915c4433b885e04289a8ce09d4ab24d205c6c835
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m128i          ewitab;
104     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
106     real             *ewtab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
130     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
131     beta2            = _mm256_mul_pd(beta,beta);
132     beta3            = _mm256_mul_pd(beta,beta2);
133
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
141     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
142     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
143     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
144
145     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
146     rcutoff_scalar   = fr->rcoulomb;
147     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
148     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
149
150     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
151     rvdw             = _mm256_set1_pd(fr->rvdw);
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = jnrC = jnrD = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157     j_coord_offsetC = 0;
158     j_coord_offsetD = 0;
159
160     outeriter        = 0;
161     inneriter        = 0;
162
163     for(iidx=0;iidx<4*DIM;iidx++)
164     {
165         scratch[iidx] = 0.0;
166     }
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
185
186         fix0             = _mm256_setzero_pd();
187         fiy0             = _mm256_setzero_pd();
188         fiz0             = _mm256_setzero_pd();
189         fix1             = _mm256_setzero_pd();
190         fiy1             = _mm256_setzero_pd();
191         fiz1             = _mm256_setzero_pd();
192         fix2             = _mm256_setzero_pd();
193         fiy2             = _mm256_setzero_pd();
194         fiz2             = _mm256_setzero_pd();
195
196         /* Reset potential sums */
197         velecsum         = _mm256_setzero_pd();
198         vvdwsum          = _mm256_setzero_pd();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             j_coord_offsetA  = DIM*jnrA;
210             j_coord_offsetB  = DIM*jnrB;
211             j_coord_offsetC  = DIM*jnrC;
212             j_coord_offsetD  = DIM*jnrD;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_pd(ix0,jx0);
221             dy00             = _mm256_sub_pd(iy0,jy0);
222             dz00             = _mm256_sub_pd(iz0,jz0);
223             dx10             = _mm256_sub_pd(ix1,jx0);
224             dy10             = _mm256_sub_pd(iy1,jy0);
225             dz10             = _mm256_sub_pd(iz1,jz0);
226             dx20             = _mm256_sub_pd(ix2,jx0);
227             dy20             = _mm256_sub_pd(iy2,jy0);
228             dz20             = _mm256_sub_pd(iz2,jz0);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
232             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
233             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
234
235             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
236             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
237             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
238
239             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
240             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
241             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
242
243             /* Load parameters for j particles */
244             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
245                                                                  charge+jnrC+0,charge+jnrD+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248             vdwjidx0C        = 2*vdwtype[jnrC+0];
249             vdwjidx0D        = 2*vdwtype[jnrD+0];
250
251             fjx0             = _mm256_setzero_pd();
252             fjy0             = _mm256_setzero_pd();
253             fjz0             = _mm256_setzero_pd();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             if (gmx_mm256_any_lt(rsq00,rcutoff2))
260             {
261
262             r00              = _mm256_mul_pd(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             qq00             = _mm256_mul_pd(iq0,jq0);
266             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
267                                             vdwioffsetptr0+vdwjidx0B,
268                                             vdwioffsetptr0+vdwjidx0C,
269                                             vdwioffsetptr0+vdwjidx0D,
270                                             &c6_00,&c12_00);
271
272             /* EWALD ELECTROSTATICS */
273
274             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
275             ewrt             = _mm256_mul_pd(r00,ewtabscale);
276             ewitab           = _mm256_cvttpd_epi32(ewrt);
277             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
278             ewitab           = _mm_slli_epi32(ewitab,2);
279             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
280             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
281             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
282             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
283             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
284             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
285             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
286             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
287             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
288
289             /* LENNARD-JONES DISPERSION/REPULSION */
290
291             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
292             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
293             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
294             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
295                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
296             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
297
298             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velec            = _mm256_and_pd(velec,cutoff_mask);
