Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     real *           vdwgridioffsetptr0;
86     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     real *           vdwgridioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     real *           vdwgridioffsetptr2;
92     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
93     real *           vdwioffsetptr3;
94     real *           vdwgridioffsetptr3;
95     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
96     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
97     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
98     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
100     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
102     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
103     real             *charge;
104     int              nvdwtype;
105     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
106     int              *vdwtype;
107     real             *vdwparam;
108     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
109     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
110     __m256d           c6grid_00;
111     __m256d           c6grid_10;
112     __m256d           c6grid_20;
113     __m256d           c6grid_30;
114     real             *vdwgridparam;
115     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
116     __m256d           one_half  = _mm256_set1_pd(0.5);
117     __m256d           minus_one = _mm256_set1_pd(-1.0);
118     __m128i          ewitab;
119     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
120     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
121     real             *ewtab;
122     __m256d          dummy_mask,cutoff_mask;
123     __m128           tmpmask0,tmpmask1;
124     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
125     __m256d          one     = _mm256_set1_pd(1.0);
126     __m256d          two     = _mm256_set1_pd(2.0);
127     x                = xx[0];
128     f                = ff[0];
129
130     nri              = nlist->nri;
131     iinr             = nlist->iinr;
132     jindex           = nlist->jindex;
133     jjnr             = nlist->jjnr;
134     shiftidx         = nlist->shift;
135     gid              = nlist->gid;
136     shiftvec         = fr->shift_vec[0];
137     fshift           = fr->fshift[0];
138     facel            = _mm256_set1_pd(fr->epsfac);
139     charge           = mdatoms->chargeA;
140     nvdwtype         = fr->ntype;
141     vdwparam         = fr->nbfp;
142     vdwtype          = mdatoms->typeA;
143     vdwgridparam     = fr->ljpme_c6grid;
144     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
145     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
146     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
147
148     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
149     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
150     beta2            = _mm256_mul_pd(beta,beta);
151     beta3            = _mm256_mul_pd(beta,beta2);
152
153     ewtab            = fr->ic->tabq_coul_FDV0;
154     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
155     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
156
157     /* Setup water-specific parameters */
158     inr              = nlist->iinr[0];
159     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
160     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
161     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
162     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
163     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
164
165     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
166     rcutoff_scalar   = fr->rcoulomb;
167     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
168     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
169
170     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
171     rvdw             = _mm256_set1_pd(fr->rvdw);
172
173     /* Avoid stupid compiler warnings */
174     jnrA = jnrB = jnrC = jnrD = 0;
175     j_coord_offsetA = 0;
176     j_coord_offsetB = 0;
177     j_coord_offsetC = 0;
178     j_coord_offsetD = 0;
179
180     outeriter        = 0;
181     inneriter        = 0;
182
183     for(iidx=0;iidx<4*DIM;iidx++)
184     {
185         scratch[iidx] = 0.0;
186     }
187
188     /* Start outer loop over neighborlists */
189     for(iidx=0; iidx<nri; iidx++)
190     {
191         /* Load shift vector for this list */
192         i_shift_offset   = DIM*shiftidx[iidx];
193
194         /* Load limits for loop over neighbors */
195         j_index_start    = jindex[iidx];
196         j_index_end      = jindex[iidx+1];
197
198         /* Get outer coordinate index */
199         inr              = iinr[iidx];
200         i_coord_offset   = DIM*inr;
201
202         /* Load i particle coords and add shift vector */
203         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
204                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
205
206         fix0             = _mm256_setzero_pd();
207         fiy0             = _mm256_setzero_pd();
208         fiz0             = _mm256_setzero_pd();
209         fix1             = _mm256_setzero_pd();
210         fiy1             = _mm256_setzero_pd();
211         fiz1             = _mm256_setzero_pd();
212         fix2             = _mm256_setzero_pd();
213         fiy2             = _mm256_setzero_pd();
214         fiz2             = _mm256_setzero_pd();
215         fix3             = _mm256_setzero_pd();
216         fiy3             = _mm256_setzero_pd();
217         fiz3             = _mm256_setzero_pd();
218
219         /* Reset potential sums */
220         velecsum         = _mm256_setzero_pd();
221         vvdwsum          = _mm256_setzero_pd();
222
223         /* Start inner kernel loop */
224         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
225         {
226
227             /* Get j neighbor index, and coordinate index */
228             jnrA             = jjnr[jidx];
229             jnrB             = jjnr[jidx+1];
230             jnrC             = jjnr[jidx+2];
231             jnrD             = jjnr[jidx+3];
232             j_coord_offsetA  = DIM*jnrA;
233             j_coord_offsetB  = DIM*jnrB;
234             j_coord_offsetC  = DIM*jnrC;
235             j_coord_offsetD  = DIM*jnrD;
236
237             /* load j atom coordinates */
238             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
239                                                  x+j_coord_offsetC,x+j_coord_offsetD,
240                                                  &jx0,&jy0,&jz0);
241
242             /* Calculate displacement vector */
243             dx00             = _mm256_sub_pd(ix0,jx0);
244             dy00             = _mm256_sub_pd(iy0,jy0);
245             dz00             = _mm256_sub_pd(iz0,jz0);
246             dx10             = _mm256_sub_pd(ix1,jx0);
247             dy10             = _mm256_sub_pd(iy1,jy0);
248             dz10             = _mm256_sub_pd(iz1,jz0);
249             dx20             = _mm256_sub_pd(ix2,jx0);
250             dy20             = _mm256_sub_pd(iy2,jy0);
251             dz20             = _mm256_sub_pd(iz2,jz0);
252             dx30             = _mm256_sub_pd(ix3,jx0);
253             dy30             = _mm256_sub_pd(iy3,jy0);
254             dz30             = _mm256_sub_pd(iz3,jz0);
255
256             /* Calculate squared distance and things based on it */
257             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
258             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
259             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
260             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
261
262             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
263             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
264             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
265             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
266
267             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
268             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
269             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
270             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
271
272             /* Load parameters for j particles */
273             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
274                                                                  charge+jnrC+0,charge+jnrD+0);
275             vdwjidx0A        = 2*vdwtype[jnrA+0];
276             vdwjidx0B        = 2*vdwtype[jnrB+0];
277             vdwjidx0C        = 2*vdwtype[jnrC+0];
278             vdwjidx0D        = 2*vdwtype[jnrD+0];
279
280             fjx0             = _mm256_setzero_pd();
281             fjy0             = _mm256_setzero_pd();
282             fjz0             = _mm256_setzero_pd();
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             if (gmx_mm256_any_lt(rsq00,rcutoff2))
289             {
290
291             r00              = _mm256_mul_pd(rsq00,rinv00);
292
293             /* Compute parameters for interactions between i and j atoms */
