _mm_slli_epi32(ewitab,2);
1034             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1035             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1036             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1037             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1038             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1039             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1040             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1041             velec            = _mm256_mul_pd(qq02,_mm256_sub_pd(_mm256_sub_pd(rinv02,sh_ewald),velec));
1042             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
1043
1044             cutoff_mask      = _mm256_cmp_pd(rsq02,rcutoff2,_CMP_LT_OQ);
1045
1046             /* Update potential sum for this i atom from the interaction with this j atom. */
1047             velec            = _mm256_and_pd(velec,cutoff_mask);
1048             velec            = _mm256_andnot_pd(dummy_mask,velec);
1049             velecsum         = _mm256_add_pd(velecsum,velec);
1050
1051             fscal            = felec;
1052
1053             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1054
1055             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1056
1057             /* Calculate temporary vectorial force */
1058             tx               = _mm256_mul_pd(fscal,dx02);
1059             ty               = _mm256_mul_pd(fscal,dy02);
1060             tz               = _mm256_mul_pd(fscal,dz02);
1061
1062             /* Update vectorial force */
1063             fix0             = _mm256_add_pd(fix0,tx);
1064             fiy0             = _mm256_add_pd(fiy0,ty);
1065             fiz0             = _mm256_add_pd(fiz0,tz);
1066
1067             fjx2             = _mm256_add_pd(fjx2,tx);
1068             fjy2             = _mm256_add_pd(fjy2,ty);
1069             fjz2             = _mm256_add_pd(fjz2,tz);
1070
1071             }
1072
1073             /**************************
1074              * CALCULATE INTERACTIONS *
1075              **************************/
1076
1077             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1078             {
1079
1080             r10              = _mm256_mul_pd(rsq10,rinv10);
1081             r10              = _mm256_andnot_pd(dummy_mask,r10);
1082
1083             /* EWALD ELECTROSTATICS */
1084
1085             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1086             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1087             ewitab           = _mm256_cvttpd_epi32(ewrt);
1088             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1089             ewitab           = _mm_slli_epi32(ewitab,2);
1090             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1091             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1092             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1093             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1094             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1095             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1096             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1097             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
1098             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1099
1100             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1101
1102             /* Update potential sum for this i atom from the interaction with this j atom. */
1103             velec            = _mm256_and_pd(velec,cutoff_mask);
1104             velec            = _mm256_andnot_pd(dummy_mask,velec);
1105             velecsum         = _mm256_add_pd(velecsum,velec);
1106
1107             fscal            = felec;
1108
1109             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1110
1111             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = _mm256_mul_pd(fscal,dx10);
1115             ty               = _mm256_mul_pd(fscal,dy10);
1116             tz               = _mm256_mul_pd(fscal,dz10);
1117
1118             /* Update vectorial force */
1119             fix1             = _mm256_add_pd(fix1,tx);
1120             fiy1             = _mm256_add_pd(fiy1,ty);
1121             fiz1             = _mm256_add_pd(fiz1,tz);
1122
1123             fjx0             = _mm256_add_pd(fjx0,tx);
1124             fjy0             = _mm256_add_pd(fjy0,ty);
1125             fjz0             = _mm256_add_pd(fjz0,tz);
1126
1127             }
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             if (gmx_mm256_any_lt(rsq11,rcutoff2))
1134             {
1135
1136             r11              = _mm256_mul_pd(rsq11,rinv11);
1137             r11              = _mm256_andnot_pd(dummy_mask,r11);
1138
1139             /* EWALD ELECTROSTATICS */
1140
1141             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1142             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1143             ewitab           = _mm256_cvttpd_epi32(ewrt);
1144             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1145             ewitab           = _mm_slli_epi32(ewitab,2);
1146             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1147             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1148             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1149             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1150             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1151             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1152             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1153             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(_mm256_sub_pd(rinv11,sh_ewald),velec));
1154             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1155
1156             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
1157
1158             /* Update potential sum for this i atom from the interaction with this j atom. */
1159             velec            = _mm256_and_pd(velec,cutoff_mask);
1160             velec            = _mm256_andnot_pd(dummy_mask,velec);
1161             velecsum         = _mm256_add_pd(velecsum,velec);
1162
1163             fscal            = felec;
1164
1165             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1166
1167             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1168
1169             /* Calculate temporary vectorial force */
1170             tx               = _mm256_mul_pd(fscal,dx11);
1171             ty               = _mm256_mul_pd(fscal,dy11);
1172             tz               = _mm256_mul_pd(fscal,dz11);
1173
1174             /* Update vectorial force */
1175             fix1             = _mm256_add_pd(fix1,tx);
1176             fiy1             = _mm256_add_pd(fiy1,ty);
1177             fiz1             = _mm256_add_pd(fiz1,tz);
1178
1179             fjx1             = _mm256_add_pd(fjx1,tx);
1180             fjy1             = _mm256_add_pd(fjy1,ty);
1181             fjz1             = _mm256_add_pd(fjz1,tz);
1182
1183             }
1184
1185             /**************************
1186              * CALCULATE INTERACTIONS *
1187              **************************/
1188
1189             if (gmx_mm256_any_lt(rsq12,rcutoff2))
1190             {
1191
1192             r12              = _mm256_mul_pd(rsq12,rinv12);
1193             r12              = _mm256_andnot_pd(dummy_mask,r12);
1194
1195             /* EWALD ELECTROSTATICS */
1196
1197             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1198             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1199             ewitab           = _mm256_cvttpd_epi32(ewrt);
1200             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1201             ewitab           = _mm_slli_epi32(ewitab,2);
1202             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1203             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1204             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1205             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1206             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1207             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1208             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1209             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(_mm256_sub_pd(rinv12,sh_ewald),velec));
1210             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1211
1212             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
1213
1214             /* Update potential sum for this i atom from the interaction with this j atom. */
1215             velec            = _mm256_and_pd(velec,cutoff_mask);
1216             velec            = _mm256_andnot_pd(dummy_mask,velec);
1217             velecsum         = _mm256_add_pd(velecsum,velec);
1218
1219             fscal            = felec;
1220
1221             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1222
1223             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1224
1225             /* Calculate temporary vectorial force */
1226             tx               = _mm256_mul_pd(fscal,dx12);
1227             ty               = _mm256_mul_pd(fscal,dy12);
1228             tz               = _mm256_mul_pd(fscal,dz12);
1229
1230             /* Update vectorial force */
1231             fix1             = _mm256_add_pd(fix1,tx);
1232             fiy1             = _mm256_add_pd(fiy1,ty);
1233             fiz1             = _mm256_add_pd(fiz1,tz);
1234
1235             fjx2             = _mm256_add_pd(fjx2,tx);
1236             fjy2             = _mm256_add_pd(fjy2,ty);
1237             fjz2             = _mm256_add_pd(fjz2,tz);
1238
1239             }
1240
1241             /**************************
1242              * CALCULATE INTERACTIONS *
1243              **************************/
1244
1245             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1246             {
1247
