f3cda8554cbe25ed600f47487c0c3f60097369b6
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m128i          ewitab;
98     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
100     real             *ewtab;
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
124     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
125     beta2            = _mm256_mul_pd(beta,beta);
126     beta3            = _mm256_mul_pd(beta,beta2);
127
128     ewtab            = fr->ic->tabq_coul_FDV0;
129     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
130     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
131
132     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
133     rcutoff_scalar   = fr->rcoulomb;
134     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
135     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
136
137     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
138     rvdw             = _mm256_set1_pd(fr->rvdw);
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
171
172         fix0             = _mm256_setzero_pd();
173         fiy0             = _mm256_setzero_pd();
174         fiz0             = _mm256_setzero_pd();
175
176         /* Load parameters for i particles */
177         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
178         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_pd();
182         vvdwsum          = _mm256_setzero_pd();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm256_sub_pd(ix0,jx0);
205             dy00             = _mm256_sub_pd(iy0,jy0);
206             dz00             = _mm256_sub_pd(iz0,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
210
211             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
212
213             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
217                                                                  charge+jnrC+0,charge+jnrD+0);
218             vdwjidx0A        = 2*vdwtype[jnrA+0];
219             vdwjidx0B        = 2*vdwtype[jnrB+0];
220             vdwjidx0C        = 2*vdwtype[jnrC+0];
221             vdwjidx0D        = 2*vdwtype[jnrD+0];
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             if (gmx_mm256_any_lt(rsq00,rcutoff2))
228             {
229
230             r00              = _mm256_mul_pd(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq00             = _mm256_mul_pd(iq0,jq0);
234             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
235                                             vdwioffsetptr0+vdwjidx0B,
236                                             vdwioffsetptr0+vdwjidx0C,
237                                             vdwioffsetptr0+vdwjidx0D,
238                                             &c6_00,&c12_00);
239
240             /* EWALD ELECTROSTATICS */
241
242             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
243             ewrt             = _mm256_mul_pd(r00,ewtabscale);
244             ewitab           = _mm256_cvttpd_epi32(ewrt);
245             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
246             ewitab           = _mm_slli_epi32(ewitab,2);
247             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
248             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
249             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
250             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
251             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
252             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
253             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
254             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
255             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
256
257             /* LENNARD-JONES DISPERSION/REPULSION */
258
259             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
260             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
261             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
262             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
263                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
264             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
265
266             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velec            = _mm256_and_pd(velec,cutoff_mask);
270             velecsum         = _mm256_add_pd(velecsum,velec);
271             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
272             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
273
274             fscal            = _mm256_add_pd(felec,fvdw);
275
276             fscal            = _mm256_and_pd(fscal,cutoff_mask);
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm256_mul_pd(fscal,dx00);
280             ty               = _mm256_mul_pd(fscal,dy00);
281             tz               = _mm256_mul_pd(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm256_add_pd(fix0,tx);
285             fiy0             = _mm256_add_pd(fiy0,ty);
286             fiz0             = _mm256_add_pd(fiz0,tz);
287
288             fjptrA             = f+j_coord_offsetA;
289             fjptrB             = f+j_coord_offsetB;
290             fjptrC             = f+j_coord_offsetC;
291             fjptrD             = f+j_coord_offsetD;
292             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
293
294             }
295
296             /* Inner loop uses 64 flops */
297         }
298
299         if(jidx<j_index_end)
300         {
301
302             /* Get j neighbor index, and coordinate index */
303             jnrlistA         = jjnr[jidx];
304             jnrlistB         = jjnr[jidx+1];
305             jnrlistC         = jjnr[jidx+2];
306             jnrlistD         = jjnr[jidx+3];
307             /* Sign of each element will be negative for non-real atoms.