294             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
295                                             vdwioffsetptr0+vdwjidx0B,
296                                             vdwioffsetptr0+vdwjidx0C,
297                                             vdwioffsetptr0+vdwjidx0D,
298                                             &c6_00,&c12_00);
299
300             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
301                                                                   vdwgridioffsetptr0+vdwjidx0B,
302                                                                   vdwgridioffsetptr0+vdwjidx0C,
303                                                                   vdwgridioffsetptr0+vdwjidx0D);
304
305             /* Analytical LJ-PME */
306             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
307             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
308             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
309             exponent         = gmx_simd_exp_d(ewcljrsq);
310             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
311             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
312             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
313             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
314             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
315             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
316                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
317             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
318             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
319
320             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
324             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
325
326             fscal            = fvdw;
327
328             fscal            = _mm256_and_pd(fscal,cutoff_mask);
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm256_mul_pd(fscal,dx00);
332             ty               = _mm256_mul_pd(fscal,dy00);
333             tz               = _mm256_mul_pd(fscal,dz00);
334
335             /* Update vectorial force */
336             fix0             = _mm256_add_pd(fix0,tx);
337             fiy0             = _mm256_add_pd(fiy0,ty);
338             fiz0             = _mm256_add_pd(fiz0,tz);
339
340             fjx0             = _mm256_add_pd(fjx0,tx);
341             fjy0             = _mm256_add_pd(fjy0,ty);
342             fjz0             = _mm256_add_pd(fjz0,tz);
343
344             }
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             if (gmx_mm256_any_lt(rsq10,rcutoff2))
351             {
352
353             r10              = _mm256_mul_pd(rsq10,rinv10);
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq10             = _mm256_mul_pd(iq1,jq0);
357
358             /* EWALD ELECTROSTATICS */
359
360             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
361             ewrt             = _mm256_mul_pd(r10,ewtabscale);
362             ewitab           = _mm256_cvttpd_epi32(ewrt);
363             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
364             ewitab           = _mm_slli_epi32(ewitab,2);
365             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
366             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
367             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
368             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
369             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
370             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
371             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
372             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
373             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
374
375             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velec            = _mm256_and_pd(velec,cutoff_mask);
379             velecsum         = _mm256_add_pd(velecsum,velec);
380
381             fscal            = felec;
382
383             fscal            = _mm256_and_pd(fscal,cutoff_mask);
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm256_mul_pd(fscal,dx10);
387             ty               = _mm256_mul_pd(fscal,dy10);
388             tz               = _mm256_mul_pd(fscal,dz10);
389
390             /* Update vectorial force */
391             fix1             = _mm256_add_pd(fix1,tx);
392             fiy1             = _mm256_add_pd(fiy1,ty);
393             fiz1             = _mm256_add_pd(fiz1,tz);
394
395             fjx0             = _mm256_add_pd(fjx0,tx);
396             fjy0             = _mm256_add_pd(fjy0,ty);
397             fjz0             = _mm256_add_pd(fjz0,tz);
398
399             }
400
401             /**************************
402              * CALCULATE INTERACTIONS *
403              **************************/
404
405             if (gmx_mm256_any_lt(rsq20,rcutoff2))
406             {
407
408             r20              = _mm256_mul_pd(rsq20,rinv20);
409
410             /* Compute parameters for interactions between i and j atoms */
411             qq20             = _mm256_mul_pd(iq2,jq0);
412
413             /* EWALD ELECTROSTATICS */
414
415             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
416             ewrt             = _mm256_mul_pd(r20,ewtabscale);
417             ewitab           = _mm256_cvttpd_epi32(ewrt);
418             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
419             ewitab           = _mm_slli_epi32(ewitab,2);
420             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
421             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
422             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
423             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
424             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
425             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
426             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
427             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
428             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
429
430             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velec            = _mm256_and_pd(velec,cutoff_mask);
434             velecsum         = _mm256_add_pd(velecsum,velec);
435
436             fscal            = felec;
437
438             fscal            = _mm256_and_pd(fscal,cutoff_mask);
439
440             /* Calculate temporary vectorial force */
441             tx               = _mm256_mul_pd(fscal,dx20);
442             ty               = _mm256_mul_pd(fscal,dy20);
443             tz               = _mm256_mul_pd(fscal,dz20);
444
445             /* Update vectorial force */
446             fix2             = _mm256_add_pd(fix2,tx);
447             fiy2             = _mm256_add_pd(fiy2,ty);
448             fiz2             = _mm256_add_pd(fiz2,tz);
449
450             fjx0             = _mm256_add_pd(fjx0,tx);
451             fjy0             = _mm256_add_pd(fjy0,ty);
452             fjz0             = _mm256_add_pd(fjz0,tz);
453
454             }
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             if (gmx_mm256_any_lt(rsq30,rcutoff2))
461             {
462
463             r30              = _mm256_mul_pd(rsq30,rinv30);
464
465             /* Compute parameters for interactions between i and j atoms */
466             qq30             = _mm256_mul_pd(iq3,jq0);
467
468             /* EWALD ELECTROSTATICS */
469
470             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
471             ewrt             = _mm256_mul_pd(r30,ewtabscale);
472             ewitab           = _mm256_cvttpd_epi32(ewrt);
473             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
474             ewitab           = _mm_slli_epi32(ewitab,2);
475             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
476             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
477             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
478             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
479             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
480             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
481             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
482             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_sub_pd(rinv30,sh_ewald),velec));
483             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
484
485             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
486
487             /* Update potential sum for this i atom from the interaction with this j atom. */
488             velec            = _mm256_and_pd(velec,cutoff_mask);
489             velecsum         = _mm256_add_pd(velecsum,velec);
490
491             fscal            = felec;
492
493             fscal            = _mm256_and_pd(fscal,cutoff_mask);
494
495             /* Calculate temporary vectorial force */
496             tx               = _mm256_mul_pd(fscal,dx30);
497             ty               = _mm256_mul_pd(fscal,dy30);
