Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m128i          ewitab;
106     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
108     real             *ewtab;
109     __m256d          dummy_mask,cutoff_mask;
110     __m128           tmpmask0,tmpmask1;
111     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
112     __m256d          one     = _mm256_set1_pd(1.0);
113     __m256d          two     = _mm256_set1_pd(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_pd(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
132     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
133     beta2            = _mm256_mul_pd(beta,beta);
134     beta3            = _mm256_mul_pd(beta,beta2);
135
136     ewtab            = fr->ic->tabq_coul_FDV0;
137     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
138     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
143     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
144     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
145     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
146
147     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
148     rcutoff_scalar   = fr->rcoulomb;
149     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
150     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
151
152     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
153     rvdw             = _mm256_set1_pd(fr->rvdw);
154
155     /* Avoid stupid compiler warnings */
156     jnrA = jnrB = jnrC = jnrD = 0;
157     j_coord_offsetA = 0;
158     j_coord_offsetB = 0;
159     j_coord_offsetC = 0;
160     j_coord_offsetD = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     for(iidx=0;iidx<4*DIM;iidx++)
166     {
167         scratch[iidx] = 0.0;
168     }
169
170     /* Start outer loop over neighborlists */
171     for(iidx=0; iidx<nri; iidx++)
172     {
173         /* Load shift vector for this list */
174         i_shift_offset   = DIM*shiftidx[iidx];
175
176         /* Load limits for loop over neighbors */
177         j_index_start    = jindex[iidx];
178         j_index_end      = jindex[iidx+1];
179
180         /* Get outer coordinate index */
181         inr              = iinr[iidx];
182         i_coord_offset   = DIM*inr;
183
184         /* Load i particle coords and add shift vector */
185         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
186                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
187
188         fix0             = _mm256_setzero_pd();
189         fiy0             = _mm256_setzero_pd();
190         fiz0             = _mm256_setzero_pd();
191         fix1             = _mm256_setzero_pd();
192         fiy1             = _mm256_setzero_pd();
193         fiz1             = _mm256_setzero_pd();
194         fix2             = _mm256_setzero_pd();
195         fiy2             = _mm256_setzero_pd();
196         fiz2             = _mm256_setzero_pd();
197
198         /* Reset potential sums */
199         velecsum         = _mm256_setzero_pd();
200         vvdwsum          = _mm256_setzero_pd();
201
202         /* Start inner kernel loop */
203         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
204         {
205
206             /* Get j neighbor index, and coordinate index */
207             jnrA             = jjnr[jidx];
208             jnrB             = jjnr[jidx+1];
209             jnrC             = jjnr[jidx+2];
210             jnrD             = jjnr[jidx+3];
211             j_coord_offsetA  = DIM*jnrA;
212             j_coord_offsetB  = DIM*jnrB;
213             j_coord_offsetC  = DIM*jnrC;
214             j_coord_offsetD  = DIM*jnrD;
215
216             /* load j atom coordinates */
217             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
218                                                  x+j_coord_offsetC,x+j_coord_offsetD,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_pd(ix0,jx0);
223             dy00             = _mm256_sub_pd(iy0,jy0);
224             dz00             = _mm256_sub_pd(iz0,jz0);
225             dx10             = _mm256_sub_pd(ix1,jx0);
226             dy10             = _mm256_sub_pd(iy1,jy0);
227             dz10             = _mm256_sub_pd(iz1,jz0);
228             dx20             = _mm256_sub_pd(ix2,jx0);
229             dy20             = _mm256_sub_pd(iy2,jy0);
230             dz20             = _mm256_sub_pd(iz2,jz0);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
234             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
235             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
236
237             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
238             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
239             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
240
241             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
242             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
243             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
247                                                                  charge+jnrC+0,charge+jnrD+0);
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249             vdwjidx0B        = 2*vdwtype[jnrB+0];
250             vdwjidx0C        = 2*vdwtype[jnrC+0];
251             vdwjidx0D        = 2*vdwtype[jnrD+0];
252
253             fjx0             = _mm256_setzero_pd();
254             fjy0             = _mm256_setzero_pd();
255             fjz0             = _mm256_setzero_pd();
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             if (gmx_mm256_any_lt(rsq00,rcutoff2))
262             {
263
264             r00              = _mm256_mul_pd(rsq00,rinv00);
265
266             /* Compute parameters for interactions between i and j atoms */
267             qq00             = _mm256_mul_pd(iq0,jq0);
268             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
269                                             vdwioffsetptr0+vdwjidx0B,
270                                             vdwioffsetptr0+vdwjidx0C,
271                                             vdwioffsetptr0+vdwjidx0D,
272                                             &c6_00,&c12_00);
273
274             /* EWALD ELECTROSTATICS */
275
276             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
277             ewrt             = _mm256_mul_pd(r00,ewtabscale);
278             ewitab           = _mm256_cvttpd_epi32(ewrt);
279             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
280             ewitab           = _mm_slli_epi32(ewitab,2);
281             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
282             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
283             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
284             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
285             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
286             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
287             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
288             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