1248             r20              = _mm256_mul_pd(rsq20,rinv20);
1249             r20              = _mm256_andnot_pd(dummy_mask,r20);
1250
1251             /* EWALD ELECTROSTATICS */
1252
1253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1254             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1255             ewitab           = _mm256_cvttpd_epi32(ewrt);
1256             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1257             ewitab           = _mm_slli_epi32(ewitab,2);
1258             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1259             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1260             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1261             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1262             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1263             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1264             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1265             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
1266             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1267
1268             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1269
1270             /* Update potential sum for this i atom from the interaction with this j atom. */
1271             velec            = _mm256_and_pd(velec,cutoff_mask);
1272             velec            = _mm256_andnot_pd(dummy_mask,velec);
1273             velecsum         = _mm256_add_pd(velecsum,velec);
1274
1275             fscal            = felec;
1276
1277             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1278
1279             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1280
1281             /* Calculate temporary vectorial force */
1282             tx               = _mm256_mul_pd(fscal,dx20);
1283             ty               = _mm256_mul_pd(fscal,dy20);
1284             tz               = _mm256_mul_pd(fscal,dz20);
1285
1286             /* Update vectorial force */
1287             fix2             = _mm256_add_pd(fix2,tx);
1288             fiy2             = _mm256_add_pd(fiy2,ty);
1289             fiz2             = _mm256_add_pd(fiz2,tz);
1290
1291             fjx0             = _mm256_add_pd(fjx0,tx);
1292             fjy0             = _mm256_add_pd(fjy0,ty);
1293             fjz0             = _mm256_add_pd(fjz0,tz);
1294
1295             }
1296
1297             /**************************
1298              * CALCULATE INTERACTIONS *
1299              **************************/
1300
1301             if (gmx_mm256_any_lt(rsq21,rcutoff2))
1302             {
1303
1304             r21              = _mm256_mul_pd(rsq21,rinv21);
1305             r21              = _mm256_andnot_pd(dummy_mask,r21);
1306
1307             /* EWALD ELECTROSTATICS */
1308
1309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1310             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1311             ewitab           = _mm256_cvttpd_epi32(ewrt);
1312             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1313             ewitab           = _mm_slli_epi32(ewitab,2);
1314             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1315             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1316             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1317             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1318             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1319             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1320             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1321             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(_mm256_sub_pd(rinv21,sh_ewald),velec));
1322             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1323
1324             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
1325
1326             /* Update potential sum for this i atom from the interaction with this j atom. */
1327             velec            = _mm256_and_pd(velec,cutoff_mask);
1328             velec            = _mm256_andnot_pd(dummy_mask,velec);
1329             velecsum         = _mm256_add_pd(velecsum,velec);
1330
1331             fscal            = felec;
1332
1333             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1334
1335             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1336
1337             /* Calculate temporary vectorial force */
1338             tx               = _mm256_mul_pd(fscal,dx21);
1339             ty               = _mm256_mul_pd(fscal,dy21);
1340             tz               = _mm256_mul_pd(fscal,dz21);
1341
1342             /* Update vectorial force */
1343             fix2             = _mm256_add_pd(fix2,tx);
1344             fiy2             = _mm256_add_pd(fiy2,ty);
1345             fiz2             = _mm256_add_pd(fiz2,tz);
1346
1347             fjx1             = _mm256_add_pd(fjx1,tx);
1348             fjy1             = _mm256_add_pd(fjy1,ty);
1349             fjz1             = _mm256_add_pd(fjz1,tz);
1350
1351             }
1352
1353             /**************************
1354              * CALCULATE INTERACTIONS *
1355              **************************/
1356
1357             if (gmx_mm256_any_lt(rsq22,rcutoff2))
1358             {
1359
1360             r22              = _mm256_mul_pd(rsq22,rinv22);
1361             r22              = _mm256_andnot_pd(dummy_mask,r22);
1362
1363             /* EWALD ELECTROSTATICS */
1364
1365             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1366             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1367             ewitab           = _mm256_cvttpd_epi32(ewrt);
1368             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1369             ewitab           = _mm_slli_epi32(ewitab,2);
1370             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1371             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1372             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1373             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1374             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1375             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1376             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1377             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(_mm256_sub_pd(rinv22,sh_ewald),velec));
1378             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1379
1380             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
1381
1382             /* Update potential sum for this i atom from the interaction with this j atom. */
1383             velec            = _mm256_and_pd(velec,cutoff_mask);
1384             velec            = _mm256_andnot_pd(dummy_mask,velec);
1385             velecsum         = _mm256_add_pd(velecsum,velec);
1386
1387             fscal            = felec;
1388
1389             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1390
1391             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1392
1393             /* Calculate temporary vectorial force */
1394             tx               = _mm256_mul_pd(fscal,dx22);
1395             ty               = _mm256_mul_pd(fscal,dy22);
1396             tz               = _mm256_mul_pd(fscal,dz22);
1397
1398             /* Update vectorial force */
1399             fix2             = _mm256_add_pd(fix2,tx);
1400             fiy2             = _mm256_add_pd(fiy2,ty);
1401             fiz2             = _mm256_add_pd(fiz2,tz);
1402
1403             fjx2             = _mm256_add_pd(fjx2,tx);
1404             fjy2             = _mm256_add_pd(fjy2,ty);
1405             fjz2             = _mm256_add_pd(fjz2,tz);
1406
1407             }
1408
1409             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1410             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1411             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1412             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1413
1414             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
1415                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1416
1417             /* Inner loop uses 441 flops */
1418         }
1419
1420         /* End of innermost loop */
1421
1422         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1423                                                  f+i_coord_offset,fshift+i_shift_offset);
1424
1425         ggid                        = gid[iidx];
1426         /* Update potential energies */
1427         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1428         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1429
1430         /* Increment number of inner iterations */
1431         inneriter                  += j_index_end - j_index_start;
1432
1433         /* Outer loop uses 20 flops */
1434     }
1435
1436     /* Increment number of outer iterations */
1437     outeriter        += nri;
1438
1439     /* Update outer/inner flops */
1440
1441     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*441);
1442 }
1443 /*
1444  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_F_avx_256_double
1445  * Electrostatics interaction: Ewald
1446  * VdW interaction:            LennardJones
1447  * Geometry:                   Water3-Water3
1448  * Calculate force/pot:        Force
1449  */
1450 void
1451 nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_F_avx_256_double
1452                     (t_nblist * gmx_restrict                nlist,
1453                      rvec * gmx_restrict                    xx,
1454                      rvec * gmx_restrict                    ff,
1455                      t_forcerec * gmx_restrict              fr,
1456                      t_mdatoms * gmx_restrict               mdatoms,
1457                      nb_kernel_data_t * gmx_restrict        kernel_data,
1458                      t_nrnb * gmx_restrict                  nrnb)
1459 {
1460     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1461      * just 0 for non-waters.
