Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m128i          ewitab;
84     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
85     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
86     real             *ewtab;
87     __m256d          dummy_mask,cutoff_mask;
88     __m128           tmpmask0,tmpmask1;
89     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
90     __m256d          one     = _mm256_set1_pd(1.0);
91     __m256d          two     = _mm256_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm256_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
110     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
111     beta2            = _mm256_mul_pd(beta,beta);
112     beta3            = _mm256_mul_pd(beta,beta2);
113
114     ewtab            = fr->ic->tabq_coul_FDV0;
115     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
116     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
117
118     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119     rcutoff_scalar   = fr->rcoulomb;
120     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
121     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
122
123     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
124     rvdw             = _mm256_set1_pd(fr->rvdw);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm256_setzero_pd();
159         fiy0             = _mm256_setzero_pd();
160         fiz0             = _mm256_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
164         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _mm256_setzero_pd();
168         vvdwsum          = _mm256_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm256_sub_pd(ix0,jx0);
191             dy00             = _mm256_sub_pd(iy0,jy0);
192             dz00             = _mm256_sub_pd(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
196
197             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
198
199             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
203                                                                  charge+jnrC+0,charge+jnrD+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206             vdwjidx0C        = 2*vdwtype[jnrC+0];
207             vdwjidx0D        = 2*vdwtype[jnrD+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_mm256_any_lt(rsq00,rcutoff2))
214             {
215
216             r00              = _mm256_mul_pd(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm256_mul_pd(iq0,jq0);
220             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
221                                             vdwioffsetptr0+vdwjidx0B,
222                                             vdwioffsetptr0+vdwjidx0C,
223                                             vdwioffsetptr0+vdwjidx0D,
224                                             &c6_00,&c12_00);
225
226             /* EWALD ELECTROSTATICS */
227
228             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
229             ewrt             = _mm256_mul_pd(r00,ewtabscale);
230             ewitab           = _mm256_cvttpd_epi32(ewrt);
231             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
232             ewitab           = _mm_slli_epi32(ewitab,2);
233             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
234             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
235             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
236             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
237             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
238             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
239             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
240             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
241             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
242
243             /* LENNARD-JONES DISPERSION/REPULSION */
244
245             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
246             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
247             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
248             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
249                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
250             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
251
252             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
253
254             /* Update potential sum for this i atom from the interaction with this j atom. */
255             velec            = _mm256_and_pd(velec,cutoff_mask);
256             velecsum         = _mm256_add_pd(velecsum,velec);
257             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
258             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
259
260             fscal            = _mm256_add_pd(felec,fvdw);
261
262             fscal            = _mm256_and_pd(fscal,cutoff_mask);
263
264             /* Calculate temporary vectorial force */
265             tx               = _mm256_mul_pd(fscal,dx00);
266             ty               = _mm256_mul_pd(fscal,dy00);
267             tz               = _mm256_mul_pd(fscal,dz00);
268
269             /* Update vectorial force */
270             fix0             = _mm256_add_pd(fix0,tx);
271             fiy0             = _mm256_add_pd(fiy0,ty);
272             fiz0             = _mm256_add_pd(fiz0,tz);
273
274             fjptrA             = f+j_coord_offsetA;
275             fjptrB             = f+j_coord_offsetB;
276             fjptrC             = f+j_coord_offsetC;
277             fjptrD             = f+j_coord_offsetD;
278             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
279
280             }
281
282             /* Inner loop uses 64 flops */
283         }
284
285         if(jidx<j_index_end)
286         {
287
288             /* Get j neighbor index, and coordinate index */
289             jnrlistA         = jjnr[jidx];
290             jnrlistB         = jjnr[jidx+1];
291             jnrlistC         = jjnr[jidx+2];
292             jnrlistD         = jjnr[jidx+3];
293             /* Sign of each element will be negative for non-real atoms.
