d2d38d4c04f2fcc933a1cce032c4bbed5452a2a2
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          ewitab;
100     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
102     real             *ewtab;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
126     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
127     beta2            = _mm256_mul_pd(beta,beta);
128     beta3            = _mm256_mul_pd(beta,beta2);
129
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
133
134     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135     rcutoff_scalar   = fr->rcoulomb;
136     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
137     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
138
139     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
140     rvdw             = _mm256_set1_pd(fr->rvdw);
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
173
174         fix0             = _mm256_setzero_pd();
175         fiy0             = _mm256_setzero_pd();
176         fiz0             = _mm256_setzero_pd();
177
178         /* Load parameters for i particles */
179         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
180         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
181
182         /* Reset potential sums */
183         velecsum         = _mm256_setzero_pd();
184         vvdwsum          = _mm256_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_pd(ix0,jx0);
207             dy00             = _mm256_sub_pd(iy0,jy0);
208             dz00             = _mm256_sub_pd(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
214
215             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
219                                                                  charge+jnrC+0,charge+jnrD+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222             vdwjidx0C        = 2*vdwtype[jnrC+0];
223             vdwjidx0D        = 2*vdwtype[jnrD+0];
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             if (gmx_mm256_any_lt(rsq00,rcutoff2))
230             {
231
232             r00              = _mm256_mul_pd(rsq00,rinv00);
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm256_mul_pd(iq0,jq0);
236             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
237                                             vdwioffsetptr0+vdwjidx0B,
238                                             vdwioffsetptr0+vdwjidx0C,
239                                             vdwioffsetptr0+vdwjidx0D,
240                                             &c6_00,&c12_00);
241
242             /* EWALD ELECTROSTATICS */
243
244             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
245             ewrt             = _mm256_mul_pd(r00,ewtabscale);
246             ewitab           = _mm256_cvttpd_epi32(ewrt);
247             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
248             ewitab           = _mm_slli_epi32(ewitab,2);
249             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
250             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
251             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
252             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
253             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
254             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
255             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
256             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
257             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
258
259             /* LENNARD-JONES DISPERSION/REPULSION */
260
261             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
262             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
263             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
264             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
265                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
266             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
267
268             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             velec            = _mm256_and_pd(velec,cutoff_mask);
272             velecsum         = _mm256_add_pd(velecsum,velec);
273             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
274             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
275
276             fscal            = _mm256_add_pd(felec,fvdw);
277
278             fscal            = _mm256_and_pd(fscal,cutoff_mask);
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm256_mul_pd(fscal,dx00);
282             ty               = _mm256_mul_pd(fscal,dy00);
283             tz               = _mm256_mul_pd(fscal,dz00);
284
285             /* Update vectorial force */
286             fix0             = _mm256_add_pd(fix0,tx);
287             fiy0             = _mm256_add_pd(fiy0,ty);
288             fiz0             = _mm256_add_pd(fiz0,tz);
289
290             fjptrA             = f+j_coord_offsetA;
291             fjptrB             = f+j_coord_offsetB;
292             fjptrC             = f+j_coord_offsetC;
293             fjptrD             = f+j_coord_offsetD;
294             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
295
296             }
297
298             /* Inner loop uses 64 flops */
299         }
300
301         if(jidx<j_index_end)
302         {
303
304             /* Get j neighbor index, and coordinate index */
305             jnrlistA         = jjnr[jidx];
306             jnrlistB         = jjnr[jidx+1];
307             jnrlistC         = jjnr[jidx+2];
308             jnrlistD         = jjnr[jidx+3];
309             /* Sign of each element will be negative for non-real atoms.