302             velecsum         = _mm256_add_pd(velecsum,velec);
303             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
304             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
305
306             fscal            = _mm256_add_pd(felec,fvdw);
307
308             fscal            = _mm256_and_pd(fscal,cutoff_mask);
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm256_mul_pd(fscal,dx00);
312             ty               = _mm256_mul_pd(fscal,dy00);
313             tz               = _mm256_mul_pd(fscal,dz00);
314
315             /* Update vectorial force */
316             fix0             = _mm256_add_pd(fix0,tx);
317             fiy0             = _mm256_add_pd(fiy0,ty);
318             fiz0             = _mm256_add_pd(fiz0,tz);
319
320             fjx0             = _mm256_add_pd(fjx0,tx);
321             fjy0             = _mm256_add_pd(fjy0,ty);
322             fjz0             = _mm256_add_pd(fjz0,tz);
323
324             }
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             if (gmx_mm256_any_lt(rsq10,rcutoff2))
331             {
332
333             r10              = _mm256_mul_pd(rsq10,rinv10);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq10             = _mm256_mul_pd(iq1,jq0);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
341             ewrt             = _mm256_mul_pd(r10,ewtabscale);
342             ewitab           = _mm256_cvttpd_epi32(ewrt);
343             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
344             ewitab           = _mm_slli_epi32(ewitab,2);
345             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
346             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
347             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
348             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
349             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
350             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
351             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
352             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
353             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
354
355             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm256_and_pd(velec,cutoff_mask);
359             velecsum         = _mm256_add_pd(velecsum,velec);
360
361             fscal            = felec;
362
363             fscal            = _mm256_and_pd(fscal,cutoff_mask);
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm256_mul_pd(fscal,dx10);
367             ty               = _mm256_mul_pd(fscal,dy10);
368             tz               = _mm256_mul_pd(fscal,dz10);
369
370             /* Update vectorial force */
371             fix1             = _mm256_add_pd(fix1,tx);
372             fiy1             = _mm256_add_pd(fiy1,ty);
373             fiz1             = _mm256_add_pd(fiz1,tz);
374
375             fjx0             = _mm256_add_pd(fjx0,tx);
376             fjy0             = _mm256_add_pd(fjy0,ty);
377             fjz0             = _mm256_add_pd(fjz0,tz);
378
379             }
380
381             /**************************
382              * CALCULATE INTERACTIONS *
383              **************************/
384
385             if (gmx_mm256_any_lt(rsq20,rcutoff2))
386             {
387
388             r20              = _mm256_mul_pd(rsq20,rinv20);
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq20             = _mm256_mul_pd(iq2,jq0);
392
393             /* EWALD ELECTROSTATICS */
394
395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
396             ewrt             = _mm256_mul_pd(r20,ewtabscale);
397             ewitab           = _mm256_cvttpd_epi32(ewrt);
398             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
399             ewitab           = _mm_slli_epi32(ewitab,2);
400             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
401             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
402             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
403             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
404             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
405             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
406             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
407             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
408             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
409
410             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velec            = _mm256_and_pd(velec,cutoff_mask);
414             velecsum         = _mm256_add_pd(velecsum,velec);
415
416             fscal            = felec;
417
418             fscal            = _mm256_and_pd(fscal,cutoff_mask);
419
420             /* Calculate temporary vectorial force */
421             tx               = _mm256_mul_pd(fscal,dx20);
422             ty               = _mm256_mul_pd(fscal,dy20);
423             tz               = _mm256_mul_pd(fscal,dz20);
424
425             /* Update vectorial force */
426             fix2             = _mm256_add_pd(fix2,tx);
427             fiy2             = _mm256_add_pd(fiy2,ty);
428             fiz2             = _mm256_add_pd(fiz2,tz);
429
430             fjx0             = _mm256_add_pd(fjx0,tx);
431             fjy0             = _mm256_add_pd(fjy0,ty);
432             fjz0             = _mm256_add_pd(fjz0,tz);
433
434             }
435
436             fjptrA             = f+j_coord_offsetA;
437             fjptrB             = f+j_coord_offsetB;
438             fjptrC             = f+j_coord_offsetC;
439             fjptrD             = f+j_coord_offsetD;
440
441             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
442
443             /* Inner loop uses 159 flops */
444         }
445
446         if(jidx<j_index_end)
447         {
448
449             /* Get j neighbor index, and coordinate index */
450             jnrlistA         = jjnr[jidx];
451             jnrlistB         = jjnr[jidx+1];
452             jnrlistC         = jjnr[jidx+2];
453             jnrlistD         = jjnr[jidx+3];
454             /* Sign of each element will be negative for non-real atoms.