1462      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
1463      * jnr indices corresponding to data put in the four positions in the SIMD register.
1464      */
1465     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1466     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1467     int              jnrA,jnrB,jnrC,jnrD;
1468     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1469     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
1470     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1471     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1472     real             rcutoff_scalar;
1473     real             *shiftvec,*fshift,*x,*f;
1474     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1475     real             scratch[4*DIM];
1476     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1477     real *           vdwioffsetptr0;
1478     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1479     real *           vdwioffsetptr1;
1480     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1481     real *           vdwioffsetptr2;
1482     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1483     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1484     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1485     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1486     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1487     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1488     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1489     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1490     __m256d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1491     __m256d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1492     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1493     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1494     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1495     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1496     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1497     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1498     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
1499     real             *charge;
1500     int              nvdwtype;
1501     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1502     int              *vdwtype;
1503     real             *vdwparam;
1504     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
1505     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
1506     __m128i          ewitab;
1507     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1508     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
1509     real             *ewtab;
1510     __m256d          dummy_mask,cutoff_mask;
1511     __m128           tmpmask0,tmpmask1;
1512     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
1513     __m256d          one     = _mm256_set1_pd(1.0);
1514     __m256d          two     = _mm256_set1_pd(2.0);
1515     x                = xx[0];
1516     f                = ff[0];
1517
1518     nri              = nlist->nri;
1519     iinr             = nlist->iinr;
1520     jindex           = nlist->jindex;
1521     jjnr             = nlist->jjnr;
1522     shiftidx         = nlist->shift;
1523     gid              = nlist->gid;
1524     shiftvec         = fr->shift_vec[0];
1525     fshift           = fr->fshift[0];
1526     facel            = _mm256_set1_pd(fr->epsfac);
1527     charge           = mdatoms->chargeA;
1528     nvdwtype         = fr->ntype;
1529     vdwparam         = fr->nbfp;
1530     vdwtype          = mdatoms->typeA;
1531
1532     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
1533     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
1534     beta2            = _mm256_mul_pd(beta,beta);
1535     beta3            = _mm256_mul_pd(beta,beta2);
1536
1537     ewtab            = fr->ic->tabq_coul_F;
1538     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
1539     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
1540
1541     /* Setup water-specific parameters */
1542     inr              = nlist->iinr[0];
1543     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
1544     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
1545     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
1546     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
1547
1548     jq0              = _mm256_set1_pd(charge[inr+0]);
1549     jq1              = _mm256_set1_pd(charge[inr+1]);
1550     jq2              = _mm256_set1_pd(charge[inr+2]);
1551     vdwjidx0A        = 2*vdwtype[inr+0];
1552     qq00             = _mm256_mul_pd(iq0,jq0);
1553     c6_00            = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A]);
1554     c12_00           = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A+1]);
1555     qq01             = _mm256_mul_pd(iq0,jq1);
1556     qq02             = _mm256_mul_pd(iq0,jq2);
1557     qq10             = _mm256_mul_pd(iq1,jq0);
1558     qq11             = _mm256_mul_pd(iq1,jq1);
1559     qq12             = _mm256_mul_pd(iq1,jq2);
1560     qq20             = _mm256_mul_pd(iq2,jq0);
1561     qq21             = _mm256_mul_pd(iq2,jq1);
1562     qq22             = _mm256_mul_pd(iq2,jq2);
1563
1564     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1565     rcutoff_scalar   = fr->rcoulomb;
1566     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
1567     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
1568
1569     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
1570     rvdw             = _mm256_set1_pd(fr->rvdw);
1571
1572     /* Avoid stupid compiler warnings */
1573     jnrA = jnrB = jnrC = jnrD = 0;
1574     j_coord_offsetA = 0;
1575     j_coord_offsetB = 0;
1576     j_coord_offsetC = 0;
1577     j_coord_offsetD = 0;
1578
1579     outeriter        = 0;
1580     inneriter        = 0;
1581
1582     for(iidx=0;iidx<4*DIM;iidx++)
1583     {
1584         scratch[iidx] = 0.0;
1585     }
1586
1587     /* Start outer loop over neighborlists */
1588     for(iidx=0; iidx<nri; iidx++)
1589     {
1590         /* Load shift vector for this list */
1591         i_shift_offset   = DIM*shiftidx[iidx];
1592
1593         /* Load limits for loop over neighbors */
1594         j_index_start    = jindex[iidx];
1595         j_index_end      = jindex[iidx+1];
1596
1597         /* Get outer coordinate index */
1598         inr              = iinr[iidx];
1599         i_coord_offset   = DIM*inr;
1600
1601         /* Load i particle coords and add shift vector */
1602         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1603                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1604
1605         fix0             = _mm256_setzero_pd();
1606         fiy0             = _mm256_setzero_pd();
1607         fiz0             = _mm256_setzero_pd();
1608         fix1             = _mm256_setzero_pd();
1609         fiy1             = _mm256_setzero_pd();
1610         fiz1             = _mm256_setzero_pd();
1611         fix2             = _mm256_setzero_pd();
1612         fiy2             = _mm256_setzero_pd();
1613         fiz2             = _mm256_setzero_pd();
1614
1615         /* Start inner kernel loop */
1616         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1617         {
1618
1619             /* Get j neighbor index, and coordinate index */
1620             jnrA             = jjnr[jidx];
1621             jnrB             = jjnr[jidx+1];
1622             jnrC             = jjnr[jidx+2];
1623             jnrD             = jjnr[jidx+3];
1624             j_coord_offsetA  = DIM*jnrA;
1625             j_coord_offsetB  = DIM*jnrB;
1626             j_coord_offsetC  = DIM*jnrC;
1627             j_coord_offsetD  = DIM*jnrD;
1628
1629             /* load j atom coordinates */
1630             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1631                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1632                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1633
1634             /* Calculate displacement vector */
1635             dx00             = _mm256_sub_pd(ix0,jx0);
1636             dy00             = _mm256_sub_pd(iy0,jy0);
1637             dz00             = _mm256_sub_pd(iz0,jz0);
1638             dx01             = _mm256_sub_pd(ix0,jx1);
1639             dy01             = _mm256_sub_pd(iy0,jy1);
1640             dz01             = _mm256_sub_pd(iz0,jz1);
1641             dx02             = _mm256_sub_pd(ix0,jx2);
1642             dy02             = _mm256_sub_pd(iy0,jy2);
1643             dz02             = _mm256_sub_pd(iz0,jz2);
1644             dx10             = _mm256_sub_pd(ix1,jx0);
1645             dy10             = _mm256_sub_pd(iy1,jy0);
1646             dz10             = _mm256_sub_pd(iz1,jz0);
1647             dx11             = _mm256_sub_pd(ix1,jx1);
1648             dy11             = _mm256_sub_pd(iy1,jy1);
1649             dz11             = _mm256_sub_pd(iz1,jz1);
1650             dx12             = _mm256_sub_pd(ix1,jx2);
1651             dy12             = _mm256_sub_pd(iy1,jy2);
1652             dz12             = _mm256_sub_pd(iz1,jz2);
1653             dx20             = _mm256_sub_pd(ix2,jx0);
1654             dy20             = _mm256_sub_pd(iy2,jy0);
1655             dz20             = _mm256_sub_pd(iz2,jz0);
1656             dx21             = _mm256_sub_pd(ix2,jx1);
1657             dy21             = _mm256_sub_pd(iy2,jy1);
1658             dz21             = _mm256_sub_pd(iz2,jz1);
1659             dx22             = _mm256_sub_pd(ix2,jx2);
1660             dy22             = _mm256_sub_pd(iy2,jy2);
1661             dz22             = _mm256_sub_pd(iz2,jz2);
1662
1663             /* Calculate squared distance and things based on it */
1664             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1665             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
1666             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