310              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
311              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
312              */
313             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
314
315             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
316             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
317             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
318
319             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
320             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
321             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
322             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
323             j_coord_offsetA  = DIM*jnrA;
324             j_coord_offsetB  = DIM*jnrB;
325             j_coord_offsetC  = DIM*jnrC;
326             j_coord_offsetD  = DIM*jnrD;
327
328             /* load j atom coordinates */
329             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
330                                                  x+j_coord_offsetC,x+j_coord_offsetD,
331                                                  &jx0,&jy0,&jz0);
332
333             /* Calculate displacement vector */
334             dx00             = _mm256_sub_pd(ix0,jx0);
335             dy00             = _mm256_sub_pd(iy0,jy0);
336             dz00             = _mm256_sub_pd(iz0,jz0);
337
338             /* Calculate squared distance and things based on it */
339             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
340
341             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
342
343             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
344
345             /* Load parameters for j particles */
346             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
347                                                                  charge+jnrC+0,charge+jnrD+0);
348             vdwjidx0A        = 2*vdwtype[jnrA+0];
349             vdwjidx0B        = 2*vdwtype[jnrB+0];
350             vdwjidx0C        = 2*vdwtype[jnrC+0];
351             vdwjidx0D        = 2*vdwtype[jnrD+0];
352
353             /**************************
354              * CALCULATE INTERACTIONS *
355              **************************/
356
357             if (gmx_mm256_any_lt(rsq00,rcutoff2))
358             {
359
360             r00              = _mm256_mul_pd(rsq00,rinv00);
361             r00              = _mm256_andnot_pd(dummy_mask,r00);
362
363             /* Compute parameters for interactions between i and j atoms */
364             qq00             = _mm256_mul_pd(iq0,jq0);
365             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
366                                             vdwioffsetptr0+vdwjidx0B,
367                                             vdwioffsetptr0+vdwjidx0C,
368                                             vdwioffsetptr0+vdwjidx0D,
369                                             &c6_00,&c12_00);
370
371             /* EWALD ELECTROSTATICS */
372
373             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
374             ewrt             = _mm256_mul_pd(r00,ewtabscale);
375             ewitab           = _mm256_cvttpd_epi32(ewrt);
376             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
377             ewitab           = _mm_slli_epi32(ewitab,2);
378             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
379             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
380             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
381             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
382             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
383             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
384             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
385             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
386             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
387
388             /* LENNARD-JONES DISPERSION/REPULSION */
389
390             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
391             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
392             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
393             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
394                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
395             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
396
397             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
398
399             /* Update potential sum for this i atom from the interaction with this j atom. */
400             velec            = _mm256_and_pd(velec,cutoff_mask);
401             velec            = _mm256_andnot_pd(dummy_mask,velec);
402             velecsum         = _mm256_add_pd(velecsum,velec);
403             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
404             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
405             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
406
407             fscal            = _mm256_add_pd(felec,fvdw);
408
409             fscal            = _mm256_and_pd(fscal,cutoff_mask);
410
411             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
412
413             /* Calculate temporary vectorial force */
414             tx               = _mm256_mul_pd(fscal,dx00);
415             ty               = _mm256_mul_pd(fscal,dy00);
416             tz               = _mm256_mul_pd(fscal,dz00);
417
418             /* Update vectorial force */
419             fix0             = _mm256_add_pd(fix0,tx);
420             fiy0             = _mm256_add_pd(fiy0,ty);
421             fiz0             = _mm256_add_pd(fiz0,tz);
422
423             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
424             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
425             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
426             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
427             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
428
429             }
430
431             /* Inner loop uses 65 flops */
432         }
433
434         /* End of innermost loop */
435
436         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
437                                                  f+i_coord_offset,fshift+i_shift_offset);
438
439         ggid                        = gid[iidx];
440         /* Update potential energies */
441         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
442         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
443
444         /* Increment number of inner iterations */
445         inneriter                  += j_index_end - j_index_start;
446
447         /* Outer loop uses 9 flops */
448     }
449
450     /* Increment number of outer iterations */
451     outeriter        += nri;
452
453     /* Update outer/inner flops */
454
455     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*65);
456 }
457 /*
458  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_double
459  * Electrostatics interaction: Ewald
460  * VdW interaction:            LennardJones
461  * Geometry:                   Particle-Particle
462  * Calculate force/pot:        Force
463  */
464 void
465 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_double
466                     (t_nblist                    * gmx_restrict       nlist,
467                      rvec                        * gmx_restrict          xx,
468                      rvec                        * gmx_restrict          ff,
469                      t_forcerec                  * gmx_restrict          fr,
470                      t_mdatoms                   * gmx_restrict     mdatoms,
471                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
472                      t_nrnb                      * gmx_restrict        nrnb)
473 {
474     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
475      * just 0 for non-waters.
476      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
477      * jnr indices corresponding to data put in the four positions in the SIMD register.