498             tz               = _mm256_mul_pd(fscal,dz30);
499
500             /* Update vectorial force */
501             fix3             = _mm256_add_pd(fix3,tx);
502             fiy3             = _mm256_add_pd(fiy3,ty);
503             fiz3             = _mm256_add_pd(fiz3,tz);
504
505             fjx0             = _mm256_add_pd(fjx0,tx);
506             fjy0             = _mm256_add_pd(fjy0,ty);
507             fjz0             = _mm256_add_pd(fjz0,tz);
508
509             }
510
511             fjptrA             = f+j_coord_offsetA;
512             fjptrB             = f+j_coord_offsetB;
513             fjptrC             = f+j_coord_offsetC;
514             fjptrD             = f+j_coord_offsetD;
515
516             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
517
518             /* Inner loop uses 203 flops */
519         }
520
521         if(jidx<j_index_end)
522         {
523
524             /* Get j neighbor index, and coordinate index */
525             jnrlistA         = jjnr[jidx];
526             jnrlistB         = jjnr[jidx+1];
527             jnrlistC         = jjnr[jidx+2];
528             jnrlistD         = jjnr[jidx+3];
529             /* Sign of each element will be negative for non-real atoms.
530              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
531              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
532              */
533             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
534
535             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
536             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
537             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
538
539             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
540             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
541             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
542             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
543             j_coord_offsetA  = DIM*jnrA;
544             j_coord_offsetB  = DIM*jnrB;
545             j_coord_offsetC  = DIM*jnrC;
546             j_coord_offsetD  = DIM*jnrD;
547
548             /* load j atom coordinates */
549             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
550                                                  x+j_coord_offsetC,x+j_coord_offsetD,
551                                                  &jx0,&jy0,&jz0);
552
553             /* Calculate displacement vector */
554             dx00             = _mm256_sub_pd(ix0,jx0);
555             dy00             = _mm256_sub_pd(iy0,jy0);
556             dz00             = _mm256_sub_pd(iz0,jz0);
557             dx10             = _mm256_sub_pd(ix1,jx0);
558             dy10             = _mm256_sub_pd(iy1,jy0);
559             dz10             = _mm256_sub_pd(iz1,jz0);
560             dx20             = _mm256_sub_pd(ix2,jx0);
561             dy20             = _mm256_sub_pd(iy2,jy0);
562             dz20             = _mm256_sub_pd(iz2,jz0);
563             dx30             = _mm256_sub_pd(ix3,jx0);
564             dy30             = _mm256_sub_pd(iy3,jy0);
565             dz30             = _mm256_sub_pd(iz3,jz0);
566
567             /* Calculate squared distance and things based on it */
568             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
569             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
570             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
571             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
572
573             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
574             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
575             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
576             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
577
578             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
579             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
580             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
581             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
582
583             /* Load parameters for j particles */
584             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
585                                                                  charge+jnrC+0,charge+jnrD+0);
586             vdwjidx0A        = 2*vdwtype[jnrA+0];
587             vdwjidx0B        = 2*vdwtype[jnrB+0];
588             vdwjidx0C        = 2*vdwtype[jnrC+0];
589             vdwjidx0D        = 2*vdwtype[jnrD+0];
590
591             fjx0             = _mm256_setzero_pd();
592             fjy0             = _mm256_setzero_pd();
593             fjz0             = _mm256_setzero_pd();
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             if (gmx_mm256_any_lt(rsq00,rcutoff2))
600             {
601
602             r00              = _mm256_mul_pd(rsq00,rinv00);
603             r00              = _mm256_andnot_pd(dummy_mask,r00);
604
605             /* Compute parameters for interactions between i and j atoms */
606             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
607                                             vdwioffsetptr0+vdwjidx0B,
608                                             vdwioffsetptr0+vdwjidx0C,
609                                             vdwioffsetptr0+vdwjidx0D,
610                                             &c6_00,&c12_00);
611
612             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
613                                                                   vdwgridioffsetptr0+vdwjidx0B,
614                                                                   vdwgridioffsetptr0+vdwjidx0C,
615                                                                   vdwgridioffsetptr0+vdwjidx0D);
616
617             /* Analytical LJ-PME */
618             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
619             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
620             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
621             exponent         = gmx_simd_exp_d(ewcljrsq);
622             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
623             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
624             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
625             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
626             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
627             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
628                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
629             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
630             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
631
632             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
633
634             /* Update potential sum for this i atom from the interaction with this j atom. */
635             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
636             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
637             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
638
639             fscal            = fvdw;
640
641             fscal            = _mm256_and_pd(fscal,cutoff_mask);
642
643             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
644
645             /* Calculate temporary vectorial force */
646             tx               = _mm256_mul_pd(fscal,dx00);
647             ty               = _mm256_mul_pd(fscal,dy00);
648             tz               = _mm256_mul_pd(fscal,dz00);
649
650             /* Update vectorial force */
651             fix0             = _mm256_add_pd(fix0,tx);
652             fiy0             = _mm256_add_pd(fiy0,ty);
653             fiz0             = _mm256_add_pd(fiz0,tz);
654
655             fjx0             = _mm256_add_pd(fjx0,tx);
656             fjy0             = _mm256_add_pd(fjy0,ty);
657             fjz0             = _mm256_add_pd(fjz0,tz);
658
659             }
660
661             /**************************
662              * CALCULATE INTERACTIONS *
663              **************************/
664
665             if (gmx_mm256_any_lt(rsq10,rcutoff2))
666             {
667
668             r10              = _mm256_mul_pd(rsq10,rinv10);
669             r10              = _mm256_andnot_pd(dummy_mask,r10);
670
671             /* Compute parameters for interactions between i and j atoms */
672             qq10             = _mm256_mul_pd(iq1,jq0);
673
674             /* EWALD ELECTROSTATICS */
675
676             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
677             ewrt             = _mm256_mul_pd(r10,ewtabscale);
678             ewitab           = _mm256_cvttpd_epi32(ewrt);
679             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
680             ewitab           = _mm_slli_epi32(ewitab,2);
681             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
682             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
683             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
684             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
685             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