289             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
290
291             /* LENNARD-JONES DISPERSION/REPULSION */
292
293             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
294             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
295             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
296             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
297                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
298             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
299
300             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velec            = _mm256_and_pd(velec,cutoff_mask);
304             velecsum         = _mm256_add_pd(velecsum,velec);
305             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
306             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
307
308             fscal            = _mm256_add_pd(felec,fvdw);
309
310             fscal            = _mm256_and_pd(fscal,cutoff_mask);
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm256_mul_pd(fscal,dx00);
314             ty               = _mm256_mul_pd(fscal,dy00);
315             tz               = _mm256_mul_pd(fscal,dz00);
316
317             /* Update vectorial force */
318             fix0             = _mm256_add_pd(fix0,tx);
319             fiy0             = _mm256_add_pd(fiy0,ty);
320             fiz0             = _mm256_add_pd(fiz0,tz);
321
322             fjx0             = _mm256_add_pd(fjx0,tx);
323             fjy0             = _mm256_add_pd(fjy0,ty);
324             fjz0             = _mm256_add_pd(fjz0,tz);
325
326             }
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             if (gmx_mm256_any_lt(rsq10,rcutoff2))
333             {
334
335             r10              = _mm256_mul_pd(rsq10,rinv10);
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq10             = _mm256_mul_pd(iq1,jq0);
339
340             /* EWALD ELECTROSTATICS */
341
342             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
343             ewrt             = _mm256_mul_pd(r10,ewtabscale);
344             ewitab           = _mm256_cvttpd_epi32(ewrt);
345             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
346             ewitab           = _mm_slli_epi32(ewitab,2);
347             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
348             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
349             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
350             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
351             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
352             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
353             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
354             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
355             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
356
357             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velec            = _mm256_and_pd(velec,cutoff_mask);
361             velecsum         = _mm256_add_pd(velecsum,velec);
362
363             fscal            = felec;
364
365             fscal            = _mm256_and_pd(fscal,cutoff_mask);
366
367             /* Calculate temporary vectorial force */
368             tx               = _mm256_mul_pd(fscal,dx10);
369             ty               = _mm256_mul_pd(fscal,dy10);
370             tz               = _mm256_mul_pd(fscal,dz10);
371
372             /* Update vectorial force */
373             fix1             = _mm256_add_pd(fix1,tx);
374             fiy1             = _mm256_add_pd(fiy1,ty);
375             fiz1             = _mm256_add_pd(fiz1,tz);
376
377             fjx0             = _mm256_add_pd(fjx0,tx);
378             fjy0             = _mm256_add_pd(fjy0,ty);
379             fjz0             = _mm256_add_pd(fjz0,tz);
380
381             }
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             if (gmx_mm256_any_lt(rsq20,rcutoff2))
388             {
389
390             r20              = _mm256_mul_pd(rsq20,rinv20);
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq20             = _mm256_mul_pd(iq2,jq0);
394
395             /* EWALD ELECTROSTATICS */
396
397             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
398             ewrt             = _mm256_mul_pd(r20,ewtabscale);
399             ewitab           = _mm256_cvttpd_epi32(ewrt);
400             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
401             ewitab           = _mm_slli_epi32(ewitab,2);
402             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
403             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
404             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
405             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
406             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
407             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
408             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
409             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
410             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
411
412             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
413
414             /* Update potential sum for this i atom from the interaction with this j atom. */
415             velec            = _mm256_and_pd(velec,cutoff_mask);
416             velecsum         = _mm256_add_pd(velecsum,velec);
417
418             fscal            = felec;
419
420             fscal            = _mm256_and_pd(fscal,cutoff_mask);
421
422             /* Calculate temporary vectorial force */
423             tx               = _mm256_mul_pd(fscal,dx20);
424             ty               = _mm256_mul_pd(fscal,dy20);
425             tz               = _mm256_mul_pd(fscal,dz20);
426
427             /* Update vectorial force */
428             fix2             = _mm256_add_pd(fix2,tx);
429             fiy2             = _mm256_add_pd(fiy2,ty);
430             fiz2             = _mm256_add_pd(fiz2,tz);
431
432             fjx0             = _mm256_add_pd(fjx0,tx);
433             fjy0             = _mm256_add_pd(fjy0,ty);
434             fjz0             = _mm256_add_pd(fjz0,tz);
435
436             }
437
438             fjptrA             = f+j_coord_offsetA;
439             fjptrB             = f+j_coord_offsetB;
440             fjptrC             = f+j_coord_offsetC;
441             fjptrD             = f+j_coord_offsetD;
442
443             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
444
445             /* Inner loop uses 159 flops */
446         }
447
448         if(jidx<j_index_end)
449         {
450
451             /* Get j neighbor index, and coordinate index */
452             jnrlistA         = jjnr[jidx];
453             jnrlistB         = jjnr[jidx+1];
454             jnrlistC         = jjnr[jidx+2];
455             jnrlistD         = jjnr[jidx+3];
456             /* Sign of each element will be negative for non-real atoms.