478      */
479     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
480     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
481     int              jnrA,jnrB,jnrC,jnrD;
482     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
483     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
484     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
485     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
486     real             rcutoff_scalar;
487     real             *shiftvec,*fshift,*x,*f;
488     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
489     real             scratch[4*DIM];
490     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
491     real *           vdwioffsetptr0;
492     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
493     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
494     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
495     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
496     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
497     real             *charge;
498     int              nvdwtype;
499     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
500     int              *vdwtype;
501     real             *vdwparam;
502     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
503     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
504     __m128i          ewitab;
505     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
506     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
507     real             *ewtab;
508     __m256d          dummy_mask,cutoff_mask;
509     __m128           tmpmask0,tmpmask1;
510     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
511     __m256d          one     = _mm256_set1_pd(1.0);
512     __m256d          two     = _mm256_set1_pd(2.0);
513     x                = xx[0];
514     f                = ff[0];
515
516     nri              = nlist->nri;
517     iinr             = nlist->iinr;
518     jindex           = nlist->jindex;
519     jjnr             = nlist->jjnr;
520     shiftidx         = nlist->shift;
521     gid              = nlist->gid;
522     shiftvec         = fr->shift_vec[0];
523     fshift           = fr->fshift[0];
524     facel            = _mm256_set1_pd(fr->epsfac);
525     charge           = mdatoms->chargeA;
526     nvdwtype         = fr->ntype;
527     vdwparam         = fr->nbfp;
528     vdwtype          = mdatoms->typeA;
529
530     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
531     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
532     beta2            = _mm256_mul_pd(beta,beta);
533     beta3            = _mm256_mul_pd(beta,beta2);
534
535     ewtab            = fr->ic->tabq_coul_F;
536     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
537     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
538
539     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
540     rcutoff_scalar   = fr->rcoulomb;
541     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
542     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
543
544     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
545     rvdw             = _mm256_set1_pd(fr->rvdw);
546
547     /* Avoid stupid compiler warnings */
548     jnrA = jnrB = jnrC = jnrD = 0;
549     j_coord_offsetA = 0;
550     j_coord_offsetB = 0;
551     j_coord_offsetC = 0;
552     j_coord_offsetD = 0;
553
554     outeriter        = 0;
555     inneriter        = 0;
556
557     for(iidx=0;iidx<4*DIM;iidx++)
558     {
559         scratch[iidx] = 0.0;
560     }
561
562     /* Start outer loop over neighborlists */
563     for(iidx=0; iidx<nri; iidx++)
564     {
565         /* Load shift vector for this list */
566         i_shift_offset   = DIM*shiftidx[iidx];
567
568         /* Load limits for loop over neighbors */
569         j_index_start    = jindex[iidx];
570         j_index_end      = jindex[iidx+1];
571
572         /* Get outer coordinate index */
573         inr              = iinr[iidx];
574         i_coord_offset   = DIM*inr;
575
576         /* Load i particle coords and add shift vector */
577         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
578
579         fix0             = _mm256_setzero_pd();
580         fiy0             = _mm256_setzero_pd();
581         fiz0             = _mm256_setzero_pd();
582
583         /* Load parameters for i particles */
584         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
585         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
586
587         /* Start inner kernel loop */
588         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
589         {
590
591             /* Get j neighbor index, and coordinate index */
592             jnrA             = jjnr[jidx];
593             jnrB             = jjnr[jidx+1];
594             jnrC             = jjnr[jidx+2];
595             jnrD             = jjnr[jidx+3];
596             j_coord_offsetA  = DIM*jnrA;
597             j_coord_offsetB  = DIM*jnrB;
598             j_coord_offsetC  = DIM*jnrC;
599             j_coord_offsetD  = DIM*jnrD;
600
601             /* load j atom coordinates */
602             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
603                                                  x+j_coord_offsetC,x+j_coord_offsetD,
604                                                  &jx0,&jy0,&jz0);
605
606             /* Calculate displacement vector */
607             dx00             = _mm256_sub_pd(ix0,jx0);
608             dy00             = _mm256_sub_pd(iy0,jy0);
609             dz00             = _mm256_sub_pd(iz0,jz0);
610
611             /* Calculate squared distance and things based on it */
612             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
613
614             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
615
616             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
617
618             /* Load parameters for j particles */
619             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
620                                                                  charge+jnrC+0,charge+jnrD+0);
621             vdwjidx0A        = 2*vdwtype[jnrA+0];
622             vdwjidx0B        = 2*vdwtype[jnrB+0];
623             vdwjidx0C        = 2*vdwtype[jnrC+0];
624             vdwjidx0D        = 2*vdwtype[jnrD+0];
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             if (gmx_mm256_any_lt(rsq00,rcutoff2))
631             {
632
633             r00              = _mm256_mul_pd(rsq00,rinv00);
634
635             /* Compute parameters for interactions between i and j atoms */
636             qq00             = _mm256_mul_pd(iq0,jq0);
637             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
638                                             vdwioffsetptr0+vdwjidx0B,
639                                             vdwioffsetptr0+vdwjidx0C,
640                                             vdwioffsetptr0+vdwjidx0D,
641                                             &c6_00,&c12_00);
642
643             /* EWALD ELECTROSTATICS */
644
645             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
646             ewrt             = _mm256_mul_pd(r00,ewtabscale);
647             ewitab           = _mm256_cvttpd_epi32(ewrt);
648             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
649             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
650                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
651                                             &ewtabF,&ewtabFn);
652             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
653             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
654
655             /* LENNARD-JONES DISPERSION/REPULSION */
656
657             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
658             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
659
660             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
661
662             fscal            = _mm256_add_pd(felec,fvdw);
663
664             fscal            = _mm256_and_pd(fscal,cutoff_mask);
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm256_mul_pd(fscal,dx00);
668             ty               = _mm256_mul_pd(fscal,dy00);
669             tz               = _mm256_mul_pd(fscal,dz00);
670
671             /* Update vectorial force */
672             fix0             = _mm256_add_pd(fix0,tx);
673             fiy0             = _mm256_add_pd(fiy0,ty);
674             fiz0             = _mm256_add_pd(fiz0,tz);
675
676             fjptrA             = f+j_coord_offsetA;
677             fjptrB             = f+j_coord_offsetB;
678             fjptrC             = f+j_coord_offsetC;
679             fjptrD             = f+j_coord_offsetD;
680             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
681
682             }
683
684             /* Inner loop uses 46 flops */
685         }
686
687         if(jidx<j_index_end)
688         {
689
690             /* Get j neighbor index, and coordinate index */
691             jnrlistA         = jjnr[jidx];
692             jnrlistB         = jjnr[jidx+1];
693             jnrlistC         = jjnr[jidx+2];
694             jnrlistD         = jjnr[jidx+3];
695             /* Sign of each element will be negative for non-real atoms.