455              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
456              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
457              */
458             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
459
460             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
461             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
462             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
463
464             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
465             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
466             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
467             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
468             j_coord_offsetA  = DIM*jnrA;
469             j_coord_offsetB  = DIM*jnrB;
470             j_coord_offsetC  = DIM*jnrC;
471             j_coord_offsetD  = DIM*jnrD;
472
473             /* load j atom coordinates */
474             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
475                                                  x+j_coord_offsetC,x+j_coord_offsetD,
476                                                  &jx0,&jy0,&jz0);
477
478             /* Calculate displacement vector */
479             dx00             = _mm256_sub_pd(ix0,jx0);
480             dy00             = _mm256_sub_pd(iy0,jy0);
481             dz00             = _mm256_sub_pd(iz0,jz0);
482             dx10             = _mm256_sub_pd(ix1,jx0);
483             dy10             = _mm256_sub_pd(iy1,jy0);
484             dz10             = _mm256_sub_pd(iz1,jz0);
485             dx20             = _mm256_sub_pd(ix2,jx0);
486             dy20             = _mm256_sub_pd(iy2,jy0);
487             dz20             = _mm256_sub_pd(iz2,jz0);
488
489             /* Calculate squared distance and things based on it */
490             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
491             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
492             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
493
494             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
495             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
496             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
497
498             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
499             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
500             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
501
502             /* Load parameters for j particles */
503             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
504                                                                  charge+jnrC+0,charge+jnrD+0);
505             vdwjidx0A        = 2*vdwtype[jnrA+0];
506             vdwjidx0B        = 2*vdwtype[jnrB+0];
507             vdwjidx0C        = 2*vdwtype[jnrC+0];
508             vdwjidx0D        = 2*vdwtype[jnrD+0];
509
510             fjx0             = _mm256_setzero_pd();
511             fjy0             = _mm256_setzero_pd();
512             fjz0             = _mm256_setzero_pd();
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             if (gmx_mm256_any_lt(rsq00,rcutoff2))
519             {
520
521             r00              = _mm256_mul_pd(rsq00,rinv00);
522             r00              = _mm256_andnot_pd(dummy_mask,r00);
523
524             /* Compute parameters for interactions between i and j atoms */
525             qq00             = _mm256_mul_pd(iq0,jq0);
526             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
527                                             vdwioffsetptr0+vdwjidx0B,
528                                             vdwioffsetptr0+vdwjidx0C,
529                                             vdwioffsetptr0+vdwjidx0D,
530                                             &c6_00,&c12_00);
531
532             /* EWALD ELECTROSTATICS */
533
534             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
535             ewrt             = _mm256_mul_pd(r00,ewtabscale);
536             ewitab           = _mm256_cvttpd_epi32(ewrt);
537             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
538             ewitab           = _mm_slli_epi32(ewitab,2);
539             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
540             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
541             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
542             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
543             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
544             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
545             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
546             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
547             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
548
549             /* LENNARD-JONES DISPERSION/REPULSION */
550
551             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
552             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
553             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
554             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
555                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
556             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
557
558             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm256_and_pd(velec,cutoff_mask);
562             velec            = _mm256_andnot_pd(dummy_mask,velec);
563             velecsum         = _mm256_add_pd(velecsum,velec);
564             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
565             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
566             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
567
568             fscal            = _mm256_add_pd(felec,fvdw);
569
570             fscal            = _mm256_and_pd(fscal,cutoff_mask);
571
572             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm256_mul_pd(fscal,dx00);
576             ty               = _mm256_mul_pd(fscal,dy00);
577             tz               = _mm256_mul_pd(fscal,dz00);
578
579             /* Update vectorial force */
580             fix0             = _mm256_add_pd(fix0,tx);
581             fiy0             = _mm256_add_pd(fiy0,ty);
582             fiz0             = _mm256_add_pd(fiz0,tz);
583
584             fjx0             = _mm256_add_pd(fjx0,tx);
585             fjy0             = _mm256_add_pd(fjy0,ty);
586             fjz0             = _mm256_add_pd(fjz0,tz);
587
588             }
589
590             /**************************
591              * CALCULATE INTERACTIONS *
592              **************************/
593
594             if (gmx_mm256_any_lt(rsq10,rcutoff2))
595             {
596
597             r10              = _mm256_mul_pd(rsq10,rinv10);
598             r10              = _mm256_andnot_pd(dummy_mask,r10);
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq10             = _mm256_mul_pd(iq1,jq0);
602
603             /* EWALD ELECTROSTATICS */
604
605             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