457              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
458              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
459              */
460             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
461
462             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
463             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
464             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
465
466             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
467             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
468             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
469             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
470             j_coord_offsetA  = DIM*jnrA;
471             j_coord_offsetB  = DIM*jnrB;
472             j_coord_offsetC  = DIM*jnrC;
473             j_coord_offsetD  = DIM*jnrD;
474
475             /* load j atom coordinates */
476             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
477                                                  x+j_coord_offsetC,x+j_coord_offsetD,
478                                                  &jx0,&jy0,&jz0);
479
480             /* Calculate displacement vector */
481             dx00             = _mm256_sub_pd(ix0,jx0);
482             dy00             = _mm256_sub_pd(iy0,jy0);
483             dz00             = _mm256_sub_pd(iz0,jz0);
484             dx10             = _mm256_sub_pd(ix1,jx0);
485             dy10             = _mm256_sub_pd(iy1,jy0);
486             dz10             = _mm256_sub_pd(iz1,jz0);
487             dx20             = _mm256_sub_pd(ix2,jx0);
488             dy20             = _mm256_sub_pd(iy2,jy0);
489             dz20             = _mm256_sub_pd(iz2,jz0);
490
491             /* Calculate squared distance and things based on it */
492             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
493             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
494             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
495
496             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
497             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
498             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
499
500             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
501             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
502             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
503
504             /* Load parameters for j particles */
505             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
506                                                                  charge+jnrC+0,charge+jnrD+0);
507             vdwjidx0A        = 2*vdwtype[jnrA+0];
508             vdwjidx0B        = 2*vdwtype[jnrB+0];
509             vdwjidx0C        = 2*vdwtype[jnrC+0];
510             vdwjidx0D        = 2*vdwtype[jnrD+0];
511
512             fjx0             = _mm256_setzero_pd();
513             fjy0             = _mm256_setzero_pd();
514             fjz0             = _mm256_setzero_pd();
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             if (gmx_mm256_any_lt(rsq00,rcutoff2))
521             {
522
523             r00              = _mm256_mul_pd(rsq00,rinv00);
524             r00              = _mm256_andnot_pd(dummy_mask,r00);
525
526             /* Compute parameters for interactions between i and j atoms */
527             qq00             = _mm256_mul_pd(iq0,jq0);
528             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
529                                             vdwioffsetptr0+vdwjidx0B,
530                                             vdwioffsetptr0+vdwjidx0C,
531                                             vdwioffsetptr0+vdwjidx0D,
532                                             &c6_00,&c12_00);
533
534             /* EWALD ELECTROSTATICS */
535
536             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
537             ewrt             = _mm256_mul_pd(r00,ewtabscale);
538             ewitab           = _mm256_cvttpd_epi32(ewrt);
539             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
540             ewitab           = _mm_slli_epi32(ewitab,2);
541             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
542             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
543             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
544             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
545             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
546             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
547             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
548             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
549             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
550
551             /* LENNARD-JONES DISPERSION/REPULSION */
552
553             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
554             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
555             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
556             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
557                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
558             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
559
560             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             velec            = _mm256_and_pd(velec,cutoff_mask);
564             velec            = _mm256_andnot_pd(dummy_mask,velec);
565             velecsum         = _mm256_add_pd(velecsum,velec);
566             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
567             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
568             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
569
570             fscal            = _mm256_add_pd(felec,fvdw);
571
572             fscal            = _mm256_and_pd(fscal,cutoff_mask);
573
574             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm256_mul_pd(fscal,dx00);
578             ty               = _mm256_mul_pd(fscal,dy00);
579             tz               = _mm256_mul_pd(fscal,dz00);
580
581             /* Update vectorial force */
582             fix0             = _mm256_add_pd(fix0,tx);
583             fiy0             = _mm256_add_pd(fiy0,ty);
584             fiz0             = _mm256_add_pd(fiz0,tz);
585
586             fjx0             = _mm256_add_pd(fjx0,tx);
587             fjy0             = _mm256_add_pd(fjy0,ty);
588             fjz0             = _mm256_add_pd(fjz0,tz);
589
590             }
591
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             if (gmx_mm256_any_lt(rsq10,rcutoff2))
597             {
598
599             r10              = _mm256_mul_pd(rsq10,rinv10);
600             r10              = _mm256_andnot_pd(dummy_mask,r10);
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq10             = _mm256_mul_pd(iq1,jq0);
604
605             /* EWALD ELECTROSTATICS */
606
607             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