686             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
687             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
688             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
689             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
690
691             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
692
693             /* Update potential sum for this i atom from the interaction with this j atom. */
694             velec            = _mm256_and_pd(velec,cutoff_mask);
695             velec            = _mm256_andnot_pd(dummy_mask,velec);
696             velecsum         = _mm256_add_pd(velecsum,velec);
697
698             fscal            = felec;
699
700             fscal            = _mm256_and_pd(fscal,cutoff_mask);
701
702             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
703
704             /* Calculate temporary vectorial force */
705             tx               = _mm256_mul_pd(fscal,dx10);
706             ty               = _mm256_mul_pd(fscal,dy10);
707             tz               = _mm256_mul_pd(fscal,dz10);
708
709             /* Update vectorial force */
710             fix1             = _mm256_add_pd(fix1,tx);
711             fiy1             = _mm256_add_pd(fiy1,ty);
712             fiz1             = _mm256_add_pd(fiz1,tz);
713
714             fjx0             = _mm256_add_pd(fjx0,tx);
715             fjy0             = _mm256_add_pd(fjy0,ty);
716             fjz0             = _mm256_add_pd(fjz0,tz);
717
718             }
719
720             /**************************
721              * CALCULATE INTERACTIONS *
722              **************************/
723
724             if (gmx_mm256_any_lt(rsq20,rcutoff2))
725             {
726
727             r20              = _mm256_mul_pd(rsq20,rinv20);
728             r20              = _mm256_andnot_pd(dummy_mask,r20);
729
730             /* Compute parameters for interactions between i and j atoms */
731             qq20             = _mm256_mul_pd(iq2,jq0);
732
733             /* EWALD ELECTROSTATICS */
734
735             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
736             ewrt             = _mm256_mul_pd(r20,ewtabscale);
737             ewitab           = _mm256_cvttpd_epi32(ewrt);
738             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
739             ewitab           = _mm_slli_epi32(ewitab,2);
740             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
741             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
742             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
743             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
744             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
745             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
746             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
747             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
748             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
749
750             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
751
752             /* Update potential sum for this i atom from the interaction with this j atom. */
753             velec            = _mm256_and_pd(velec,cutoff_mask);
754             velec            = _mm256_andnot_pd(dummy_mask,velec);
755             velecsum         = _mm256_add_pd(velecsum,velec);
756
757             fscal            = felec;
758
759             fscal            = _mm256_and_pd(fscal,cutoff_mask);
760
761             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
762
763             /* Calculate temporary vectorial force */
764             tx               = _mm256_mul_pd(fscal,dx20);
765             ty               = _mm256_mul_pd(fscal,dy20);
766             tz               = _mm256_mul_pd(fscal,dz20);
767
768             /* Update vectorial force */
769             fix2             = _mm256_add_pd(fix2,tx);
770             fiy2             = _mm256_add_pd(fiy2,ty);
771             fiz2             = _mm256_add_pd(fiz2,tz);
772
773             fjx0             = _mm256_add_pd(fjx0,tx);
774             fjy0             = _mm256_add_pd(fjy0,ty);
775             fjz0             = _mm256_add_pd(fjz0,tz);
776
777             }
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             if (gmx_mm256_any_lt(rsq30,rcutoff2))
784             {
785
786             r30              = _mm256_mul_pd(rsq30,rinv30);
787             r30              = _mm256_andnot_pd(dummy_mask,r30);
788
789             /* Compute parameters for interactions between i and j atoms */
790             qq30             = _mm256_mul_pd(iq3,jq0);
791
792             /* EWALD ELECTROSTATICS */
793
794             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
795             ewrt             = _mm256_mul_pd(r30,ewtabscale);
796             ewitab           = _mm256_cvttpd_epi32(ewrt);
797             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
798             ewitab           = _mm_slli_epi32(ewitab,2);
799             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
800             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
801             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
802             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
803             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
804             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
805             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
806             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_sub_pd(rinv30,sh_ewald),velec));
807             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
808
809             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
810
811             /* Update potential sum for this i atom from the interaction with this j atom. */
812             velec            = _mm256_and_pd(velec,cutoff_mask);
813             velec            = _mm256_andnot_pd(dummy_mask,velec);
814             velecsum         = _mm256_add_pd(velecsum,velec);
815
816             fscal            = felec;
817
818             fscal            = _mm256_and_pd(fscal,cutoff_mask);
819
820             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
821
822             /* Calculate temporary vectorial force */
823             tx               = _mm256_mul_pd(fscal,dx30);
824             ty               = _mm256_mul_pd(fscal,dy30);
825             tz               = _mm256_mul_pd(fscal,dz30);
826
827             /* Update vectorial force */
828             fix3             = _mm256_add_pd(fix3,tx);
829             fiy3             = _mm256_add_pd(fiy3,ty);
830             fiz3             = _mm256_add_pd(fiz3,tz);
831
832             fjx0             = _mm256_add_pd(fjx0,tx);
833             fjy0             = _mm256_add_pd(fjy0,ty);
834             fjz0             = _mm256_add_pd(fjz0,tz);
835
836             }
837
838             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
839             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
840             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
841             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
842
843             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
844
845             /* Inner loop uses 207 flops */
846         }
847
848         /* End of innermost loop */
849
850         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
851                                                  f+i_coord_offset,fshift+i_shift_offset);
852
853         ggid                        = gid[iidx];
854         /* Update potential energies */
855         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
856         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
857
858         /* Increment number of inner iterations */
859         inneriter                  += j_index_end - j_index_start;
860
861         /* Outer loop uses 26 flops */
862     }
863
864     /* Increment number of outer iterations */
865     outeriter        += nri;
866
867     /* Update outer/inner flops */
868
869     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*207);
870 }
871 /*
872  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_avx_256_double
873  * Electrostatics interaction: Ewald
874  * VdW interaction:            LJEwald
875  * Geometry:                   Water4-Particle
876  * Calculate force/pot:        Force
877  */
878 void
879 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_avx_256_double
880                     (t_nblist                    * gmx_restrict       nlist,
881                      rvec                        * gmx_restrict          xx,
882                      rvec                        * gmx_restrict          ff,
883                      t_forcerec                  * gmx_restrict          fr,
884                      t_mdatoms                   * gmx_restrict     mdatoms,
885                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
886                      t_nrnb                      * gmx_restrict        nrnb)
887 {
888     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
889      * just 0 for non-waters.