606             ewrt             = _mm256_mul_pd(r10,ewtabscale);
607             ewitab           = _mm256_cvttpd_epi32(ewrt);
608             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
609             ewitab           = _mm_slli_epi32(ewitab,2);
610             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
611             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
612             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
613             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
614             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
615             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
616             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
617             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
618             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
619
620             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
621
622             /* Update potential sum for this i atom from the interaction with this j atom. */
623             velec            = _mm256_and_pd(velec,cutoff_mask);
624             velec            = _mm256_andnot_pd(dummy_mask,velec);
625             velecsum         = _mm256_add_pd(velecsum,velec);
626
627             fscal            = felec;
628
629             fscal            = _mm256_and_pd(fscal,cutoff_mask);
630
631             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm256_mul_pd(fscal,dx10);
635             ty               = _mm256_mul_pd(fscal,dy10);
636             tz               = _mm256_mul_pd(fscal,dz10);
637
638             /* Update vectorial force */
639             fix1             = _mm256_add_pd(fix1,tx);
640             fiy1             = _mm256_add_pd(fiy1,ty);
641             fiz1             = _mm256_add_pd(fiz1,tz);
642
643             fjx0             = _mm256_add_pd(fjx0,tx);
644             fjy0             = _mm256_add_pd(fjy0,ty);
645             fjz0             = _mm256_add_pd(fjz0,tz);
646
647             }
648
649             /**************************
650              * CALCULATE INTERACTIONS *
651              **************************/
652
653             if (gmx_mm256_any_lt(rsq20,rcutoff2))
654             {
655
656             r20              = _mm256_mul_pd(rsq20,rinv20);
657             r20              = _mm256_andnot_pd(dummy_mask,r20);
658
659             /* Compute parameters for interactions between i and j atoms */
660             qq20             = _mm256_mul_pd(iq2,jq0);
661
662             /* EWALD ELECTROSTATICS */
663
664             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
665             ewrt             = _mm256_mul_pd(r20,ewtabscale);
666             ewitab           = _mm256_cvttpd_epi32(ewrt);
667             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
668             ewitab           = _mm_slli_epi32(ewitab,2);
669             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
670             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
671             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
672             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
673             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
674             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
675             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
676             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
677             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
678
679             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
680
681             /* Update potential sum for this i atom from the interaction with this j atom. */
682             velec            = _mm256_and_pd(velec,cutoff_mask);
683             velec            = _mm256_andnot_pd(dummy_mask,velec);
684             velecsum         = _mm256_add_pd(velecsum,velec);
685
686             fscal            = felec;
687
688             fscal            = _mm256_and_pd(fscal,cutoff_mask);
689
690             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
691
692             /* Calculate temporary vectorial force */
693             tx               = _mm256_mul_pd(fscal,dx20);
694             ty               = _mm256_mul_pd(fscal,dy20);
695             tz               = _mm256_mul_pd(fscal,dz20);
696
697             /* Update vectorial force */
698             fix2             = _mm256_add_pd(fix2,tx);
699             fiy2             = _mm256_add_pd(fiy2,ty);
700             fiz2             = _mm256_add_pd(fiz2,tz);
701
702             fjx0             = _mm256_add_pd(fjx0,tx);
703             fjy0             = _mm256_add_pd(fjy0,ty);
704             fjz0             = _mm256_add_pd(fjz0,tz);
705
706             }
707
708             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
709             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
710             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
711             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
712
713             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
714
715             /* Inner loop uses 162 flops */
716         }
717
718         /* End of innermost loop */
719
720         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
721                                                  f+i_coord_offset,fshift+i_shift_offset);
722
723         ggid                        = gid[iidx];
724         /* Update potential energies */
725         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
726         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
727
728         /* Increment number of inner iterations */
729         inneriter                  += j_index_end - j_index_start;
730
731         /* Outer loop uses 20 flops */
732     }
733
734     /* Increment number of outer iterations */
735     outeriter        += nri;
736
737     /* Update outer/inner flops */
738
739     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*162);
740 }
741 /*
742  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_256_double
743  * Electrostatics interaction: Ewald
744  * VdW interaction:            LennardJones
745  * Geometry:                   Water3-Particle
746  * Calculate force/pot:        Force
747  */
748 void
749 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_256_double
750                     (t_nblist                    * gmx_restrict       nlist,
751                      rvec                        * gmx_restrict          xx,
752                      rvec                        * gmx_restrict          ff,
753                      t_forcerec                  * gmx_restrict          fr,
754                      t_mdatoms                   * gmx_restrict     mdatoms,
755                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
756                      t_nrnb                      * gmx_restrict        nrnb)
757 {
758     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
759      * just 0 for non-waters.
760      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
761      * jnr indices corresponding to data put in the four positions in the SIMD register.