608             ewrt             = _mm256_mul_pd(r10,ewtabscale);
609             ewitab           = _mm256_cvttpd_epi32(ewrt);
610             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
611             ewitab           = _mm_slli_epi32(ewitab,2);
612             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
613             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
614             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
615             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
616             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
617             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
618             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
619             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
620             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
621
622             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
623
624             /* Update potential sum for this i atom from the interaction with this j atom. */
625             velec            = _mm256_and_pd(velec,cutoff_mask);
626             velec            = _mm256_andnot_pd(dummy_mask,velec);
627             velecsum         = _mm256_add_pd(velecsum,velec);
628
629             fscal            = felec;
630
631             fscal            = _mm256_and_pd(fscal,cutoff_mask);
632
633             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
634
635             /* Calculate temporary vectorial force */
636             tx               = _mm256_mul_pd(fscal,dx10);
637             ty               = _mm256_mul_pd(fscal,dy10);
638             tz               = _mm256_mul_pd(fscal,dz10);
639
640             /* Update vectorial force */
641             fix1             = _mm256_add_pd(fix1,tx);
642             fiy1             = _mm256_add_pd(fiy1,ty);
643             fiz1             = _mm256_add_pd(fiz1,tz);
644
645             fjx0             = _mm256_add_pd(fjx0,tx);
646             fjy0             = _mm256_add_pd(fjy0,ty);
647             fjz0             = _mm256_add_pd(fjz0,tz);
648
649             }
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             if (gmx_mm256_any_lt(rsq20,rcutoff2))
656             {
657
658             r20              = _mm256_mul_pd(rsq20,rinv20);
659             r20              = _mm256_andnot_pd(dummy_mask,r20);
660
661             /* Compute parameters for interactions between i and j atoms */
662             qq20             = _mm256_mul_pd(iq2,jq0);
663
664             /* EWALD ELECTROSTATICS */
665
666             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
667             ewrt             = _mm256_mul_pd(r20,ewtabscale);
668             ewitab           = _mm256_cvttpd_epi32(ewrt);
669             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
670             ewitab           = _mm_slli_epi32(ewitab,2);
671             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
672             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
673             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
674             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
675             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
676             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
677             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
678             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
679             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
680
681             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
682
683             /* Update potential sum for this i atom from the interaction with this j atom. */
684             velec            = _mm256_and_pd(velec,cutoff_mask);
685             velec            = _mm256_andnot_pd(dummy_mask,velec);
686             velecsum         = _mm256_add_pd(velecsum,velec);
687
688             fscal            = felec;
689
690             fscal            = _mm256_and_pd(fscal,cutoff_mask);
691
692             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
693
694             /* Calculate temporary vectorial force */
695             tx               = _mm256_mul_pd(fscal,dx20);
696             ty               = _mm256_mul_pd(fscal,dy20);
697             tz               = _mm256_mul_pd(fscal,dz20);
698
699             /* Update vectorial force */
700             fix2             = _mm256_add_pd(fix2,tx);
701             fiy2             = _mm256_add_pd(fiy2,ty);
702             fiz2             = _mm256_add_pd(fiz2,tz);
703
704             fjx0             = _mm256_add_pd(fjx0,tx);
705             fjy0             = _mm256_add_pd(fjy0,ty);
706             fjz0             = _mm256_add_pd(fjz0,tz);
707
708             }
709
710             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
711             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
712             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
713             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
714
715             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
716
717             /* Inner loop uses 162 flops */
718         }
719
720         /* End of innermost loop */
721
722         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
723                                                  f+i_coord_offset,fshift+i_shift_offset);
724
725         ggid                        = gid[iidx];
726         /* Update potential energies */
727         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
728         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
729
730         /* Increment number of inner iterations */
731         inneriter                  += j_index_end - j_index_start;
732
733         /* Outer loop uses 20 flops */
734     }
735
736     /* Increment number of outer iterations */
737     outeriter        += nri;
738
739     /* Update outer/inner flops */
740
741     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*162);
742 }
743 /*
744  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_256_double
745  * Electrostatics interaction: Ewald
746  * VdW interaction:            LennardJones
747  * Geometry:                   Water3-Particle
748  * Calculate force/pot:        Force
749  */
750 void
751 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_256_double
752                     (t_nblist                    * gmx_restrict       nlist,
753                      rvec                        * gmx_restrict          xx,
754                      rvec                        * gmx_restrict          ff,
755                      t_forcerec                  * gmx_restrict          fr,
756                      t_mdatoms                   * gmx_restrict     mdatoms,
757                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
758                      t_nrnb                      * gmx_restrict        nrnb)
759 {
760     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
761      * just 0 for non-waters.