1667             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1668             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1669             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1670             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1671             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1672             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1673
1674             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1675             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
1676             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
1677             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1678             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1679             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1680             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1681             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1682             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
1683
1684             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1685             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
1686             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
1687             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1688             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1689             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1690             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1691             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1692             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1693
1694             fjx0             = _mm256_setzero_pd();
1695             fjy0             = _mm256_setzero_pd();
1696             fjz0             = _mm256_setzero_pd();
1697             fjx1             = _mm256_setzero_pd();
1698             fjy1             = _mm256_setzero_pd();
1699             fjz1             = _mm256_setzero_pd();
1700             fjx2             = _mm256_setzero_pd();
1701             fjy2             = _mm256_setzero_pd();
1702             fjz2             = _mm256_setzero_pd();
1703
1704             /**************************
1705              * CALCULATE INTERACTIONS *
1706              **************************/
1707
1708             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1709             {
1710
1711             r00              = _mm256_mul_pd(rsq00,rinv00);
1712
1713             /* EWALD ELECTROSTATICS */
1714
1715             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1716             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1717             ewitab           = _mm256_cvttpd_epi32(ewrt);
1718             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1719             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1720                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1721                                             &ewtabF,&ewtabFn);
1722             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1723             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1724
1725             /* LENNARD-JONES DISPERSION/REPULSION */
1726
1727             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1728             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1729
1730             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1731
1732             fscal            = _mm256_add_pd(felec,fvdw);
1733
1734             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1735
1736             /* Calculate temporary vectorial force */
1737             tx               = _mm256_mul_pd(fscal,dx00);
1738             ty               = _mm256_mul_pd(fscal,dy00);
1739             tz               = _mm256_mul_pd(fscal,dz00);
1740
1741             /* Update vectorial force */
1742             fix0             = _mm256_add_pd(fix0,tx);
1743             fiy0             = _mm256_add_pd(fiy0,ty);
1744             fiz0             = _mm256_add_pd(fiz0,tz);
1745
1746             fjx0             = _mm256_add_pd(fjx0,tx);
1747             fjy0             = _mm256_add_pd(fjy0,ty);
1748             fjz0             = _mm256_add_pd(fjz0,tz);
1749
1750             }
1751
1752             /**************************
1753              * CALCULATE INTERACTIONS *
1754              **************************/
1755
1756             if (gmx_mm256_any_lt(rsq01,rcutoff2))
1757             {
1758
1759             r01              = _mm256_mul_pd(rsq01,rinv01);
1760
1761             /* EWALD ELECTROSTATICS */
1762
1763             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1764             ewrt             = _mm256_mul_pd(r01,ewtabscale);
1765             ewitab           = _mm256_cvttpd_epi32(ewrt);
1766             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1767             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1768                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1769                                             &ewtabF,&ewtabFn);
1770             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1771             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
1772
1773             cutoff_mask      = _mm256_cmp_pd(rsq01,rcutoff2,_CMP_LT_OQ);
1774
1775             fscal            = felec;
1776
1777             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1778
1779             /* Calculate temporary vectorial force */
1780             tx               = _mm256_mul_pd(fscal,dx01);
1781             ty               = _mm256_mul_pd(fscal,dy01);
1782             tz               = _mm256_mul_pd(fscal,dz01);
1783
1784             /* Update vectorial force */
1785             fix0             = _mm256_add_pd(fix0,tx);
1786             fiy0             = _mm256_add_pd(fiy0,ty);
1787             fiz0             = _mm256_add_pd(fiz0,tz);
1788
1789             fjx1             = _mm256_add_pd(fjx1,tx);
1790             fjy1             = _mm256_add_pd(fjy1,ty);
1791             fjz1             = _mm256_add_pd(fjz1,tz);
1792
1793             }
1794
1795             /**************************
1796              * CALCULATE INTERACTIONS *
1797              **************************/
1798
1799             if (gmx_mm256_any_lt(rsq02,rcutoff2))
1800             {
1801
1802             r02              = _mm256_mul_pd(rsq02,rinv02);
1803
1804             /* EWALD ELECTROSTATICS */
1805
1806             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1807             ewrt             = _mm256_mul_pd(r02,ewtabscale);
1808             ewitab           = _mm256_cvttpd_epi32(ewrt);
1809             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1810             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1811                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1812                                             &ewtabF,&ewtabFn);
1813             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1814             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
1815
1816             cutoff_mask      = _mm256_cmp_pd(rsq02,rcutoff2,_CMP_LT_OQ);
1817
1818             fscal            = felec;
1819
1820             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1821
1822             /* Calculate temporary vectorial force */
1823             tx               = _mm256_mul_pd(fscal,dx02);
1824             ty               = _mm256_mul_pd(fscal,dy02);
1825             tz               = _mm256_mul_pd(fscal,dz02);
1826
1827             /* Update vectorial force */
1828             fix0             = _mm256_add_pd(fix0,tx);
1829             fiy0             = _mm256_add_pd(fiy0,ty);
1830             fiz0             = _mm256_add_pd(fiz0,tz);
1831
1832             fjx2             = _mm256_add_pd(fjx2,tx);
1833             fjy2             = _mm256_add_pd(fjy2,ty);
1834             fjz2             = _mm256_add_pd(fjz2,tz);
1835
1836             }
1837
1838             /**************************
1839              * CALCULATE INTERACTIONS *
1840              **************************/
1841
1842             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1843             {
1844
1845             r10              = _mm256_mul_pd(rsq10,rinv10);
1846
1847             /* EWALD ELECTROSTATICS */
1848
1849             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1850             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1851             ewitab           = _mm256_cvttpd_epi32(ewrt);
1852             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1853             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1854                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1855                                             &ewtabF,&ewtabFn);
1856             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1857             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1858
1859             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1860
1861             fscal            = felec;
1862
1863             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1864
1865             /* Calculate temporary vectorial force */
1866             tx               = _mm256_mul_pd(fscal,dx10);
1867             ty               = _mm256_mul_pd(fscal,dy10);
1868             tz               = _mm256_mul_pd(fscal,dz10);
1869
1870             /* Update vectorial force */
1871             fix1             = _mm256_add_pd(fix1,tx);
1872             fiy1             = _mm256_add_pd(fiy1,ty);
1873             fiz1             = _mm256_add_pd(fiz1,tz);
1874
1875             fjx0             = _mm256_add_pd(fjx0,tx);
1876             fjy0             = _mm256_add_pd(fjy0,ty);
1877             fjz0             = _mm256_add_pd(fjz0,tz);
1878
1879             }
1880
1881             /**************************
1882              * CALCULATE INTERACTIONS *
1883              **************************/