308              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
309              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
310              */
311             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
312
313             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
314             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
315             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
316
317             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
318             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
319             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
320             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
321             j_coord_offsetA  = DIM*jnrA;
322             j_coord_offsetB  = DIM*jnrB;
323             j_coord_offsetC  = DIM*jnrC;
324             j_coord_offsetD  = DIM*jnrD;
325
326             /* load j atom coordinates */
327             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
328                                                  x+j_coord_offsetC,x+j_coord_offsetD,
329                                                  &jx0,&jy0,&jz0);
330
331             /* Calculate displacement vector */
332             dx00             = _mm256_sub_pd(ix0,jx0);
333             dy00             = _mm256_sub_pd(iy0,jy0);
334             dz00             = _mm256_sub_pd(iz0,jz0);
335
336             /* Calculate squared distance and things based on it */
337             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
338
339             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
340
341             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
342
343             /* Load parameters for j particles */
344             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
345                                                                  charge+jnrC+0,charge+jnrD+0);
346             vdwjidx0A        = 2*vdwtype[jnrA+0];
347             vdwjidx0B        = 2*vdwtype[jnrB+0];
348             vdwjidx0C        = 2*vdwtype[jnrC+0];
349             vdwjidx0D        = 2*vdwtype[jnrD+0];
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm256_any_lt(rsq00,rcutoff2))
356             {
357
358             r00              = _mm256_mul_pd(rsq00,rinv00);
359             r00              = _mm256_andnot_pd(dummy_mask,r00);
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq00             = _mm256_mul_pd(iq0,jq0);
363             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
364                                             vdwioffsetptr0+vdwjidx0B,
365                                             vdwioffsetptr0+vdwjidx0C,
366                                             vdwioffsetptr0+vdwjidx0D,
367                                             &c6_00,&c12_00);
368
369             /* EWALD ELECTROSTATICS */
370
371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
372             ewrt             = _mm256_mul_pd(r00,ewtabscale);
373             ewitab           = _mm256_cvttpd_epi32(ewrt);
374             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
375             ewitab           = _mm_slli_epi32(ewitab,2);
376             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
377             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
378             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
379             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
380             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
381             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
382             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
383             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
384             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
385
386             /* LENNARD-JONES DISPERSION/REPULSION */
387
388             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
389             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
390             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
391             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
392                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
393             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
394
395             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
396
397             /* Update potential sum for this i atom from the interaction with this j atom. */
398             velec            = _mm256_and_pd(velec,cutoff_mask);
399             velec            = _mm256_andnot_pd(dummy_mask,velec);
400             velecsum         = _mm256_add_pd(velecsum,velec);
401             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
402             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
403             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
404
405             fscal            = _mm256_add_pd(felec,fvdw);
406
407             fscal            = _mm256_and_pd(fscal,cutoff_mask);
408
409             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
410
411             /* Calculate temporary vectorial force */
412             tx               = _mm256_mul_pd(fscal,dx00);
413             ty               = _mm256_mul_pd(fscal,dy00);
414             tz               = _mm256_mul_pd(fscal,dz00);
415
416             /* Update vectorial force */
417             fix0             = _mm256_add_pd(fix0,tx);
418             fiy0             = _mm256_add_pd(fiy0,ty);
419             fiz0             = _mm256_add_pd(fiz0,tz);
420
421             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
422             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
423             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
424             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
425             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
426
427             }
428
429             /* Inner loop uses 65 flops */
430         }
431
432         /* End of innermost loop */
433
434         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
435                                                  f+i_coord_offset,fshift+i_shift_offset);
436
437         ggid                        = gid[iidx];
438         /* Update potential energies */
439         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
440         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
441
442         /* Increment number of inner iterations */
443         inneriter                  += j_index_end - j_index_start;
444
445         /* Outer loop uses 9 flops */
446     }
447
448     /* Increment number of outer iterations */
449     outeriter        += nri;
450
451     /* Update outer/inner flops */
452
453     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*65);
454 }
455 /*
456  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_double
457  * Electrostatics interaction: Ewald
458  * VdW interaction:            LennardJones
459  * Geometry:                   Particle-Particle
460  * Calculate force/pot:        Force
461  */
462 void
463 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_double
464                     (t_nblist                    * gmx_restrict       nlist,
465                      rvec                        * gmx_restrict          xx,
466                      rvec                        * gmx_restrict          ff,
467                      t_forcerec                  * gmx_restrict          fr,
468                      t_mdatoms                   * gmx_restrict     mdatoms,
469                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
470                      t_nrnb                      * gmx_restrict        nrnb)
471 {
472     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
473      * just 0 for non-waters.
474      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
475      * jnr indices corresponding to data put in the four positions in the SIMD register.