890      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
891      * jnr indices corresponding to data put in the four positions in the SIMD register.
892      */
893     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
894     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
895     int              jnrA,jnrB,jnrC,jnrD;
896     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
897     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
898     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
899     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
900     real             rcutoff_scalar;
901     real             *shiftvec,*fshift,*x,*f;
902     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
903     real             scratch[4*DIM];
904     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
905     real *           vdwioffsetptr0;
906     real *           vdwgridioffsetptr0;
907     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
908     real *           vdwioffsetptr1;
909     real *           vdwgridioffsetptr1;
910     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
911     real *           vdwioffsetptr2;
912     real *           vdwgridioffsetptr2;
913     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
914     real *           vdwioffsetptr3;
915     real *           vdwgridioffsetptr3;
916     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
917     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
918     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
919     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
920     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
921     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
922     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
923     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
924     real             *charge;
925     int              nvdwtype;
926     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
927     int              *vdwtype;
928     real             *vdwparam;
929     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
930     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
931     __m256d           c6grid_00;
932     __m256d           c6grid_10;
933     __m256d           c6grid_20;
934     __m256d           c6grid_30;
935     real             *vdwgridparam;
936     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
937     __m256d           one_half  = _mm256_set1_pd(0.5);
938     __m256d           minus_one = _mm256_set1_pd(-1.0);
939     __m128i          ewitab;
940     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
941     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
942     real             *ewtab;
943     __m256d          dummy_mask,cutoff_mask;
944     __m128           tmpmask0,tmpmask1;
945     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
946     __m256d          one     = _mm256_set1_pd(1.0);
947     __m256d          two     = _mm256_set1_pd(2.0);
948     x                = xx[0];
949     f                = ff[0];
950
951     nri              = nlist->nri;
952     iinr             = nlist->iinr;
953     jindex           = nlist->jindex;
954     jjnr             = nlist->jjnr;
955     shiftidx         = nlist->shift;
956     gid              = nlist->gid;
957     shiftvec         = fr->shift_vec[0];
958     fshift           = fr->fshift[0];
959     facel            = _mm256_set1_pd(fr->epsfac);
960     charge           = mdatoms->chargeA;
961     nvdwtype         = fr->ntype;
962     vdwparam         = fr->nbfp;
963     vdwtype          = mdatoms->typeA;
964     vdwgridparam     = fr->ljpme_c6grid;
965     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
966     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
967     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
968
969     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
970     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
971     beta2            = _mm256_mul_pd(beta,beta);
972     beta3            = _mm256_mul_pd(beta,beta2);
973
974     ewtab            = fr->ic->tabq_coul_F;
975     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
976     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
977
978     /* Setup water-specific parameters */
979     inr              = nlist->iinr[0];
980     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
981     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
982     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
983     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
984     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
985
986     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
987     rcutoff_scalar   = fr->rcoulomb;
988     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
989     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
990
991     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
992     rvdw             = _mm256_set1_pd(fr->rvdw);
993
994     /* Avoid stupid compiler warnings */
995     jnrA = jnrB = jnrC = jnrD = 0;
996     j_coord_offsetA = 0;
997     j_coord_offsetB = 0;
998     j_coord_offsetC = 0;
999     j_coord_offsetD = 0;
1000
1001     outeriter        = 0;
1002     inneriter        = 0;
1003
1004     for(iidx=0;iidx<4*DIM;iidx++)
1005     {
1006         scratch[iidx] = 0.0;
1007     }
1008
1009     /* Start outer loop over neighborlists */
1010     for(iidx=0; iidx<nri; iidx++)
1011     {
1012         /* Load shift vector for this list */
1013         i_shift_offset   = DIM*shiftidx[iidx];
1014
1015         /* Load limits for loop over neighbors */
1016         j_index_start    = jindex[iidx];
1017         j_index_end      = jindex[iidx+1];
1018
1019         /* Get outer coordinate index */
1020         inr              = iinr[iidx];
1021         i_coord_offset   = DIM*inr;
1022
1023         /* Load i particle coords and add shift vector */
1024         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1025                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1026
1027         fix0             = _mm256_setzero_pd();
1028         fiy0             = _mm256_setzero_pd();
1029         fiz0             = _mm256_setzero_pd();
1030         fix1             = _mm256_setzero_pd();
1031         fiy1             = _mm256_setzero_pd();
1032         fiz1             = _mm256_setzero_pd();
1033         fix2             = _mm256_setzero_pd();
1034         fiy2             = _mm256_setzero_pd();
1035         fiz2             = _mm256_setzero_pd();
1036         fix3             = _mm256_setzero_pd();
1037         fiy3             = _mm256_setzero_pd();
1038         fiz3             = _mm256_setzero_pd();
1039
1040         /* Start inner kernel loop */
1041         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1042         {
1043
1044             /* Get j neighbor index, and coordinate index */
1045             jnrA             = jjnr[jidx];
1046             jnrB             = jjnr[jidx+1];
1047             jnrC             = jjnr[jidx+2];
1048             jnrD             = jjnr[jidx+3];
1049             j_coord_offsetA  = DIM*jnrA;
1050             j_coord_offsetB  = DIM*jnrB;
1051             j_coord_offsetC  = DIM*jnrC;
1052             j_coord_offsetD  = DIM*jnrD;
1053
1054             /* load j atom coordinates */
1055             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1056                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1057                                                  &jx0,&jy0,&jz0);
1058
1059             /* Calculate displacement vector */
1060             dx00             = _mm256_sub_pd(ix0,jx0);
1061             dy00             = _mm256_sub_pd(iy0,jy0);
1062             dz00             = _mm256_sub_pd(iz0,jz0);
1063             dx10             = _mm256_sub_pd(ix1,jx0);
1064             dy10             = _mm256_sub_pd(iy1,jy0);
1065             dz10             = _mm256_sub_pd(iz1,jz0);
1066             dx20             = _mm256_sub_pd(ix2,jx0);
1067             dy20             = _mm256_sub_pd(iy2,jy0);
1068             dz20             = _mm256_sub_pd(iz2,jz0);
1069             dx30             = _mm256_sub_pd(ix3,jx0);
1070             dy30             = _mm256_sub_pd(iy3,jy0);
1071             dz30             = _mm256_sub_pd(iz3,jz0);