762      */
763     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
764     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
765     int              jnrA,jnrB,jnrC,jnrD;
766     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
767     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
768     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
769     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
770     real             rcutoff_scalar;
771     real             *shiftvec,*fshift,*x,*f;
772     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
773     real             scratch[4*DIM];
774     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
775     real *           vdwioffsetptr0;
776     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
777     real *           vdwioffsetptr1;
778     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
779     real *           vdwioffsetptr2;
780     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
781     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
782     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
783     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
784     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
785     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
786     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
787     real             *charge;
788     int              nvdwtype;
789     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
790     int              *vdwtype;
791     real             *vdwparam;
792     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
793     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
794     __m128i          ewitab;
795     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
796     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
797     real             *ewtab;
798     __m256d          dummy_mask,cutoff_mask;
799     __m128           tmpmask0,tmpmask1;
800     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
801     __m256d          one     = _mm256_set1_pd(1.0);
802     __m256d          two     = _mm256_set1_pd(2.0);
803     x                = xx[0];
804     f                = ff[0];
805
806     nri              = nlist->nri;
807     iinr             = nlist->iinr;
808     jindex           = nlist->jindex;
809     jjnr             = nlist->jjnr;
810     shiftidx         = nlist->shift;
811     gid              = nlist->gid;
812     shiftvec         = fr->shift_vec[0];
813     fshift           = fr->fshift[0];
814     facel            = _mm256_set1_pd(fr->epsfac);
815     charge           = mdatoms->chargeA;
816     nvdwtype         = fr->ntype;
817     vdwparam         = fr->nbfp;
818     vdwtype          = mdatoms->typeA;
819
820     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
821     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
822     beta2            = _mm256_mul_pd(beta,beta);
823     beta3            = _mm256_mul_pd(beta,beta2);
824
825     ewtab            = fr->ic->tabq_coul_F;
826     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
827     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
828
829     /* Setup water-specific parameters */
830     inr              = nlist->iinr[0];
831     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
832     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
833     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
834     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
835
836     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
837     rcutoff_scalar   = fr->rcoulomb;
838     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
839     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
840
841     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
842     rvdw             = _mm256_set1_pd(fr->rvdw);
843
844     /* Avoid stupid compiler warnings */
845     jnrA = jnrB = jnrC = jnrD = 0;
846     j_coord_offsetA = 0;
847     j_coord_offsetB = 0;
848     j_coord_offsetC = 0;
849     j_coord_offsetD = 0;
850
851     outeriter        = 0;
852     inneriter        = 0;
853
854     for(iidx=0;iidx<4*DIM;iidx++)
855     {
856         scratch[iidx] = 0.0;
857     }
858
859     /* Start outer loop over neighborlists */
860     for(iidx=0; iidx<nri; iidx++)
861     {
862         /* Load shift vector for this list */
863         i_shift_offset   = DIM*shiftidx[iidx];
864
865         /* Load limits for loop over neighbors */
866         j_index_start    = jindex[iidx];
867         j_index_end      = jindex[iidx+1];
868
869         /* Get outer coordinate index */
870         inr              = iinr[iidx];
871         i_coord_offset   = DIM*inr;
872
873         /* Load i particle coords and add shift vector */
874         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
875                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
876
877         fix0             = _mm256_setzero_pd();
878         fiy0             = _mm256_setzero_pd();
879         fiz0             = _mm256_setzero_pd();
880         fix1             = _mm256_setzero_pd();
881         fiy1             = _mm256_setzero_pd();
882         fiz1             = _mm256_setzero_pd();
883         fix2             = _mm256_setzero_pd();
884         fiy2             = _mm256_setzero_pd();
885         fiz2             = _mm256_setzero_pd();
886
887         /* Start inner kernel loop */
888         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
889         {
890
891             /* Get j neighbor index, and coordinate index */
892             jnrA             = jjnr[jidx];
893             jnrB             = jjnr[jidx+1];
894             jnrC             = jjnr[jidx+2];
895             jnrD             = jjnr[jidx+3];
896             j_coord_offsetA  = DIM*jnrA;
897             j_coord_offsetB  = DIM*jnrB;
898             j_coord_offsetC  = DIM*jnrC;
899             j_coord_offsetD  = DIM*jnrD;
900
901             /* load j atom coordinates */
902             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
903                                                  x+j_coord_offsetC,x+j_coord_offsetD,
904                                                  &jx0,&jy0,&jz0);
905
906             /* Calculate displacement vector */
907             dx00             = _mm256_sub_pd(ix0,jx0);
908             dy00             = _mm256_sub_pd(iy0,jy0);
909             dz00             = _mm256_sub_pd(iz0,jz0);
910             dx10             = _mm256_sub_pd(ix1,jx0);
911             dy10             = _mm256_sub_pd(iy1,jy0);
912             dz10             = _mm256_sub_pd(iz1,jz0);