476      */
477     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
478     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
479     int              jnrA,jnrB,jnrC,jnrD;
480     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
481     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
482     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
483     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
484     real             rcutoff_scalar;
485     real             *shiftvec,*fshift,*x,*f;
486     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
487     real             scratch[4*DIM];
488     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
489     real *           vdwioffsetptr0;
490     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
491     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
492     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
493     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
494     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
495     real             *charge;
496     int              nvdwtype;
497     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
498     int              *vdwtype;
499     real             *vdwparam;
500     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
501     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
502     __m128i          ewitab;
503     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
504     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
505     real             *ewtab;
506     __m256d          dummy_mask,cutoff_mask;
507     __m128           tmpmask0,tmpmask1;
508     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
509     __m256d          one     = _mm256_set1_pd(1.0);
510     __m256d          two     = _mm256_set1_pd(2.0);
511     x                = xx[0];
512     f                = ff[0];
513
514     nri              = nlist->nri;
515     iinr             = nlist->iinr;
516     jindex           = nlist->jindex;
517     jjnr             = nlist->jjnr;
518     shiftidx         = nlist->shift;
519     gid              = nlist->gid;
520     shiftvec         = fr->shift_vec[0];
521     fshift           = fr->fshift[0];
522     facel            = _mm256_set1_pd(fr->epsfac);
523     charge           = mdatoms->chargeA;
524     nvdwtype         = fr->ntype;
525     vdwparam         = fr->nbfp;
526     vdwtype          = mdatoms->typeA;
527
528     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
529     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
530     beta2            = _mm256_mul_pd(beta,beta);
531     beta3            = _mm256_mul_pd(beta,beta2);
532
533     ewtab            = fr->ic->tabq_coul_F;
534     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
535     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
536
537     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
538     rcutoff_scalar   = fr->rcoulomb;
539     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
540     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
541
542     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
543     rvdw             = _mm256_set1_pd(fr->rvdw);
544
545     /* Avoid stupid compiler warnings */
546     jnrA = jnrB = jnrC = jnrD = 0;
547     j_coord_offsetA = 0;
548     j_coord_offsetB = 0;
549     j_coord_offsetC = 0;
550     j_coord_offsetD = 0;
551
552     outeriter        = 0;
553     inneriter        = 0;
554
555     for(iidx=0;iidx<4*DIM;iidx++)
556     {
557         scratch[iidx] = 0.0;
558     }
559
560     /* Start outer loop over neighborlists */
561     for(iidx=0; iidx<nri; iidx++)
562     {
563         /* Load shift vector for this list */
564         i_shift_offset   = DIM*shiftidx[iidx];
565
566         /* Load limits for loop over neighbors */
567         j_index_start    = jindex[iidx];
568         j_index_end      = jindex[iidx+1];
569
570         /* Get outer coordinate index */
571         inr              = iinr[iidx];
572         i_coord_offset   = DIM*inr;
573
574         /* Load i particle coords and add shift vector */
575         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
576
577         fix0             = _mm256_setzero_pd();
578         fiy0             = _mm256_setzero_pd();
579         fiz0             = _mm256_setzero_pd();
580
581         /* Load parameters for i particles */
582         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
583         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
584
585         /* Start inner kernel loop */
586         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
587         {
588
589             /* Get j neighbor index, and coordinate index */
590             jnrA             = jjnr[jidx];
591             jnrB             = jjnr[jidx+1];
592             jnrC             = jjnr[jidx+2];
593             jnrD             = jjnr[jidx+3];
594             j_coord_offsetA  = DIM*jnrA;
595             j_coord_offsetB  = DIM*jnrB;
596             j_coord_offsetC  = DIM*jnrC;
597             j_coord_offsetD  = DIM*jnrD;
598
599             /* load j atom coordinates */
600             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
601                                                  x+j_coord_offsetC,x+j_coord_offsetD,
602                                                  &jx0,&jy0,&jz0);
603
604             /* Calculate displacement vector */
605             dx00             = _mm256_sub_pd(ix0,jx0);
606             dy00             = _mm256_sub_pd(iy0,jy0);
607             dz00             = _mm256_sub_pd(iz0,jz0);
608
609             /* Calculate squared distance and things based on it */
610             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
611
612             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
613
614             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
615
616             /* Load parameters for j particles */
617             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
618                                                                  charge+jnrC+0,charge+jnrD+0);
619             vdwjidx0A        = 2*vdwtype[jnrA+0];
620             vdwjidx0B        = 2*vdwtype[jnrB+0];
621             vdwjidx0C        = 2*vdwtype[jnrC+0];
622             vdwjidx0D        = 2*vdwtype[jnrD+0];
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             if (gmx_mm256_any_lt(rsq00,rcutoff2))
629             {
630
631             r00              = _mm256_mul_pd(rsq00,rinv00);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq00             = _mm256_mul_pd(iq0,jq0);
635             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
636                                             vdwioffsetptr0+vdwjidx0B,
637                                             vdwioffsetptr0+vdwjidx0C,
638                                             vdwioffsetptr0+vdwjidx0D,
639                                             &c6_00,&c12_00);
640
641             /* EWALD ELECTROSTATICS */
642
643             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
644             ewrt             = _mm256_mul_pd(r00,ewtabscale);
645             ewitab           = _mm256_cvttpd_epi32(ewrt);
646             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
647             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
648                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
649                                             &ewtabF,&ewtabFn);
650             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
651             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
652
653             /* LENNARD-JONES DISPERSION/REPULSION */
654
655             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
656             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
657
658             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
659
660             fscal            = _mm256_add_pd(felec,fvdw);
661
662             fscal            = _mm256_and_pd(fscal,cutoff_mask);
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm256_mul_pd(fscal,dx00);
666             ty               = _mm256_mul_pd(fscal,dy00);
667             tz               = _mm256_mul_pd(fscal,dz00);
668
669             /* Update vectorial force */
670             fix0             = _mm256_add_pd(fix0,tx);
671             fiy0             = _mm256_add_pd(fiy0,ty);
672             fiz0             = _mm256_add_pd(fiz0,tz);
673
674             fjptrA             = f+j_coord_offsetA;
675             fjptrB             = f+j_coord_offsetB;
676             fjptrC             = f+j_coord_offsetC;
677             fjptrD             = f+j_coord_offsetD;
678             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
679
680             }
681
682             /* Inner loop uses 46 flops */
683         }
684
685         if(jidx<j_index_end)
686         {
687
688             /* Get j neighbor index, and coordinate index */
689             jnrlistA         = jjnr[jidx];
690             jnrlistB         = jjnr[jidx+1];
691             jnrlistC         = jjnr[jidx+2];
692             jnrlistD         = jjnr[jidx+3];
693             /* Sign of each element will be negative for non-real atoms.