294              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
295              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
296              */
297             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
298
299             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
300             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
301             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
302
303             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
304             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
305             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
306             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
307             j_coord_offsetA  = DIM*jnrA;
308             j_coord_offsetB  = DIM*jnrB;
309             j_coord_offsetC  = DIM*jnrC;
310             j_coord_offsetD  = DIM*jnrD;
311
312             /* load j atom coordinates */
313             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
314                                                  x+j_coord_offsetC,x+j_coord_offsetD,
315                                                  &jx0,&jy0,&jz0);
316
317             /* Calculate displacement vector */
318             dx00             = _mm256_sub_pd(ix0,jx0);
319             dy00             = _mm256_sub_pd(iy0,jy0);
320             dz00             = _mm256_sub_pd(iz0,jz0);
321
322             /* Calculate squared distance and things based on it */
323             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
324
325             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
326
327             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
328
329             /* Load parameters for j particles */
330             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
331                                                                  charge+jnrC+0,charge+jnrD+0);
332             vdwjidx0A        = 2*vdwtype[jnrA+0];
333             vdwjidx0B        = 2*vdwtype[jnrB+0];
334             vdwjidx0C        = 2*vdwtype[jnrC+0];
335             vdwjidx0D        = 2*vdwtype[jnrD+0];
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             if (gmx_mm256_any_lt(rsq00,rcutoff2))
342             {
343
344             r00              = _mm256_mul_pd(rsq00,rinv00);
345             r00              = _mm256_andnot_pd(dummy_mask,r00);
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq00             = _mm256_mul_pd(iq0,jq0);
349             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
350                                             vdwioffsetptr0+vdwjidx0B,
351                                             vdwioffsetptr0+vdwjidx0C,
352                                             vdwioffsetptr0+vdwjidx0D,
353                                             &c6_00,&c12_00);
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358             ewrt             = _mm256_mul_pd(r00,ewtabscale);
359             ewitab           = _mm256_cvttpd_epi32(ewrt);
360             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
361             ewitab           = _mm_slli_epi32(ewitab,2);
362             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
363             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
364             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
365             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
366             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
367             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
368             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
369             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
370             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
371
372             /* LENNARD-JONES DISPERSION/REPULSION */
373
374             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
375             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
376             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
377             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
378                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
379             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
380
381             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velec            = _mm256_and_pd(velec,cutoff_mask);
385             velec            = _mm256_andnot_pd(dummy_mask,velec);
386             velecsum         = _mm256_add_pd(velecsum,velec);
387             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
388             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
389             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
390
391             fscal            = _mm256_add_pd(felec,fvdw);
392
393             fscal            = _mm256_and_pd(fscal,cutoff_mask);
394
395             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
396
397             /* Calculate temporary vectorial force */
398             tx               = _mm256_mul_pd(fscal,dx00);
399             ty               = _mm256_mul_pd(fscal,dy00);
400             tz               = _mm256_mul_pd(fscal,dz00);
401
402             /* Update vectorial force */
403             fix0             = _mm256_add_pd(fix0,tx);
404             fiy0             = _mm256_add_pd(fiy0,ty);
405             fiz0             = _mm256_add_pd(fiz0,tz);
406
407             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
408             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
409             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
410             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
411             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
412
413             }
414
415             /* Inner loop uses 65 flops */
416         }
417
418         /* End of innermost loop */
419
420         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
421                                                  f+i_coord_offset,fshift+i_shift_offset);
422
423         ggid                        = gid[iidx];
424         /* Update potential energies */
425         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
426         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
427
428         /* Increment number of inner iterations */
429         inneriter                  += j_index_end - j_index_start;
430
431         /* Outer loop uses 9 flops */
432     }
433
434     /* Increment number of outer iterations */
435     outeriter        += nri;
436
437     /* Update outer/inner flops */
438
439     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*65);
440 }
441 /*
442  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_double
443  * Electrostatics interaction: Ewald
444  * VdW interaction:            LennardJones
445  * Geometry:                   Particle-Particle
446  * Calculate force/pot:        Force
447  */
448 void
449 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_double
450                     (t_nblist * gmx_restrict                nlist,
451                      rvec * gmx_restrict                    xx,
452                      rvec * gmx_restrict                    ff,
453                      t_forcerec * gmx_restrict              fr,
454                      t_mdatoms * gmx_restrict               mdatoms,
455                      nb_kernel_data_t * gmx_restrict        kernel_data,
456                      t_nrnb * gmx_restrict                  nrnb)
457 {
458     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
459      * just 0 for non-waters.
460      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
461      * jnr indices corresponding to data put in the four positions in the SIMD register.