913             dx20             = _mm256_sub_pd(ix2,jx0);
914             dy20             = _mm256_sub_pd(iy2,jy0);
915             dz20             = _mm256_sub_pd(iz2,jz0);
916
917             /* Calculate squared distance and things based on it */
918             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
919             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
920             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
921
922             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
923             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
924             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
925
926             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
927             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
928             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
929
930             /* Load parameters for j particles */
931             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
932                                                                  charge+jnrC+0,charge+jnrD+0);
933             vdwjidx0A        = 2*vdwtype[jnrA+0];
934             vdwjidx0B        = 2*vdwtype[jnrB+0];
935             vdwjidx0C        = 2*vdwtype[jnrC+0];
936             vdwjidx0D        = 2*vdwtype[jnrD+0];
937
938             fjx0             = _mm256_setzero_pd();
939             fjy0             = _mm256_setzero_pd();
940             fjz0             = _mm256_setzero_pd();
941
942             /**************************
943              * CALCULATE INTERACTIONS *
944              **************************/
945
946             if (gmx_mm256_any_lt(rsq00,rcutoff2))
947             {
948
949             r00              = _mm256_mul_pd(rsq00,rinv00);
950
951             /* Compute parameters for interactions between i and j atoms */
952             qq00             = _mm256_mul_pd(iq0,jq0);
953             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
954                                             vdwioffsetptr0+vdwjidx0B,
955                                             vdwioffsetptr0+vdwjidx0C,
956                                             vdwioffsetptr0+vdwjidx0D,
957                                             &c6_00,&c12_00);
958
959             /* EWALD ELECTROSTATICS */
960
961             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962             ewrt             = _mm256_mul_pd(r00,ewtabscale);
963             ewitab           = _mm256_cvttpd_epi32(ewrt);
964             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
965             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
966                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
967                                             &ewtabF,&ewtabFn);
968             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
969             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
970
971             /* LENNARD-JONES DISPERSION/REPULSION */
972
973             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
974             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
975
976             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
977
978             fscal            = _mm256_add_pd(felec,fvdw);
979
980             fscal            = _mm256_and_pd(fscal,cutoff_mask);
981
982             /* Calculate temporary vectorial force */
983             tx               = _mm256_mul_pd(fscal,dx00);
984             ty               = _mm256_mul_pd(fscal,dy00);
985             tz               = _mm256_mul_pd(fscal,dz00);
986
987             /* Update vectorial force */
988             fix0             = _mm256_add_pd(fix0,tx);
989             fiy0             = _mm256_add_pd(fiy0,ty);
990             fiz0             = _mm256_add_pd(fiz0,tz);
991
992             fjx0             = _mm256_add_pd(fjx0,tx);
993             fjy0             = _mm256_add_pd(fjy0,ty);
994             fjz0             = _mm256_add_pd(fjz0,tz);
995
996             }
997
998             /**************************
999              * CALCULATE INTERACTIONS *
1000              **************************/
1001
1002             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1003             {
1004
1005             r10              = _mm256_mul_pd(rsq10,rinv10);
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq10             = _mm256_mul_pd(iq1,jq0);
1009
1010             /* EWALD ELECTROSTATICS */
1011
1012             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1013             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1014             ewitab           = _mm256_cvttpd_epi32(ewrt);
1015             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1016             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1017                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1018                                             &ewtabF,&ewtabFn);
1019             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1020             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1021
1022             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1023
1024             fscal            = felec;
1025
1026             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1027
1028             /* Calculate temporary vectorial force */
1029             tx               = _mm256_mul_pd(fscal,dx10);
1030             ty               = _mm256_mul_pd(fscal,dy10);
1031             tz               = _mm256_mul_pd(fscal,dz10);
1032
1033             /* Update vectorial force */
1034             fix1             = _mm256_add_pd(fix1,tx);
1035             fiy1             = _mm256_add_pd(fiy1,ty);
1036             fiz1             = _mm256_add_pd(fiz1,tz);
1037
1038             fjx0             = _mm256_add_pd(fjx0,tx);
1039             fjy0             = _mm256_add_pd(fjy0,ty);
1040             fjz0             = _mm256_add_pd(fjz0,tz);
1041
1042             }
1043
1044             /**************************
1045              * CALCULATE INTERACTIONS *
1046              **************************/
1047
1048             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1049             {
1050
1051             r20              = _mm256_mul_pd(rsq20,rinv20);
1052
1053             /* Compute parameters for interactions between i and j atoms */
1054             qq20             = _mm256_mul_pd(iq2,jq0);
1055
1056             /* EWALD ELECTROSTATICS */
1057
1058             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1059             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1060             ewitab           = _mm256_cvttpd_epi32(ewrt);