1884
1885             if (gmx_mm256_any_lt(rsq11,rcutoff2))
1886             {
1887
1888             r11              = _mm256_mul_pd(rsq11,rinv11);
1889
1890             /* EWALD ELECTROSTATICS */
1891
1892             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1893             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1894             ewitab           = _mm256_cvttpd_epi32(ewrt);
1895             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1896             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1897                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1898                                             &ewtabF,&ewtabFn);
1899             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1900             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1901
1902             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
1903
1904             fscal            = felec;
1905
1906             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1907
1908             /* Calculate temporary vectorial force */
1909             tx               = _mm256_mul_pd(fscal,dx11);
1910             ty               = _mm256_mul_pd(fscal,dy11);
1911             tz               = _mm256_mul_pd(fscal,dz11);
1912
1913             /* Update vectorial force */
1914             fix1             = _mm256_add_pd(fix1,tx);
1915             fiy1             = _mm256_add_pd(fiy1,ty);
1916             fiz1             = _mm256_add_pd(fiz1,tz);
1917
1918             fjx1             = _mm256_add_pd(fjx1,tx);
1919             fjy1             = _mm256_add_pd(fjy1,ty);
1920             fjz1             = _mm256_add_pd(fjz1,tz);
1921
1922             }
1923
1924             /**************************
1925              * CALCULATE INTERACTIONS *
1926              **************************/
1927
1928             if (gmx_mm256_any_lt(rsq12,rcutoff2))
1929             {
1930
1931             r12              = _mm256_mul_pd(rsq12,rinv12);
1932
1933             /* EWALD ELECTROSTATICS */
1934
1935             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1936             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1937             ewitab           = _mm256_cvttpd_epi32(ewrt);
1938             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1939             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1940                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1941                                             &ewtabF,&ewtabFn);
1942             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1943             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1944
1945             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
1946
1947             fscal            = felec;
1948
1949             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1950
1951             /* Calculate temporary vectorial force */
1952             tx               = _mm256_mul_pd(fscal,dx12);
1953             ty               = _mm256_mul_pd(fscal,dy12);
1954             tz               = _mm256_mul_pd(fscal,dz12);
1955
1956             /* Update vectorial force */
1957             fix1             = _mm256_add_pd(fix1,tx);
1958             fiy1             = _mm256_add_pd(fiy1,ty);
1959             fiz1             = _mm256_add_pd(fiz1,tz);
1960
1961             fjx2             = _mm256_add_pd(fjx2,tx);
1962             fjy2             = _mm256_add_pd(fjy2,ty);
1963             fjz2             = _mm256_add_pd(fjz2,tz);
1964
1965             }
1966
1967             /**************************
1968              * CALCULATE INTERACTIONS *
1969              **************************/
1970
1971             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1972             {
1973
1974             r20              = _mm256_mul_pd(rsq20,rinv20);
1975
1976             /* EWALD ELECTROSTATICS */
1977
1978             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1979             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1980             ewitab           = _mm256_cvttpd_epi32(ewrt);
1981             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1982             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1983                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1984                                             &ewtabF,&ewtabFn);
1985             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1986             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1987
1988             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1989
1990             fscal            = felec;
1991
1992             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1993
1994             /* Calculate temporary vectorial force */
1995             tx               = _mm256_mul_pd(fscal,dx20);
1996             ty               = _mm256_mul_pd(fscal,dy20);
1997             tz               = _mm256_mul_pd(fscal,dz20);
1998
1999             /* Update vectorial force */
2000             fix2             = _mm256_add_pd(fix2,tx);
2001             fiy2             = _mm256_add_pd(fiy2,ty);
2002             fiz2             = _mm256_add_pd(fiz2,tz);
2003
2004             fjx0             = _mm256_add_pd(fjx0,tx);
2005             fjy0             = _mm256_add_pd(fjy0,ty);
2006             fjz0             = _mm256_add_pd(fjz0,tz);
2007
2008             }
2009
2010             /**************************
2011              * CALCULATE INTERACTIONS *
2012              **************************/
2013
2014             if (gmx_mm256_any_lt(rsq21,rcutoff2))
2015             {
2016
2017             r21              = _mm256_mul_pd(rsq21,rinv21);
2018
2019             /* EWALD ELECTROSTATICS */
2020
2021             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2022             ewrt             = _mm256_mul_pd(r21,ewtabscale);
2023             ewitab           = _mm256_cvttpd_epi32(ewrt);
2024             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2025             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2026                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2027                                             &ewtabF,&ewtabFn);
2028             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2029             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
2030
2031             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
2032
2033             fscal            = felec;
2034
2035             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2036
2037             /* Calculate temporary vectorial force */
2038             tx               = _mm256_mul_pd(fscal,dx21);
2039             ty               = _mm256_mul_pd(fscal,dy21);
2040             tz               = _mm256_mul_pd(fscal,dz21);
2041
2042             /* Update vectorial force */
2043             fix2             = _mm256_add_pd(fix2,tx);
2044             fiy2             = _mm256_add_pd(fiy2,ty);
2045             fiz2             = _mm256_add_pd(fiz2,tz);
2046
2047             fjx1             = _mm256_add_pd(fjx1,tx);
2048             fjy1             = _mm256_add_pd(fjy1,ty);
2049             fjz1             = _mm256_add_pd(fjz1,tz);
2050
2051             }
2052
2053             /**************************
2054              * CALCULATE INTERACTIONS *
2055              **************************/
2056
2057             if (gmx_mm256_any_lt(rsq22,rcutoff2))
2058             {
2059
2060             r22              = _mm256_mul_pd(rsq22,rinv22);
2061
2062             /* EWALD ELECTROSTATICS */
2063
2064             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2065             ewrt             = _mm256_mul_pd(r22,ewtabscale);
2066             ewitab           = _mm256_cvttpd_epi32(ewrt);
2067             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2068             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2069                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2070                                             &ewtabF,&ewtabFn);
2071             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2072             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
2073
2074             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
2075
2076             fscal            = felec;
2077
2078             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2079
2080             /* Calculate temporary vectorial force */
2081             tx               = _mm256_mul_pd(fscal,dx22);
2082             ty               = _mm256_mul_pd(fscal,dy22);
2083             tz               = _mm256_mul_pd(fscal,dz22);
2084
2085             /* Update vectorial force */
2086             fix2             = _mm256_add_pd(fix2,tx);
2087             fiy2             = _mm256_add_pd(fiy2,ty);
2088             fiz2             = _mm256_add_pd(fiz2,tz);
2089
2090             fjx2             = _mm256_add_pd(fjx2,tx);
2091             fjy2             = _mm256_add_pd(fjy2,ty);
2092             fjz2             = _mm256_add_pd(fjz2,tz);
2093
2094             }
2095
2096             fjptrA             = f+j_coord_offsetA;
2097             fjptrB             = f+j_coord_offsetB;
2098             fjptrC             = f+j_coord_offsetC;
2099             fjptrD             = f+j_coord_offsetD;
2100
2101             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
2102                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2103
2104             /* Inner loop uses 358 flops */
2105         }
2106
2107         if(jidx<j_index_end)
2108         {
2109
2110             /* Get j neighbor index, and coordinate index */
2111             jnrlistA         = jjnr[jidx];
2112             jnrlistB         = jjnr[jidx+1];
2113             jnrlistC         = jjnr[jidx+2];
2114             jnrlistD         = jjnr[jidx+3];
2115             /* Sign of each element will be negative for non-real atoms.