762      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
763      * jnr indices corresponding to data put in the four positions in the SIMD register.
764      */
765     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
766     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
767     int              jnrA,jnrB,jnrC,jnrD;
768     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
769     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
770     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
771     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
772     real             rcutoff_scalar;
773     real             *shiftvec,*fshift,*x,*f;
774     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
775     real             scratch[4*DIM];
776     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
777     real *           vdwioffsetptr0;
778     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
779     real *           vdwioffsetptr1;
780     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
781     real *           vdwioffsetptr2;
782     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
783     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
784     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
785     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
786     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
787     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
788     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
789     real             *charge;
790     int              nvdwtype;
791     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
792     int              *vdwtype;
793     real             *vdwparam;
794     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
795     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
796     __m128i          ewitab;
797     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
798     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
799     real             *ewtab;
800     __m256d          dummy_mask,cutoff_mask;
801     __m128           tmpmask0,tmpmask1;
802     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
803     __m256d          one     = _mm256_set1_pd(1.0);
804     __m256d          two     = _mm256_set1_pd(2.0);
805     x                = xx[0];
806     f                = ff[0];
807
808     nri              = nlist->nri;
809     iinr             = nlist->iinr;
810     jindex           = nlist->jindex;
811     jjnr             = nlist->jjnr;
812     shiftidx         = nlist->shift;
813     gid              = nlist->gid;
814     shiftvec         = fr->shift_vec[0];
815     fshift           = fr->fshift[0];
816     facel            = _mm256_set1_pd(fr->epsfac);
817     charge           = mdatoms->chargeA;
818     nvdwtype         = fr->ntype;
819     vdwparam         = fr->nbfp;
820     vdwtype          = mdatoms->typeA;
821
822     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
823     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
824     beta2            = _mm256_mul_pd(beta,beta);
825     beta3            = _mm256_mul_pd(beta,beta2);
826
827     ewtab            = fr->ic->tabq_coul_F;
828     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
829     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
830
831     /* Setup water-specific parameters */
832     inr              = nlist->iinr[0];
833     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
834     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
835     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
836     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
837
838     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
839     rcutoff_scalar   = fr->rcoulomb;
840     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
841     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
842
843     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
844     rvdw             = _mm256_set1_pd(fr->rvdw);
845
846     /* Avoid stupid compiler warnings */
847     jnrA = jnrB = jnrC = jnrD = 0;
848     j_coord_offsetA = 0;
849     j_coord_offsetB = 0;
850     j_coord_offsetC = 0;
851     j_coord_offsetD = 0;
852
853     outeriter        = 0;
854     inneriter        = 0;
855
856     for(iidx=0;iidx<4*DIM;iidx++)
857     {
858         scratch[iidx] = 0.0;
859     }
860
861     /* Start outer loop over neighborlists */
862     for(iidx=0; iidx<nri; iidx++)
863     {
864         /* Load shift vector for this list */
865         i_shift_offset   = DIM*shiftidx[iidx];
866
867         /* Load limits for loop over neighbors */
868         j_index_start    = jindex[iidx];
869         j_index_end      = jindex[iidx+1];
870
871         /* Get outer coordinate index */
872         inr              = iinr[iidx];
873         i_coord_offset   = DIM*inr;
874
875         /* Load i particle coords and add shift vector */
876         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
877                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
878
879         fix0             = _mm256_setzero_pd();
880         fiy0             = _mm256_setzero_pd();
881         fiz0             = _mm256_setzero_pd();
882         fix1             = _mm256_setzero_pd();
883         fiy1             = _mm256_setzero_pd();
884         fiz1             = _mm256_setzero_pd();
885         fix2             = _mm256_setzero_pd();
886         fiy2             = _mm256_setzero_pd();
887         fiz2             = _mm256_setzero_pd();
888
889         /* Start inner kernel loop */
890         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
891         {
892
893             /* Get j neighbor index, and coordinate index */
894             jnrA             = jjnr[jidx];
895             jnrB             = jjnr[jidx+1];
896             jnrC             = jjnr[jidx+2];
897             jnrD             = jjnr[jidx+3];
898             j_coord_offsetA  = DIM*jnrA;
899             j_coord_offsetB  = DIM*jnrB;
900             j_coord_offsetC  = DIM*jnrC;
901             j_coord_offsetD  = DIM*jnrD;
902
903             /* load j atom coordinates */
904             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
905                                                  x+j_coord_offsetC,x+j_coord_offsetD,
906                                                  &jx0,&jy0,&jz0);
907
908             /* Calculate displacement vector */
909             dx00             = _mm256_sub_pd(ix0,jx0);
910             dy00             = _mm256_sub_pd(iy0,jy0);