1072
1073             /* Calculate squared distance and things based on it */
1074             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1075             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1076             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1077             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1078
1079             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1080             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1081             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1082             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1083
1084             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1085             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1086             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1087             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1088
1089             /* Load parameters for j particles */
1090             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1091                                                                  charge+jnrC+0,charge+jnrD+0);
1092             vdwjidx0A        = 2*vdwtype[jnrA+0];
1093             vdwjidx0B        = 2*vdwtype[jnrB+0];
1094             vdwjidx0C        = 2*vdwtype[jnrC+0];
1095             vdwjidx0D        = 2*vdwtype[jnrD+0];
1096
1097             fjx0             = _mm256_setzero_pd();
1098             fjy0             = _mm256_setzero_pd();
1099             fjz0             = _mm256_setzero_pd();
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1106             {
1107
1108             r00              = _mm256_mul_pd(rsq00,rinv00);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1112                                             vdwioffsetptr0+vdwjidx0B,
1113                                             vdwioffsetptr0+vdwjidx0C,
1114                                             vdwioffsetptr0+vdwjidx0D,
1115                                             &c6_00,&c12_00);
1116
1117             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1118                                                                   vdwgridioffsetptr0+vdwjidx0B,
1119                                                                   vdwgridioffsetptr0+vdwjidx0C,
1120                                                                   vdwgridioffsetptr0+vdwjidx0D);
1121
1122             /* Analytical LJ-PME */
1123             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1124             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1125             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1126             exponent         = gmx_simd_exp_d(ewcljrsq);
1127             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1128             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1129             /* f6A = 6 * C6grid * (1 - poly) */
1130             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1131             /* f6B = C6grid * exponent * beta^6 */
1132             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1133             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1134             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1135
1136             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1137
1138             fscal            = fvdw;
1139
1140             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1141
1142             /* Calculate temporary vectorial force */
1143             tx               = _mm256_mul_pd(fscal,dx00);
1144             ty               = _mm256_mul_pd(fscal,dy00);
1145             tz               = _mm256_mul_pd(fscal,dz00);
1146
1147             /* Update vectorial force */
1148             fix0             = _mm256_add_pd(fix0,tx);
1149             fiy0             = _mm256_add_pd(fiy0,ty);
1150             fiz0             = _mm256_add_pd(fiz0,tz);
1151
1152             fjx0             = _mm256_add_pd(fjx0,tx);
1153             fjy0             = _mm256_add_pd(fjy0,ty);
1154             fjz0             = _mm256_add_pd(fjz0,tz);
1155
1156             }
1157
1158             /**************************
1159              * CALCULATE INTERACTIONS *
1160              **************************/
1161
1162             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1163             {
1164
1165             r10              = _mm256_mul_pd(rsq10,rinv10);
1166
1167             /* Compute parameters for interactions between i and j atoms */
1168             qq10             = _mm256_mul_pd(iq1,jq0);
1169
1170             /* EWALD ELECTROSTATICS */
1171
1172             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1173             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1174             ewitab           = _mm256_cvttpd_epi32(ewrt);
1175             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1176             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1177                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1178                                             &ewtabF,&ewtabFn);
1179             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1180             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1181
1182             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1183
1184             fscal            = felec;
1185
1186             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1187
1188             /* Calculate temporary vectorial force */
1189             tx               = _mm256_mul_pd(fscal,dx10);
1190             ty               = _mm256_mul_pd(fscal,dy10);
1191             tz               = _mm256_mul_pd(fscal,dz10);
1192
1193             /* Update vectorial force */
1194             fix1             = _mm256_add_pd(fix1,tx);
1195             fiy1             = _mm256_add_pd(fiy1,ty);
1196             fiz1             = _mm256_add_pd(fiz1,tz);
1197
1198             fjx0             = _mm256_add_pd(fjx0,tx);
1199             fjy0             = _mm256_add_pd(fjy0,ty);
1200             fjz0             = _mm256_add_pd(fjz0,tz);
1201
1202             }
1203
1204             /**************************
1205              * CALCULATE INTERACTIONS *
1206              **************************/
1207
1208             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1209             {
1210
1211             r20              = _mm256_mul_pd(rsq20,rinv20);
1212
1213             /* Compute parameters for interactions between i and j atoms */
1214             qq20             = _mm256_mul_pd(iq2,jq0);
1215
1216             /* EWALD ELECTROSTATICS */
1217
1218             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1219             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1220             ewitab           = _mm256_cvttpd_epi32(ewrt);
1221             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1222             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1223                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1224                                             &ewtabF,&ewtabFn);
1225             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1226             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1227
1228             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1229
1230             fscal            = felec;
1231
1232             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1233
1234             /* Calculate temporary vectorial force */
1235             tx               = _mm256_mul_pd(fscal,dx20);
1236             ty               = _mm256_mul_pd(fscal,dy20);
1237             tz               = _mm256_mul_pd(fscal,dz20);
1238
1239             /* Update vectorial force */
1240             fix2             = _mm256_add_pd(fix2,tx);
1241             fiy2             = _mm256_add_pd(fiy2,ty);
1242             fiz2             = _mm256_add_pd(fiz2,tz);
1243
1244             fjx0             = _mm256_add_pd(fjx0,tx);
1245             fjy0             = _mm256_add_pd(fjy0,ty);
1246             fjz0             = _mm256_add_pd(fjz0,tz);
1247
1248             }
1249
1250             /**************************
1251              * CALCULATE INTERACTIONS *
1252              **************************/