2116              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
2117              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
2118              */
2119             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
2120
2121             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
2122             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
2123             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
2124
2125             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
2126             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
2127             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
2128             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
2129             j_coord_offsetA  = DIM*jnrA;
2130             j_coord_offsetB  = DIM*jnrB;
2131             j_coord_offsetC  = DIM*jnrC;
2132             j_coord_offsetD  = DIM*jnrD;
2133
2134             /* load j atom coordinates */
2135             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
2136                                                  x+j_coord_offsetC,x+j_coord_offsetD,
2137                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
2138
2139             /* Calculate displacement vector */
2140             dx00             = _mm256_sub_pd(ix0,jx0);
2141             dy00             = _mm256_sub_pd(iy0,jy0);
2142             dz00             = _mm256_sub_pd(iz0,jz0);
2143             dx01             = _mm256_sub_pd(ix0,jx1);
2144             dy01             = _mm256_sub_pd(iy0,jy1);
2145             dz01             = _mm256_sub_pd(iz0,jz1);
2146             dx02             = _mm256_sub_pd(ix0,jx2);
2147             dy02             = _mm256_sub_pd(iy0,jy2);
2148             dz02             = _mm256_sub_pd(iz0,jz2);
2149             dx10             = _mm256_sub_pd(ix1,jx0);
2150             dy10             = _mm256_sub_pd(iy1,jy0);
2151             dz10             = _mm256_sub_pd(iz1,jz0);
2152             dx11             = _mm256_sub_pd(ix1,jx1);
2153             dy11             = _mm256_sub_pd(iy1,jy1);
2154             dz11             = _mm256_sub_pd(iz1,jz1);
2155             dx12             = _mm256_sub_pd(ix1,jx2);
2156             dy12             = _mm256_sub_pd(iy1,jy2);
2157             dz12             = _mm256_sub_pd(iz1,jz2);
2158             dx20             = _mm256_sub_pd(ix2,jx0);
2159             dy20             = _mm256_sub_pd(iy2,jy0);
2160             dz20             = _mm256_sub_pd(iz2,jz0);
2161             dx21             = _mm256_sub_pd(ix2,jx1);
2162             dy21             = _mm256_sub_pd(iy2,jy1);
2163             dz21             = _mm256_sub_pd(iz2,jz1);
2164             dx22             = _mm256_sub_pd(ix2,jx2);
2165             dy22             = _mm256_sub_pd(iy2,jy2);
2166             dz22             = _mm256_sub_pd(iz2,jz2);
2167
2168             /* Calculate squared distance and things based on it */
2169             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
2170             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
2171             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
2172             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
2173             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
2174             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
2175             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
2176             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
2177             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
2178
2179             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
2180             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
2181             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
2182             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
2183             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
2184             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
2185             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
2186             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
2187             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
2188
2189             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
2190             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
2191             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
2192             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
2193             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
2194             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
2195             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
2196             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
2197             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
2198
2199             fjx0             = _mm256_setzero_pd();
2200             fjy0             = _mm256_setzero_pd();
2201             fjz0             = _mm256_setzero_pd();
2202             fjx1             = _mm256_setzero_pd();
2203             fjy1             = _mm256_setzero_pd();
2204             fjz1             = _mm256_setzero_pd();
2205             fjx2             = _mm256_setzero_pd();
2206             fjy2             = _mm256_setzero_pd();
2207             fjz2             = _mm256_setzero_pd();
2208
2209             /**************************
2210              * CALCULATE INTERACTIONS *
2211              **************************/
2212
2213             if (gmx_mm256_any_lt(rsq00,rcutoff2))
2214             {
2215
2216             r00              = _mm256_mul_pd(rsq00,rinv00);
2217             r00              = _mm256_andnot_pd(dummy_mask,r00);
2218
2219             /* EWALD ELECTROSTATICS */
2220
2221             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2222             ewrt             = _mm256_mul_pd(r00,ewtabscale);
2223             ewitab           = _mm256_cvttpd_epi32(ewrt);
2224             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2225             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2226                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2227                                             &ewtabF,&ewtabFn);
2228             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2229             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
2230
2231             /* LENNARD-JONES DISPERSION/REPULSION */
2232
2233             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2234             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
2235
2236             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
2237
2238             fscal            = _mm256_add_pd(felec,fvdw);
2239
2240             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2241
2242             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2243
2244             /* Calculate temporary vectorial force */
2245             tx               = _mm256_mul_pd(fscal,dx00);
2246             ty               = _mm256_mul_pd(fscal,dy00);
2247             tz               = _mm256_mul_pd(fscal,dz00);
2248
2249             /* Update vectorial force */
2250             fix0             = _mm256_add_pd(fix0,tx);
2251             fiy0             = _mm256_add_pd(fiy0,ty);
2252             fiz0             = _mm256_add_pd(fiz0,tz);
2253
2254             fjx0             = _mm256_add_pd(fjx0,tx);
2255             fjy0             = _mm256_add_pd(fjy0,ty);
2256             fjz0             = _mm256_add_pd(fjz0,tz);
2257
2258             }
2259
2260             /**************************
2261              * CALCULATE INTERACTIONS *
2262              **************************/
2263
2264             if (gmx_mm256_any_lt(rsq01,rcutoff2))
2265             {
2266
2267             r01              = _mm256_mul_pd(rsq01,rinv01);
2268             r01              = _mm256_andnot_pd(dummy_mask,r01);
2269
2270             /* EWALD ELECTROSTATICS */
2271
2272             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2273             ewrt             = _mm256_mul_pd(r01,ewtabscale);
2274             ewitab           = _mm256_cvttpd_epi32(ewrt);