462      */
463     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
464     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
465     int              jnrA,jnrB,jnrC,jnrD;
466     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
467     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
468     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
469     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
470     real             rcutoff_scalar;
471     real             *shiftvec,*fshift,*x,*f;
472     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
473     real             scratch[4*DIM];
474     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
475     real *           vdwioffsetptr0;
476     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
477     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
478     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
479     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
480     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
481     real             *charge;
482     int              nvdwtype;
483     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
484     int              *vdwtype;
485     real             *vdwparam;
486     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
487     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
488     __m128i          ewitab;
489     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
490     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
491     real             *ewtab;
492     __m256d          dummy_mask,cutoff_mask;
493     __m128           tmpmask0,tmpmask1;
494     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
495     __m256d          one     = _mm256_set1_pd(1.0);
496     __m256d          two     = _mm256_set1_pd(2.0);
497     x                = xx[0];
498     f                = ff[0];
499
500     nri              = nlist->nri;
501     iinr             = nlist->iinr;
502     jindex           = nlist->jindex;
503     jjnr             = nlist->jjnr;
504     shiftidx         = nlist->shift;
505     gid              = nlist->gid;
506     shiftvec         = fr->shift_vec[0];
507     fshift           = fr->fshift[0];
508     facel            = _mm256_set1_pd(fr->epsfac);
509     charge           = mdatoms->chargeA;
510     nvdwtype         = fr->ntype;
511     vdwparam         = fr->nbfp;
512     vdwtype          = mdatoms->typeA;
513
514     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
515     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
516     beta2            = _mm256_mul_pd(beta,beta);
517     beta3            = _mm256_mul_pd(beta,beta2);
518
519     ewtab            = fr->ic->tabq_coul_F;
520     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
521     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
522
523     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
524     rcutoff_scalar   = fr->rcoulomb;
525     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
526     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
527
528     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
529     rvdw             = _mm256_set1_pd(fr->rvdw);
530
531     /* Avoid stupid compiler warnings */
532     jnrA = jnrB = jnrC = jnrD = 0;
533     j_coord_offsetA = 0;
534     j_coord_offsetB = 0;
535     j_coord_offsetC = 0;
536     j_coord_offsetD = 0;
537
538     outeriter        = 0;
539     inneriter        = 0;
540
541     for(iidx=0;iidx<4*DIM;iidx++)
542     {
543         scratch[iidx] = 0.0;
544     }
545
546     /* Start outer loop over neighborlists */
547     for(iidx=0; iidx<nri; iidx++)
548     {
549         /* Load shift vector for this list */
550         i_shift_offset   = DIM*shiftidx[iidx];
551
552         /* Load limits for loop over neighbors */
553         j_index_start    = jindex[iidx];
554         j_index_end      = jindex[iidx+1];
555
556         /* Get outer coordinate index */
557         inr              = iinr[iidx];
558         i_coord_offset   = DIM*inr;
559
560         /* Load i particle coords and add shift vector */
561         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
562
563         fix0             = _mm256_setzero_pd();
564         fiy0             = _mm256_setzero_pd();
565         fiz0             = _mm256_setzero_pd();
566
567         /* Load parameters for i particles */
568         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
569         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
570
571         /* Start inner kernel loop */
572         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
573         {
574
575             /* Get j neighbor index, and coordinate index */
576             jnrA             = jjnr[jidx];
577             jnrB             = jjnr[jidx+1];
578             jnrC             = jjnr[jidx+2];
579             jnrD             = jjnr[jidx+3];
580             j_coord_offsetA  = DIM*jnrA;
581             j_coord_offsetB  = DIM*jnrB;
582             j_coord_offsetC  = DIM*jnrC;
583             j_coord_offsetD  = DIM*jnrD;
584
585             /* load j atom coordinates */
586             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
587                                                  x+j_coord_offsetC,x+j_coord_offsetD,
588                                                  &jx0,&jy0,&jz0);
589
590             /* Calculate displacement vector */
591             dx00             = _mm256_sub_pd(ix0,jx0);
592             dy00             = _mm256_sub_pd(iy0,jy0);
593             dz00             = _mm256_sub_pd(iz0,jz0);
594
595             /* Calculate squared distance and things based on it */
596             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
597
598             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
599
600             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
601
602             /* Load parameters for j particles */
603             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
604                                                                  charge+jnrC+0,charge+jnrD+0);
605             vdwjidx0A        = 2*vdwtype[jnrA+0];
606             vdwjidx0B        = 2*vdwtype[jnrB+0];
607             vdwjidx0C        = 2*vdwtype[jnrC+0];
608             vdwjidx0D        = 2*vdwtype[jnrD+0];
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             if (gmx_mm256_any_lt(rsq00,rcutoff2))
615             {
616
617             r00              = _mm256_mul_pd(rsq00,rinv00);
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq00             = _mm256_mul_pd(iq0,jq0);
621             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
622                                             vdwioffsetptr0+vdwjidx0B,
623                                             vdwioffsetptr0+vdwjidx0C,
624                                             vdwioffsetptr0+vdwjidx0D,
625                                             &c6_00,&c12_00);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm256_mul_pd(r00,ewtabscale);
631             ewitab           = _mm256_cvttpd_epi32(ewrt);
632             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
633             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
634                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
635                                             &ewtabF,&ewtabFn);
636             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
637             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
638
639             /* LENNARD-JONES DISPERSION/REPULSION */
640
641             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
642             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
643
644             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
645
646             fscal            = _mm256_add_pd(felec,fvdw);
647
648             fscal            = _mm256_and_pd(fscal,cutoff_mask);
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm256_mul_pd(fscal,dx00);
652             ty               = _mm256_mul_pd(fscal,dy00);
653             tz               = _mm256_mul_pd(fscal,dz00);
654
655             /* Update vectorial force */
656             fix0             = _mm256_add_pd(fix0,tx);
657             fiy0             = _mm256_add_pd(fiy0,ty);
658             fiz0             = _mm256_add_pd(fiz0,tz);
659
660             fjptrA             = f+j_coord_offsetA;
661             fjptrB             = f+j_coord_offsetB;
662             fjptrC             = f+j_coord_offsetC;
663             fjptrD             = f+j_coord_offsetD;
664             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
665
666             }
667
668             /* Inner loop uses 46 flops */
669         }
670
671         if(jidx<j_index_end)
672         {
673
674             /* Get j neighbor index, and coordinate index */
675             jnrlistA         = jjnr[jidx];
676             jnrlistB         = jjnr[jidx+1];
677             jnrlistC         = jjnr[jidx+2];
678             jnrlistD         = jjnr[jidx+3];
679             /* Sign of each element will be negative for non-real atoms.