1253
1254             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1255             {
1256
1257             r30              = _mm256_mul_pd(rsq30,rinv30);
1258
1259             /* Compute parameters for interactions between i and j atoms */
1260             qq30             = _mm256_mul_pd(iq3,jq0);
1261
1262             /* EWALD ELECTROSTATICS */
1263
1264             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1265             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1266             ewitab           = _mm256_cvttpd_epi32(ewrt);
1267             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1268             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1269                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1270                                             &ewtabF,&ewtabFn);
1271             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1272             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1273
1274             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1275
1276             fscal            = felec;
1277
1278             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1279
1280             /* Calculate temporary vectorial force */
1281             tx               = _mm256_mul_pd(fscal,dx30);
1282             ty               = _mm256_mul_pd(fscal,dy30);
1283             tz               = _mm256_mul_pd(fscal,dz30);
1284
1285             /* Update vectorial force */
1286             fix3             = _mm256_add_pd(fix3,tx);
1287             fiy3             = _mm256_add_pd(fiy3,ty);
1288             fiz3             = _mm256_add_pd(fiz3,tz);
1289
1290             fjx0             = _mm256_add_pd(fjx0,tx);
1291             fjy0             = _mm256_add_pd(fjy0,ty);
1292             fjz0             = _mm256_add_pd(fjz0,tz);
1293
1294             }
1295
1296             fjptrA             = f+j_coord_offsetA;
1297             fjptrB             = f+j_coord_offsetB;
1298             fjptrC             = f+j_coord_offsetC;
1299             fjptrD             = f+j_coord_offsetD;
1300
1301             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1302
1303             /* Inner loop uses 169 flops */
1304         }
1305
1306         if(jidx<j_index_end)
1307         {
1308
1309             /* Get j neighbor index, and coordinate index */
1310             jnrlistA         = jjnr[jidx];
1311             jnrlistB         = jjnr[jidx+1];
1312             jnrlistC         = jjnr[jidx+2];
1313             jnrlistD         = jjnr[jidx+3];
1314             /* Sign of each element will be negative for non-real atoms.
1315              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1316              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1317              */
1318             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1319
1320             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1321             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1322             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1323
1324             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1325             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1326             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1327             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1328             j_coord_offsetA  = DIM*jnrA;
1329             j_coord_offsetB  = DIM*jnrB;
1330             j_coord_offsetC  = DIM*jnrC;
1331             j_coord_offsetD  = DIM*jnrD;
1332
1333             /* load j atom coordinates */
1334             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1335                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1336                                                  &jx0,&jy0,&jz0);
1337
1338             /* Calculate displacement vector */
1339             dx00             = _mm256_sub_pd(ix0,jx0);
1340             dy00             = _mm256_sub_pd(iy0,jy0);
1341             dz00             = _mm256_sub_pd(iz0,jz0);
1342             dx10             = _mm256_sub_pd(ix1,jx0);
1343             dy10             = _mm256_sub_pd(iy1,jy0);
1344             dz10             = _mm256_sub_pd(iz1,jz0);
1345             dx20             = _mm256_sub_pd(ix2,jx0);
1346             dy20             = _mm256_sub_pd(iy2,jy0);
1347             dz20             = _mm256_sub_pd(iz2,jz0);
1348             dx30             = _mm256_sub_pd(ix3,jx0);
1349             dy30             = _mm256_sub_pd(iy3,jy0);
1350             dz30             = _mm256_sub_pd(iz3,jz0);
1351
1352             /* Calculate squared distance and things based on it */
1353             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1354             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1355             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1356             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1357
1358             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1359             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1360             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1361             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1362
1363             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1364             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1365             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1366             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1367
1368             /* Load parameters for j particles */
1369             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1370                                                                  charge+jnrC+0,charge+jnrD+0);
1371             vdwjidx0A        = 2*vdwtype[jnrA+0];
1372             vdwjidx0B        = 2*vdwtype[jnrB+0];
1373             vdwjidx0C        = 2*vdwtype[jnrC+0];
1374             vdwjidx0D        = 2*vdwtype[jnrD+0];
1375
1376             fjx0             = _mm256_setzero_pd();
1377             fjy0             = _mm256_setzero_pd();
1378             fjz0             = _mm256_setzero_pd();
1379
1380             /**************************
1381              * CALCULATE INTERACTIONS *
1382              **************************/
1383
1384             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1385             {
1386
1387             r00              = _mm256_mul_pd(rsq00,rinv00);
1388             r00              = _mm256_andnot_pd(dummy_mask,r00);
1389
1390             /* Compute parameters for interactions between i and j atoms */
1391             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1392                                             vdwioffsetptr0+vdwjidx0B,
1393                                             vdwioffsetptr0+vdwjidx0C,
1394                                             vdwioffsetptr0+vdwjidx0D,
1395                                             &c6_00,&c12_00);
1396
1397             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1398                                                                   vdwgridioffsetptr0+vdwjidx0B,
1399                                                                   vdwgridioffsetptr0+vdwjidx0C,
1400                                                                   vdwgridioffsetptr0+vdwjidx0D);
1401
1402             /* Analytical LJ-PME */
1403             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1404             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1405             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1406             exponent         = gmx_simd_exp_d(ewcljrsq);
1407             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1408             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1409             /* f6A = 6 * C6grid * (1 - poly) */
1410             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1411             /* f6B = C6grid * exponent * beta^6 */
1412             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1413             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1414             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1415
1416             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1417
1418             fscal            = fvdw;
1419