694              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
695              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
696              */
697             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
698
699             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
700             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
701             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
702
703             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
704             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
705             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
706             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
707             j_coord_offsetA  = DIM*jnrA;
708             j_coord_offsetB  = DIM*jnrB;
709             j_coord_offsetC  = DIM*jnrC;
710             j_coord_offsetD  = DIM*jnrD;
711
712             /* load j atom coordinates */
713             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
714                                                  x+j_coord_offsetC,x+j_coord_offsetD,
715                                                  &jx0,&jy0,&jz0);
716
717             /* Calculate displacement vector */
718             dx00             = _mm256_sub_pd(ix0,jx0);
719             dy00             = _mm256_sub_pd(iy0,jy0);
720             dz00             = _mm256_sub_pd(iz0,jz0);
721
722             /* Calculate squared distance and things based on it */
723             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
724
725             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
726
727             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
728
729             /* Load parameters for j particles */
730             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
731                                                                  charge+jnrC+0,charge+jnrD+0);
732             vdwjidx0A        = 2*vdwtype[jnrA+0];
733             vdwjidx0B        = 2*vdwtype[jnrB+0];
734             vdwjidx0C        = 2*vdwtype[jnrC+0];
735             vdwjidx0D        = 2*vdwtype[jnrD+0];
736
737             /**************************
738              * CALCULATE INTERACTIONS *
739              **************************/
740
741             if (gmx_mm256_any_lt(rsq00,rcutoff2))
742             {
743
744             r00              = _mm256_mul_pd(rsq00,rinv00);
745             r00              = _mm256_andnot_pd(dummy_mask,r00);
746
747             /* Compute parameters for interactions between i and j atoms */
748             qq00             = _mm256_mul_pd(iq0,jq0);
749             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
750                                             vdwioffsetptr0+vdwjidx0B,
751                                             vdwioffsetptr0+vdwjidx0C,
752                                             vdwioffsetptr0+vdwjidx0D,
753                                             &c6_00,&c12_00);
754
755             /* EWALD ELECTROSTATICS */
756
757             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
758             ewrt             = _mm256_mul_pd(r00,ewtabscale);
759             ewitab           = _mm256_cvttpd_epi32(ewrt);
760             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
761             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
762                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
763                                             &ewtabF,&ewtabFn);
764             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
765             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
766
767             /* LENNARD-JONES DISPERSION/REPULSION */
768
769             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
770             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
771
772             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
773
774             fscal            = _mm256_add_pd(felec,fvdw);
775
776             fscal            = _mm256_and_pd(fscal,cutoff_mask);
777
778             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
779
780             /* Calculate temporary vectorial force */
781             tx               = _mm256_mul_pd(fscal,dx00);
782             ty               = _mm256_mul_pd(fscal,dy00);
783             tz               = _mm256_mul_pd(fscal,dz00);
784
785             /* Update vectorial force */
786             fix0             = _mm256_add_pd(fix0,tx);
787             fiy0             = _mm256_add_pd(fiy0,ty);
788             fiz0             = _mm256_add_pd(fiz0,tz);
789
790             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
791             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
792             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
793             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
794             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
795
796             }
797
798             /* Inner loop uses 47 flops */
799         }
800
801         /* End of innermost loop */
802
803         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
804                                                  f+i_coord_offset,fshift+i_shift_offset);
805
806         /* Increment number of inner iterations */
807         inneriter                  += j_index_end - j_index_start;
808
809         /* Outer loop uses 7 flops */
810     }
811
812     /* Increment number of outer iterations */
813     outeriter        += nri;
814
815     /* Update outer/inner flops */
816
817     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*47);
818 }