1061             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1062             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1063                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1064                                             &ewtabF,&ewtabFn);
1065             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1066             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1067
1068             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1069
1070             fscal            = felec;
1071
1072             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1073
1074             /* Calculate temporary vectorial force */
1075             tx               = _mm256_mul_pd(fscal,dx20);
1076             ty               = _mm256_mul_pd(fscal,dy20);
1077             tz               = _mm256_mul_pd(fscal,dz20);
1078
1079             /* Update vectorial force */
1080             fix2             = _mm256_add_pd(fix2,tx);
1081             fiy2             = _mm256_add_pd(fiy2,ty);
1082             fiz2             = _mm256_add_pd(fiz2,tz);
1083
1084             fjx0             = _mm256_add_pd(fjx0,tx);
1085             fjy0             = _mm256_add_pd(fjy0,ty);
1086             fjz0             = _mm256_add_pd(fjz0,tz);
1087
1088             }
1089
1090             fjptrA             = f+j_coord_offsetA;
1091             fjptrB             = f+j_coord_offsetB;
1092             fjptrC             = f+j_coord_offsetC;
1093             fjptrD             = f+j_coord_offsetD;
1094
1095             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1096
1097             /* Inner loop uses 127 flops */
1098         }
1099
1100         if(jidx<j_index_end)
1101         {
1102
1103             /* Get j neighbor index, and coordinate index */
1104             jnrlistA         = jjnr[jidx];
1105             jnrlistB         = jjnr[jidx+1];
1106             jnrlistC         = jjnr[jidx+2];
1107             jnrlistD         = jjnr[jidx+3];
1108             /* Sign of each element will be negative for non-real atoms.
1109              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1110              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1111              */
1112             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1113
1114             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1115             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1116             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1117
1118             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1119             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1120             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1121             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1122             j_coord_offsetA  = DIM*jnrA;
1123             j_coord_offsetB  = DIM*jnrB;
1124             j_coord_offsetC  = DIM*jnrC;
1125             j_coord_offsetD  = DIM*jnrD;
1126
1127             /* load j atom coordinates */
1128             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1129                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1130                                                  &jx0,&jy0,&jz0);
1131
1132             /* Calculate displacement vector */
1133             dx00             = _mm256_sub_pd(ix0,jx0);
1134             dy00             = _mm256_sub_pd(iy0,jy0);
1135             dz00             = _mm256_sub_pd(iz0,jz0);
1136             dx10             = _mm256_sub_pd(ix1,jx0);
1137             dy10             = _mm256_sub_pd(iy1,jy0);
1138             dz10             = _mm256_sub_pd(iz1,jz0);
1139             dx20             = _mm256_sub_pd(ix2,jx0);
1140             dy20             = _mm256_sub_pd(iy2,jy0);
1141             dz20             = _mm256_sub_pd(iz2,jz0);
1142
1143             /* Calculate squared distance and things based on it */
1144             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1145             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1146             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1147
1148             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1149             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1150             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1151
1152             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1153             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1154             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1155
1156             /* Load parameters for j particles */
1157             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1158                                                                  charge+jnrC+0,charge+jnrD+0);
1159             vdwjidx0A        = 2*vdwtype[jnrA+0];
1160             vdwjidx0B        = 2*vdwtype[jnrB+0];
1161             vdwjidx0C        = 2*vdwtype[jnrC+0];
1162             vdwjidx0D        = 2*vdwtype[jnrD+0];
1163
1164             fjx0             = _mm256_setzero_pd();
1165             fjy0             = _mm256_setzero_pd();
1166             fjz0             = _mm256_setzero_pd();
1167
1168             /**************************
1169              * CALCULATE INTERACTIONS *
1170              **************************/
1171
1172             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1173             {
1174
1175             r00              = _mm256_mul_pd(rsq00,rinv00);
1176             r00              = _mm256_andnot_pd(dummy_mask,r00);
1177
1178             /* Compute parameters for interactions between i and j atoms */
1179             qq00             = _mm256_mul_pd(iq0,jq0);
1180             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1181                                             vdwioffsetptr0+vdwjidx0B,
1182                                             vdwioffsetptr0+vdwjidx0C,
1183                                             vdwioffsetptr0+vdwjidx0D,
1184                                             &c6_00,&c12_00);
1185
1186             /* EWALD ELECTROSTATICS */
1187
1188             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1189             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1190             ewitab           = _mm256_cvttpd_epi32(ewrt);
1191             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1192             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1193                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1194                                             &ewtabF,&ewtabFn);