1420             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1421
1422             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1423
1424             /* Calculate temporary vectorial force */
1425             tx               = _mm256_mul_pd(fscal,dx00);
1426             ty               = _mm256_mul_pd(fscal,dy00);
1427             tz               = _mm256_mul_pd(fscal,dz00);
1428
1429             /* Update vectorial force */
1430             fix0             = _mm256_add_pd(fix0,tx);
1431             fiy0             = _mm256_add_pd(fiy0,ty);
1432             fiz0             = _mm256_add_pd(fiz0,tz);
1433
1434             fjx0             = _mm256_add_pd(fjx0,tx);
1435             fjy0             = _mm256_add_pd(fjy0,ty);
1436             fjz0             = _mm256_add_pd(fjz0,tz);
1437
1438             }
1439
1440             /**************************
1441              * CALCULATE INTERACTIONS *
1442              **************************/
1443
1444             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1445             {
1446
1447             r10              = _mm256_mul_pd(rsq10,rinv10);
1448             r10              = _mm256_andnot_pd(dummy_mask,r10);
1449
1450             /* Compute parameters for interactions between i and j atoms */
1451             qq10             = _mm256_mul_pd(iq1,jq0);
1452
1453             /* EWALD ELECTROSTATICS */
1454
1455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1456             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1457             ewitab           = _mm256_cvttpd_epi32(ewrt);
1458             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1459             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1460                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1461                                             &ewtabF,&ewtabFn);
1462             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1463             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1464
1465             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1466
1467             fscal            = felec;
1468
1469             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1470
1471             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1472
1473             /* Calculate temporary vectorial force */
1474             tx               = _mm256_mul_pd(fscal,dx10);
1475             ty               = _mm256_mul_pd(fscal,dy10);
1476             tz               = _mm256_mul_pd(fscal,dz10);
1477
1478             /* Update vectorial force */
1479             fix1             = _mm256_add_pd(fix1,tx);
1480             fiy1             = _mm256_add_pd(fiy1,ty);
1481             fiz1             = _mm256_add_pd(fiz1,tz);
1482
1483             fjx0             = _mm256_add_pd(fjx0,tx);
1484             fjy0             = _mm256_add_pd(fjy0,ty);
1485             fjz0             = _mm256_add_pd(fjz0,tz);
1486
1487             }
1488
1489             /**************************
1490              * CALCULATE INTERACTIONS *
1491              **************************/
1492
1493             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1494             {
1495
1496             r20              = _mm256_mul_pd(rsq20,rinv20);
1497             r20              = _mm256_andnot_pd(dummy_mask,r20);
1498
1499             /* Compute parameters for interactions between i and j atoms */
1500             qq20             = _mm256_mul_pd(iq2,jq0);
1501
1502             /* EWALD ELECTROSTATICS */
1503
1504             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1505             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1506             ewitab           = _mm256_cvttpd_epi32(ewrt);
1507             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1508             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1509                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1510                                             &ewtabF,&ewtabFn);
1511             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1512             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1513
1514             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1515
1516             fscal            = felec;
1517
1518             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1519
1520             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1521
1522             /* Calculate temporary vectorial force */
1523             tx               = _mm256_mul_pd(fscal,dx20);
1524             ty               = _mm256_mul_pd(fscal,dy20);
1525             tz               = _mm256_mul_pd(fscal,dz20);
1526
1527             /* Update vectorial force */
1528             fix2             = _mm256_add_pd(fix2,tx);
1529             fiy2             = _mm256_add_pd(fiy2,ty);
1530             fiz2             = _mm256_add_pd(fiz2,tz);
1531
1532             fjx0             = _mm256_add_pd(fjx0,tx);
1533             fjy0             = _mm256_add_pd(fjy0,ty);
1534             fjz0             = _mm256_add_pd(fjz0,tz);
1535
1536             }
1537
1538             /**************************
1539              * CALCULATE INTERACTIONS *
1540              **************************/
1541
1542             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1543             {
1544
1545             r30              = _mm256_mul_pd(rsq30,rinv30);
1546             r30              = _mm256_andnot_pd(dummy_mask,r30);
1547
1548             /* Compute parameters for interactions between i and j atoms */
1549             qq30             = _mm256_mul_pd(iq3,jq0);
1550
1551             /* EWALD ELECTROSTATICS */
1552
1553             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1554             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1555             ewitab           = _mm256_cvttpd_epi32(ewrt);
1556             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1557             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1558                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1559                                             &ewtabF,&ewtabFn);
1560             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1561             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1562
1563             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1564
1565             fscal            = felec;
1566
1567             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1568
1569             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1570
1571             /* Calculate temporary vectorial force */
1572             tx               = _mm256_mul_pd(fscal,dx30);
1573             ty               = _mm256_mul_pd(fscal,dy30);
1574             tz               = _mm256_mul_pd(fscal,dz30);
1575
1576             /* Update vectorial force */
1577             fix3             = _mm256_add_pd(fix3,tx);
1578             fiy3             = _mm256_add_pd(fiy3,ty);
1579             fiz3             = _mm256_add_pd(fiz3,tz);
1580
1581             fjx0             = _mm256_add_pd(fjx0,tx);
1582             fjy0             = _mm256_add_pd(fjy0,ty);
1583             fjz0             = _mm256_add_pd(fjz0,tz);
1584
1585             }
1586
1587             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1588             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1589             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1590             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1591
1592             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1593
1594             /* Inner loop uses 173 flops */
1595         }
1596
1597         /* End of innermost loop */
1598
1599         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1600                                                  f+i_coord_offset,fshift+i_shift_offset);
1601
1602         /* Increment number of inner iterations */
1603         inneriter                  += j_index_end - j_index_start;
1604
1605         /* Outer loop uses 24 flops */
1606     }
1607
1608     /* Increment number of outer iterations */
1609     outeriter        += nri;
1610
1611     /* Update outer/inner flops */
1612
1613     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*173);
1614 }