2275             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2276             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2277                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2278                                             &ewtabF,&ewtabFn);
2279             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2280             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
2281
2282             cutoff_mask      = _mm256_cmp_pd(rsq01,rcutoff2,_CMP_LT_OQ);
2283
2284             fscal            = felec;
2285
2286             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2287
2288             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2289
2290             /* Calculate temporary vectorial force */
2291             tx               = _mm256_mul_pd(fscal,dx01);
2292             ty               = _mm256_mul_pd(fscal,dy01);
2293             tz               = _mm256_mul_pd(fscal,dz01);
2294
2295             /* Update vectorial force */
2296             fix0             = _mm256_add_pd(fix0,tx);
2297             fiy0             = _mm256_add_pd(fiy0,ty);
2298             fiz0             = _mm256_add_pd(fiz0,tz);
2299
2300             fjx1             = _mm256_add_pd(fjx1,tx);
2301             fjy1             = _mm256_add_pd(fjy1,ty);
2302             fjz1             = _mm256_add_pd(fjz1,tz);
2303
2304             }
2305
2306             /**************************
2307              * CALCULATE INTERACTIONS *
2308              **************************/
2309
2310             if (gmx_mm256_any_lt(rsq02,rcutoff2))
2311             {
2312
2313             r02              = _mm256_mul_pd(rsq02,rinv02);
2314             r02              = _mm256_andnot_pd(dummy_mask,r02);
2315
2316             /* EWALD ELECTROSTATICS */
2317
2318             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2319             ewrt             = _mm256_mul_pd(r02,ewtabscale);
2320             ewitab           = _mm256_cvttpd_epi32(ewrt);
2321             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2322             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2323                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2324                                             &ewtabF,&ewtabFn);
2325             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2326             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
2327
2328             cutoff_mask      = _mm256_cmp_pd(rsq02,rcutoff2,_CMP_LT_OQ);
2329
2330             fscal            = felec;
2331
2332             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2333
2334             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2335
2336             /* Calculate temporary vectorial force */
2337             tx               = _mm256_mul_pd(fscal,dx02);
2338             ty               = _mm256_mul_pd(fscal,dy02);
2339             tz               = _mm256_mul_pd(fscal,dz02);
2340
2341             /* Update vectorial force */
2342             fix0             = _mm256_add_pd(fix0,tx);
2343             fiy0             = _mm256_add_pd(fiy0,ty);
2344             fiz0             = _mm256_add_pd(fiz0,tz);
2345
2346             fjx2             = _mm256_add_pd(fjx2,tx);
2347             fjy2             = _mm256_add_pd(fjy2,ty);
2348             fjz2             = _mm256_add_pd(fjz2,tz);
2349
2350             }
2351
2352             /**************************
2353              * CALCULATE INTERACTIONS *
2354              **************************/
2355
2356             if (gmx_mm256_any_lt(rsq10,rcutoff2))
2357             {
2358
2359             r10              = _mm256_mul_pd(rsq10,rinv10);
2360             r10              = _mm256_andnot_pd(dummy_mask,r10);
2361
2362             /* EWALD ELECTROSTATICS */
2363
2364             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2365             ewrt             = _mm256_mul_pd(r10,ewtabscale);
2366             ewitab           = _mm256_cvttpd_epi32(ewrt);
2367             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2368             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2369                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2370                                             &ewtabF,&ewtabFn);
2371             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2372             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
2373
2374             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
2375
2376             fscal            = felec;
2377
2378             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2379
2380             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2381
2382             /* Calculate temporary vectorial force */
2383             tx               = _mm256_mul_pd(fscal,dx10);
2384             ty               = _mm256_mul_pd(fscal,dy10);
2385             tz               = _mm256_mul_pd(fscal,dz10);
2386
2387             /* Update vectorial force */
2388             fix1             = _mm256_add_pd(fix1,tx);
2389             fiy1             = _mm256_add_pd(fiy1,ty);
2390             fiz1             = _mm256_add_pd(fiz1,tz);
2391
2392             fjx0             = _mm256_add_pd(fjx0,tx);
2393             fjy0             = _mm256_add_pd(fjy0,ty);
2394             fjz0             = _mm256_add_pd(fjz0,tz);
2395
2396             }
2397
2398             /**************************
2399              * CALCULATE INTERACTIONS *
2400              **************************/
2401
2402             if (gmx_mm256_any_lt(rsq11,rcutoff2))
2403             {
2404
2405             r11              = _mm256_mul_pd(rsq11,rinv11);
2406             r11              = _mm256_andnot_pd(dummy_mask,r11);
2407
2408             /* EWALD ELECTROSTATICS */
2409
2410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2411             ewrt             = _mm256_mul_pd(r11,ewtabscale);
2412             ewitab           = _mm256_cvttpd_epi32(ewrt);
2413             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2414             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2415                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2416                                             &ewtabF,&ewtabFn);
2417             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2418             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
2419
2420             cutoff_mask      = _mm256_cmp_pd(rsq11,rcutoff2,_CMP_LT_OQ);
2421
2422             fscal            = felec;
2423
2424             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2425
2426             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2427
2428             /* Calculate temporary vectorial force */
2429             tx               = _mm256_mul_pd(fscal,dx11);
2430             ty               = _mm256_mul_pd(fscal,dy11);
2431             tz               = _mm256_mul_pd(fscal,dz11);
2432
2433             /* Update vectorial force */
2434             fix1             = _mm256_add_pd(fix1,tx);
2435             fiy1             = _mm256_add_pd(fiy1,ty);
2436             fiz1             = _mm256_add_pd(fiz1,tz);
2437
2438             fjx1             = _mm256_add_pd(fjx1,tx);
2439             fjy1             = _mm256_add_pd(fjy1,ty);
2440             fjz1             = _mm256_add_pd(fjz1,tz);
2441
2442             }
2443
2444             /**************************
2445              * CALCULATE INTERACTIONS *
2446              **************************/
2447
2448             if (gmx_mm256_any_lt(rsq12,rcutoff2))
2449             {
2450
2451             r12              = _mm256_mul_pd(rsq12,rinv12);
2452             r12              = _mm256_andnot_pd(dummy_mask,r12);
2453
2454             /* EWALD ELECTROSTATICS */
2455
2456             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2457             ewrt             = _mm256_mul_pd(r12,ewtabscale);
2458             ewitab           = _mm256_cvttpd_epi32(ewrt);
2459             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2460             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2461                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2462                                             &ewtabF,&ewtabFn);