911             dz00             = _mm256_sub_pd(iz0,jz0);
912             dx10             = _mm256_sub_pd(ix1,jx0);
913             dy10             = _mm256_sub_pd(iy1,jy0);
914             dz10             = _mm256_sub_pd(iz1,jz0);
915             dx20             = _mm256_sub_pd(ix2,jx0);
916             dy20             = _mm256_sub_pd(iy2,jy0);
917             dz20             = _mm256_sub_pd(iz2,jz0);
918
919             /* Calculate squared distance and things based on it */
920             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
921             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
922             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
923
924             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
925             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
926             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
927
928             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
929             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
930             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
931
932             /* Load parameters for j particles */
933             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
934                                                                  charge+jnrC+0,charge+jnrD+0);
935             vdwjidx0A        = 2*vdwtype[jnrA+0];
936             vdwjidx0B        = 2*vdwtype[jnrB+0];
937             vdwjidx0C        = 2*vdwtype[jnrC+0];
938             vdwjidx0D        = 2*vdwtype[jnrD+0];
939
940             fjx0             = _mm256_setzero_pd();
941             fjy0             = _mm256_setzero_pd();
942             fjz0             = _mm256_setzero_pd();
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             if (gmx_mm256_any_lt(rsq00,rcutoff2))
949             {
950
951             r00              = _mm256_mul_pd(rsq00,rinv00);
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq00             = _mm256_mul_pd(iq0,jq0);
955             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
956                                             vdwioffsetptr0+vdwjidx0B,
957                                             vdwioffsetptr0+vdwjidx0C,
958                                             vdwioffsetptr0+vdwjidx0D,
959                                             &c6_00,&c12_00);
960
961             /* EWALD ELECTROSTATICS */
962
963             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964             ewrt             = _mm256_mul_pd(r00,ewtabscale);
965             ewitab           = _mm256_cvttpd_epi32(ewrt);
966             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
967             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
968                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
969                                             &ewtabF,&ewtabFn);
970             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
971             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
972
973             /* LENNARD-JONES DISPERSION/REPULSION */
974
975             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
976             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
977
978             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
979
980             fscal            = _mm256_add_pd(felec,fvdw);
981
982             fscal            = _mm256_and_pd(fscal,cutoff_mask);
983
984             /* Calculate temporary vectorial force */
985             tx               = _mm256_mul_pd(fscal,dx00);
986             ty               = _mm256_mul_pd(fscal,dy00);
987             tz               = _mm256_mul_pd(fscal,dz00);
988
989             /* Update vectorial force */
990             fix0             = _mm256_add_pd(fix0,tx);
991             fiy0             = _mm256_add_pd(fiy0,ty);
992             fiz0             = _mm256_add_pd(fiz0,tz);
993
994             fjx0             = _mm256_add_pd(fjx0,tx);
995             fjy0             = _mm256_add_pd(fjy0,ty);
996             fjz0             = _mm256_add_pd(fjz0,tz);
997
998             }
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1005             {
1006
1007             r10              = _mm256_mul_pd(rsq10,rinv10);
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             qq10             = _mm256_mul_pd(iq1,jq0);
1011
1012             /* EWALD ELECTROSTATICS */
1013
1014             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1015             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1016             ewitab           = _mm256_cvttpd_epi32(ewrt);
1017             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1018             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1019                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1020                                             &ewtabF,&ewtabFn);
1021             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1022             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1023
1024             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1025
1026             fscal            = felec;
1027
1028             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1029
1030             /* Calculate temporary vectorial force */
1031             tx               = _mm256_mul_pd(fscal,dx10);
1032             ty               = _mm256_mul_pd(fscal,dy10);
1033             tz               = _mm256_mul_pd(fscal,dz10);
1034
1035             /* Update vectorial force */
1036             fix1             = _mm256_add_pd(fix1,tx);
1037             fiy1             = _mm256_add_pd(fiy1,ty);
1038             fiz1             = _mm256_add_pd(fiz1,tz);
1039
1040             fjx0             = _mm256_add_pd(fjx0,tx);
1041             fjy0             = _mm256_add_pd(fjy0,ty);
1042             fjz0             = _mm256_add_pd(fjz0,tz);
1043
1044             }
1045
1046             /**************************
1047              * CALCULATE INTERACTIONS *
1048              **************************/
1049
1050             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1051             {
1052
1053             r20              = _mm256_mul_pd(rsq20,rinv20);
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq20             = _mm256_mul_pd(iq2,jq0);
1057
1058             /* EWALD ELECTROSTATICS */
1059
1060             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1061             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1062             ewitab           = _mm256_cvttpd_epi32(ewrt);