696              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
697              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
698              */
699             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
700
701             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
702             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
703             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
704
705             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
706             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
707             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
708             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
709             j_coord_offsetA  = DIM*jnrA;
710             j_coord_offsetB  = DIM*jnrB;
711             j_coord_offsetC  = DIM*jnrC;
712             j_coord_offsetD  = DIM*jnrD;
713
714             /* load j atom coordinates */
715             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
716                                                  x+j_coord_offsetC,x+j_coord_offsetD,
717                                                  &jx0,&jy0,&jz0);
718
719             /* Calculate displacement vector */
720             dx00             = _mm256_sub_pd(ix0,jx0);
721             dy00             = _mm256_sub_pd(iy0,jy0);
722             dz00             = _mm256_sub_pd(iz0,jz0);
723
724             /* Calculate squared distance and things based on it */
725             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
726
727             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
728
729             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
730
731             /* Load parameters for j particles */
732             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
733                                                                  charge+jnrC+0,charge+jnrD+0);
734             vdwjidx0A        = 2*vdwtype[jnrA+0];
735             vdwjidx0B        = 2*vdwtype[jnrB+0];
736             vdwjidx0C        = 2*vdwtype[jnrC+0];
737             vdwjidx0D        = 2*vdwtype[jnrD+0];
738
739             /**************************
740              * CALCULATE INTERACTIONS *
741              **************************/
742
743             if (gmx_mm256_any_lt(rsq00,rcutoff2))
744             {
745
746             r00              = _mm256_mul_pd(rsq00,rinv00);
747             r00              = _mm256_andnot_pd(dummy_mask,r00);
748
749             /* Compute parameters for interactions between i and j atoms */
750             qq00             = _mm256_mul_pd(iq0,jq0);
751             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
752                                             vdwioffsetptr0+vdwjidx0B,
753                                             vdwioffsetptr0+vdwjidx0C,
754                                             vdwioffsetptr0+vdwjidx0D,
755                                             &c6_00,&c12_00);
756
757             /* EWALD ELECTROSTATICS */
758
759             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
760             ewrt             = _mm256_mul_pd(r00,ewtabscale);
761             ewitab           = _mm256_cvttpd_epi32(ewrt);
762             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
763             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
764                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
765                                             &ewtabF,&ewtabFn);
766             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
767             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
768
769             /* LENNARD-JONES DISPERSION/REPULSION */
770
771             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
772             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
773
774             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
775
776             fscal            = _mm256_add_pd(felec,fvdw);
777
778             fscal            = _mm256_and_pd(fscal,cutoff_mask);
779
780             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
781
782             /* Calculate temporary vectorial force */
783             tx               = _mm256_mul_pd(fscal,dx00);
784             ty               = _mm256_mul_pd(fscal,dy00);
785             tz               = _mm256_mul_pd(fscal,dz00);
786
787             /* Update vectorial force */
788             fix0             = _mm256_add_pd(fix0,tx);
789             fiy0             = _mm256_add_pd(fiy0,ty);
790             fiz0             = _mm256_add_pd(fiz0,tz);
791
792             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
793             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
794             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
795             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
796             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
797
798             }
799
800             /* Inner loop uses 47 flops */
801         }
802
803         /* End of innermost loop */
804
805         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
806                                                  f+i_coord_offset,fshift+i_shift_offset);
807
808         /* Increment number of inner iterations */
809         inneriter                  += j_index_end - j_index_start;
810
811         /* Outer loop uses 7 flops */
812     }
813
814     /* Increment number of outer iterations */
815     outeriter        += nri;
816
817     /* Update outer/inner flops */
818
819     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*47);
820 }