2463             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2464             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
2465
2466             cutoff_mask      = _mm256_cmp_pd(rsq12,rcutoff2,_CMP_LT_OQ);
2467
2468             fscal            = felec;
2469
2470             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2471
2472             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2473
2474             /* Calculate temporary vectorial force */
2475             tx               = _mm256_mul_pd(fscal,dx12);
2476             ty               = _mm256_mul_pd(fscal,dy12);
2477             tz               = _mm256_mul_pd(fscal,dz12);
2478
2479             /* Update vectorial force */
2480             fix1             = _mm256_add_pd(fix1,tx);
2481             fiy1             = _mm256_add_pd(fiy1,ty);
2482             fiz1             = _mm256_add_pd(fiz1,tz);
2483
2484             fjx2             = _mm256_add_pd(fjx2,tx);
2485             fjy2             = _mm256_add_pd(fjy2,ty);
2486             fjz2             = _mm256_add_pd(fjz2,tz);
2487
2488             }
2489
2490             /**************************
2491              * CALCULATE INTERACTIONS *
2492              **************************/
2493
2494             if (gmx_mm256_any_lt(rsq20,rcutoff2))
2495             {
2496
2497             r20              = _mm256_mul_pd(rsq20,rinv20);
2498             r20              = _mm256_andnot_pd(dummy_mask,r20);
2499
2500             /* EWALD ELECTROSTATICS */
2501
2502             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2503             ewrt             = _mm256_mul_pd(r20,ewtabscale);
2504             ewitab           = _mm256_cvttpd_epi32(ewrt);
2505             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2506             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2507                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2508                                             &ewtabF,&ewtabFn);
2509             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2510             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
2511
2512             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
2513
2514             fscal            = felec;
2515
2516             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2517
2518             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2519
2520             /* Calculate temporary vectorial force */
2521             tx               = _mm256_mul_pd(fscal,dx20);
2522             ty               = _mm256_mul_pd(fscal,dy20);
2523             tz               = _mm256_mul_pd(fscal,dz20);
2524
2525             /* Update vectorial force */
2526             fix2             = _mm256_add_pd(fix2,tx);
2527             fiy2             = _mm256_add_pd(fiy2,ty);
2528             fiz2             = _mm256_add_pd(fiz2,tz);
2529
2530             fjx0             = _mm256_add_pd(fjx0,tx);
2531             fjy0             = _mm256_add_pd(fjy0,ty);
2532             fjz0             = _mm256_add_pd(fjz0,tz);
2533
2534             }
2535
2536             /**************************
2537              * CALCULATE INTERACTIONS *
2538              **************************/
2539
2540             if (gmx_mm256_any_lt(rsq21,rcutoff2))
2541             {
2542
2543             r21              = _mm256_mul_pd(rsq21,rinv21);
2544             r21              = _mm256_andnot_pd(dummy_mask,r21);
2545
2546             /* EWALD ELECTROSTATICS */
2547
2548             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2549             ewrt             = _mm256_mul_pd(r21,ewtabscale);
2550             ewitab           = _mm256_cvttpd_epi32(ewrt);
2551             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2552             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2553                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2554                                             &ewtabF,&ewtabFn);
2555             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2556             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
2557
2558             cutoff_mask      = _mm256_cmp_pd(rsq21,rcutoff2,_CMP_LT_OQ);
2559
2560             fscal            = felec;
2561
2562             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2563
2564             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2565
2566             /* Calculate temporary vectorial force */
2567             tx               = _mm256_mul_pd(fscal,dx21);
2568             ty               = _mm256_mul_pd(fscal,dy21);
2569             tz               = _mm256_mul_pd(fscal,dz21);
2570
2571             /* Update vectorial force */
2572             fix2             = _mm256_add_pd(fix2,tx);
2573             fiy2             = _mm256_add_pd(fiy2,ty);
2574             fiz2             = _mm256_add_pd(fiz2,tz);
2575
2576             fjx1             = _mm256_add_pd(fjx1,tx);
2577             fjy1             = _mm256_add_pd(fjy1,ty);
2578             fjz1             = _mm256_add_pd(fjz1,tz);
2579
2580             }
2581
2582             /**************************
2583              * CALCULATE INTERACTIONS *
2584              **************************/
2585
2586             if (gmx_mm256_any_lt(rsq22,rcutoff2))
2587             {
2588
2589             r22              = _mm256_mul_pd(rsq22,rinv22);
2590             r22              = _mm256_andnot_pd(dummy_mask,r22);
2591
2592             /* EWALD ELECTROSTATICS */
2593
2594             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2595             ewrt             = _mm256_mul_pd(r22,ewtabscale);
2596             ewitab           = _mm256_cvttpd_epi32(ewrt);
2597             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2598             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2599                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2600                                             &ewtabF,&ewtabFn);
2601             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2602             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
2603
2604             cutoff_mask      = _mm256_cmp_pd(rsq22,rcutoff2,_CMP_LT_OQ);
2605
2606             fscal            = felec;
2607
2608             fscal            = _mm256_and_pd(fscal,cutoff_mask);
2609
2610             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2611
2612             /* Calculate temporary vectorial force */
2613             tx               = _mm256_mul_pd(fscal,dx22);
2614             ty               = _mm256_mul_pd(fscal,dy22);
2615             tz               = _mm256_mul_pd(fscal,dz22);
2616
2617             /* Update vectorial force */
2618             fix2             = _mm256_add_pd(fix2,tx);
2619             fiy2             = _mm256_add_pd(fiy2,ty);
2620             fiz2             = _mm256_add_pd(fiz2,tz);
2621
2622             fjx2             = _mm256_add_pd(fjx2,tx);
2623             fjy2             = _mm256_add_pd(fjy2,ty);
2624             fjz2             = _mm256_add_pd(fjz2,tz);
2625
2626             }
2627
2628             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2629             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2630             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2631             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2632
2633             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
2634                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2635
2636             /* Inner loop uses 367 flops */
2637         }
2638
2639         /* End of innermost loop */
2640
2641         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2642                                                  f+i_coord_offset,fshift+i_shift_offset);
2643
2644         /* Increment number of inner iterations */
2645         inneriter                  += j_index_end - j_index_start;
2646
2647         /* Outer loop uses 18 flops */
2648     }
2649
2650     /* Increment number of outer iterations */
2651     outeriter        += nri;
2652
2653     /* Update outer/inner flops */
2654
2655     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*367);
2656 }