1063             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1064             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1065                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1066                                             &ewtabF,&ewtabFn);
1067             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1068             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1069
1070             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1071
1072             fscal            = felec;
1073
1074             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm256_mul_pd(fscal,dx20);
1078             ty               = _mm256_mul_pd(fscal,dy20);
1079             tz               = _mm256_mul_pd(fscal,dz20);
1080
1081             /* Update vectorial force */
1082             fix2             = _mm256_add_pd(fix2,tx);
1083             fiy2             = _mm256_add_pd(fiy2,ty);
1084             fiz2             = _mm256_add_pd(fiz2,tz);
1085
1086             fjx0             = _mm256_add_pd(fjx0,tx);
1087             fjy0             = _mm256_add_pd(fjy0,ty);
1088             fjz0             = _mm256_add_pd(fjz0,tz);
1089
1090             }
1091
1092             fjptrA             = f+j_coord_offsetA;
1093             fjptrB             = f+j_coord_offsetB;
1094             fjptrC             = f+j_coord_offsetC;
1095             fjptrD             = f+j_coord_offsetD;
1096
1097             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1098
1099             /* Inner loop uses 127 flops */
1100         }
1101
1102         if(jidx<j_index_end)
1103         {
1104
1105             /* Get j neighbor index, and coordinate index */
1106             jnrlistA         = jjnr[jidx];
1107             jnrlistB         = jjnr[jidx+1];
1108             jnrlistC         = jjnr[jidx+2];
1109             jnrlistD         = jjnr[jidx+3];
1110             /* Sign of each element will be negative for non-real atoms.
1111              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1112              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1113              */
1114             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1115
1116             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1117             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1118             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1119
1120             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1121             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1122             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1123             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1124             j_coord_offsetA  = DIM*jnrA;
1125             j_coord_offsetB  = DIM*jnrB;
1126             j_coord_offsetC  = DIM*jnrC;
1127             j_coord_offsetD  = DIM*jnrD;
1128
1129             /* load j atom coordinates */
1130             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1131                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1132                                                  &jx0,&jy0,&jz0);
1133
1134             /* Calculate displacement vector */
1135             dx00             = _mm256_sub_pd(ix0,jx0);
1136             dy00             = _mm256_sub_pd(iy0,jy0);
1137             dz00             = _mm256_sub_pd(iz0,jz0);
1138             dx10             = _mm256_sub_pd(ix1,jx0);
1139             dy10             = _mm256_sub_pd(iy1,jy0);
1140             dz10             = _mm256_sub_pd(iz1,jz0);
1141             dx20             = _mm256_sub_pd(ix2,jx0);
1142             dy20             = _mm256_sub_pd(iy2,jy0);
1143             dz20             = _mm256_sub_pd(iz2,jz0);
1144
1145             /* Calculate squared distance and things based on it */
1146             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1147             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1148             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1149
1150             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1151             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1152             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1153
1154             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1155             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1156             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1157
1158             /* Load parameters for j particles */
1159             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1160                                                                  charge+jnrC+0,charge+jnrD+0);
1161             vdwjidx0A        = 2*vdwtype[jnrA+0];
1162             vdwjidx0B        = 2*vdwtype[jnrB+0];
1163             vdwjidx0C        = 2*vdwtype[jnrC+0];
1164             vdwjidx0D        = 2*vdwtype[jnrD+0];
1165
1166             fjx0             = _mm256_setzero_pd();
1167             fjy0             = _mm256_setzero_pd();
1168             fjz0             = _mm256_setzero_pd();
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1175             {
1176
1177             r00              = _mm256_mul_pd(rsq00,rinv00);
1178             r00              = _mm256_andnot_pd(dummy_mask,r00);
1179
1180             /* Compute parameters for interactions between i and j atoms */
1181             qq00             = _mm256_mul_pd(iq0,jq0);
1182             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1183                                             vdwioffsetptr0+vdwjidx0B,
1184                                             vdwioffsetptr0+vdwjidx0C,
1185                                             vdwioffsetptr0+vdwjidx0D,
1186                                             &c6_00,&c12_00);
1187
1188             /* EWALD ELECTROSTATICS */
1189
1190             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1191             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1192             ewitab           = _mm256_cvttpd_epi32(ewrt);
1193             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1194             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1195                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1196                                             &ewtabF,&ewtabFn);
1197             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1198             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1199