680              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
681              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
682              */
683             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
684
685             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
686             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
687             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
688
689             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
690             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
691             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
692             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
693             j_coord_offsetA  = DIM*jnrA;
694             j_coord_offsetB  = DIM*jnrB;
695             j_coord_offsetC  = DIM*jnrC;
696             j_coord_offsetD  = DIM*jnrD;
697
698             /* load j atom coordinates */
699             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
700                                                  x+j_coord_offsetC,x+j_coord_offsetD,
701                                                  &jx0,&jy0,&jz0);
702
703             /* Calculate displacement vector */
704             dx00             = _mm256_sub_pd(ix0,jx0);
705             dy00             = _mm256_sub_pd(iy0,jy0);
706             dz00             = _mm256_sub_pd(iz0,jz0);
707
708             /* Calculate squared distance and things based on it */
709             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
710
711             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
712
713             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
714
715             /* Load parameters for j particles */
716             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
717                                                                  charge+jnrC+0,charge+jnrD+0);
718             vdwjidx0A        = 2*vdwtype[jnrA+0];
719             vdwjidx0B        = 2*vdwtype[jnrB+0];
720             vdwjidx0C        = 2*vdwtype[jnrC+0];
721             vdwjidx0D        = 2*vdwtype[jnrD+0];
722
723             /**************************
724              * CALCULATE INTERACTIONS *
725              **************************/
726
727             if (gmx_mm256_any_lt(rsq00,rcutoff2))
728             {
729
730             r00              = _mm256_mul_pd(rsq00,rinv00);
731             r00              = _mm256_andnot_pd(dummy_mask,r00);
732
733             /* Compute parameters for interactions between i and j atoms */
734             qq00             = _mm256_mul_pd(iq0,jq0);
735             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
736                                             vdwioffsetptr0+vdwjidx0B,
737                                             vdwioffsetptr0+vdwjidx0C,
738                                             vdwioffsetptr0+vdwjidx0D,
739                                             &c6_00,&c12_00);
740
741             /* EWALD ELECTROSTATICS */
742
743             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
744             ewrt             = _mm256_mul_pd(r00,ewtabscale);
745             ewitab           = _mm256_cvttpd_epi32(ewrt);
746             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
747             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
748                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
749                                             &ewtabF,&ewtabFn);
750             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
751             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
752
753             /* LENNARD-JONES DISPERSION/REPULSION */
754
755             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
756             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
757
758             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
759
760             fscal            = _mm256_add_pd(felec,fvdw);
761
762             fscal            = _mm256_and_pd(fscal,cutoff_mask);
763
764             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
765
766             /* Calculate temporary vectorial force */
767             tx               = _mm256_mul_pd(fscal,dx00);
768             ty               = _mm256_mul_pd(fscal,dy00);
769             tz               = _mm256_mul_pd(fscal,dz00);
770
771             /* Update vectorial force */
772             fix0             = _mm256_add_pd(fix0,tx);
773             fiy0             = _mm256_add_pd(fiy0,ty);
774             fiz0             = _mm256_add_pd(fiz0,tz);
775
776             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
777             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
778             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
779             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
780             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
781
782             }
783
784             /* Inner loop uses 47 flops */
785         }
786
787         /* End of innermost loop */
788
789         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
790                                                  f+i_coord_offset,fshift+i_shift_offset);
791
792         /* Increment number of inner iterations */
793         inneriter                  += j_index_end - j_index_start;
794
795         /* Outer loop uses 7 flops */
796     }
797
798     /* Increment number of outer iterations */
799     outeriter        += nri;
800
801     /* Update outer/inner flops */
802
803     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*47);
804 }