1195             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1196             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1197
1198             /* LENNARD-JONES DISPERSION/REPULSION */
1199
1200             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1201             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1202
1203             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1204
1205             fscal            = _mm256_add_pd(felec,fvdw);
1206
1207             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1208
1209             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1210
1211             /* Calculate temporary vectorial force */
1212             tx               = _mm256_mul_pd(fscal,dx00);
1213             ty               = _mm256_mul_pd(fscal,dy00);
1214             tz               = _mm256_mul_pd(fscal,dz00);
1215
1216             /* Update vectorial force */
1217             fix0             = _mm256_add_pd(fix0,tx);
1218             fiy0             = _mm256_add_pd(fiy0,ty);
1219             fiz0             = _mm256_add_pd(fiz0,tz);
1220
1221             fjx0             = _mm256_add_pd(fjx0,tx);
1222             fjy0             = _mm256_add_pd(fjy0,ty);
1223             fjz0             = _mm256_add_pd(fjz0,tz);
1224
1225             }
1226
1227             /**************************
1228              * CALCULATE INTERACTIONS *
1229              **************************/
1230
1231             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1232             {
1233
1234             r10              = _mm256_mul_pd(rsq10,rinv10);
1235             r10              = _mm256_andnot_pd(dummy_mask,r10);
1236
1237             /* Compute parameters for interactions between i and j atoms */
1238             qq10             = _mm256_mul_pd(iq1,jq0);
1239
1240             /* EWALD ELECTROSTATICS */
1241
1242             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1243             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1244             ewitab           = _mm256_cvttpd_epi32(ewrt);
1245             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1246             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1247                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1248                                             &ewtabF,&ewtabFn);
1249             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1250             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1251
1252             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1253
1254             fscal            = felec;
1255
1256             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1257
1258             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1259
1260             /* Calculate temporary vectorial force */
1261             tx               = _mm256_mul_pd(fscal,dx10);
1262             ty               = _mm256_mul_pd(fscal,dy10);
1263             tz               = _mm256_mul_pd(fscal,dz10);
1264
1265             /* Update vectorial force */
1266             fix1             = _mm256_add_pd(fix1,tx);
1267             fiy1             = _mm256_add_pd(fiy1,ty);
1268             fiz1             = _mm256_add_pd(fiz1,tz);
1269
1270             fjx0             = _mm256_add_pd(fjx0,tx);
1271             fjy0             = _mm256_add_pd(fjy0,ty);
1272             fjz0             = _mm256_add_pd(fjz0,tz);
1273
1274             }
1275
1276             /**************************
1277              * CALCULATE INTERACTIONS *
1278              **************************/
1279
1280             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1281             {
1282
1283             r20              = _mm256_mul_pd(rsq20,rinv20);
1284             r20              = _mm256_andnot_pd(dummy_mask,r20);
1285
1286             /* Compute parameters for interactions between i and j atoms */
1287             qq20             = _mm256_mul_pd(iq2,jq0);
1288
1289             /* EWALD ELECTROSTATICS */
1290
1291             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1292             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1293             ewitab           = _mm256_cvttpd_epi32(ewrt);
1294             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1295             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1296                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1297                                             &ewtabF,&ewtabFn);
1298             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1299             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1300
1301             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1302
1303             fscal            = felec;
1304
1305             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1306
1307             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1308
1309             /* Calculate temporary vectorial force */
1310             tx               = _mm256_mul_pd(fscal,dx20);
1311             ty               = _mm256_mul_pd(fscal,dy20);
1312             tz               = _mm256_mul_pd(fscal,dz20);
1313
1314             /* Update vectorial force */
1315             fix2             = _mm256_add_pd(fix2,tx);
1316             fiy2             = _mm256_add_pd(fiy2,ty);
1317             fiz2             = _mm256_add_pd(fiz2,tz);
1318
1319             fjx0             = _mm256_add_pd(fjx0,tx);
1320             fjy0             = _mm256_add_pd(fjy0,ty);
1321             fjz0             = _mm256_add_pd(fjz0,tz);
1322
1323             }
1324
1325             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1326             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1327             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1328             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1329
1330             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1331
1332             /* Inner loop uses 130 flops */
1333         }
1334
1335         /* End of innermost loop */
1336
1337         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1338                                                  f+i_coord_offset,fshift+i_shift_offset);
1339
1340         /* Increment number of inner iterations */
1341         inneriter                  += j_index_end - j_index_start;
1342
1343         /* Outer loop uses 18 flops */
1344     }
1345
1346     /* Increment number of outer iterations */
1347     outeriter        += nri;
1348
1349     /* Update outer/inner flops */
1350
1351     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*130);
1352 }