1200             /* LENNARD-JONES DISPERSION/REPULSION */
1201
1202             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1203             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1204
1205             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1206
1207             fscal            = _mm256_add_pd(felec,fvdw);
1208
1209             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1210
1211             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1212
1213             /* Calculate temporary vectorial force */
1214             tx               = _mm256_mul_pd(fscal,dx00);
1215             ty               = _mm256_mul_pd(fscal,dy00);
1216             tz               = _mm256_mul_pd(fscal,dz00);
1217
1218             /* Update vectorial force */
1219             fix0             = _mm256_add_pd(fix0,tx);
1220             fiy0             = _mm256_add_pd(fiy0,ty);
1221             fiz0             = _mm256_add_pd(fiz0,tz);
1222
1223             fjx0             = _mm256_add_pd(fjx0,tx);
1224             fjy0             = _mm256_add_pd(fjy0,ty);
1225             fjz0             = _mm256_add_pd(fjz0,tz);
1226
1227             }
1228
1229             /**************************
1230              * CALCULATE INTERACTIONS *
1231              **************************/
1232
1233             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1234             {
1235
1236             r10              = _mm256_mul_pd(rsq10,rinv10);
1237             r10              = _mm256_andnot_pd(dummy_mask,r10);
1238
1239             /* Compute parameters for interactions between i and j atoms */
1240             qq10             = _mm256_mul_pd(iq1,jq0);
1241
1242             /* EWALD ELECTROSTATICS */
1243
1244             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1245             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1246             ewitab           = _mm256_cvttpd_epi32(ewrt);
1247             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1248             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1249                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1250                                             &ewtabF,&ewtabFn);
1251             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1252             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1253
1254             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1255
1256             fscal            = felec;
1257
1258             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1259
1260             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1261
1262             /* Calculate temporary vectorial force */
1263             tx               = _mm256_mul_pd(fscal,dx10);
1264             ty               = _mm256_mul_pd(fscal,dy10);
1265             tz               = _mm256_mul_pd(fscal,dz10);
1266
1267             /* Update vectorial force */
1268             fix1             = _mm256_add_pd(fix1,tx);
1269             fiy1             = _mm256_add_pd(fiy1,ty);
1270             fiz1             = _mm256_add_pd(fiz1,tz);
1271
1272             fjx0             = _mm256_add_pd(fjx0,tx);
1273             fjy0             = _mm256_add_pd(fjy0,ty);
1274             fjz0             = _mm256_add_pd(fjz0,tz);
1275
1276             }
1277
1278             /**************************
1279              * CALCULATE INTERACTIONS *
1280              **************************/
1281
1282             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1283             {
1284
1285             r20              = _mm256_mul_pd(rsq20,rinv20);
1286             r20              = _mm256_andnot_pd(dummy_mask,r20);
1287
1288             /* Compute parameters for interactions between i and j atoms */
1289             qq20             = _mm256_mul_pd(iq2,jq0);
1290
1291             /* EWALD ELECTROSTATICS */
1292
1293             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1294             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1295             ewitab           = _mm256_cvttpd_epi32(ewrt);
1296             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1297             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1298                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1299                                             &ewtabF,&ewtabFn);
1300             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1301             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1302
1303             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1304
1305             fscal            = felec;
1306
1307             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1308
1309             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1310
1311             /* Calculate temporary vectorial force */
1312             tx               = _mm256_mul_pd(fscal,dx20);
1313             ty               = _mm256_mul_pd(fscal,dy20);
1314             tz               = _mm256_mul_pd(fscal,dz20);
1315
1316             /* Update vectorial force */
1317             fix2             = _mm256_add_pd(fix2,tx);
1318             fiy2             = _mm256_add_pd(fiy2,ty);
1319             fiz2             = _mm256_add_pd(fiz2,tz);
1320
1321             fjx0             = _mm256_add_pd(fjx0,tx);
1322             fjy0             = _mm256_add_pd(fjy0,ty);
1323             fjz0             = _mm256_add_pd(fjz0,tz);
1324
1325             }
1326
1327             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1328             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1329             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1330             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1331
1332             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1333
1334             /* Inner loop uses 130 flops */
1335         }
1336
1337         /* End of innermost loop */
1338
1339         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1340                                                  f+i_coord_offset,fshift+i_shift_offset);
1341
1342         /* Increment number of inner iterations */
1343         inneriter                  += j_index_end - j_index_start;
1344
1345         /* Outer loop uses 18 flops */
1346     }
1347
1348     /* Increment number of outer iterations */
1349     outeriter        += nri;
1350
1351     /* Update outer/inner flops */
1352
1353     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*130);
1354 }