f6b01957592d278843453de14f0ca4723505ac57
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     real *           vdwgridioffsetptr0;
86     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     real *           vdwioffsetptr1;
88     real *           vdwgridioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     real *           vdwgridioffsetptr2;
92     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m256d           c6grid_00;
107     __m256d           c6grid_10;
108     __m256d           c6grid_20;
109     real             *vdwgridparam;
110     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
111     __m256d           one_half  = _mm256_set1_pd(0.5);
112     __m256d           minus_one = _mm256_set1_pd(-1.0);
113     __m128i          ewitab;
114     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
115     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
116     real             *ewtab;
117     __m256d          dummy_mask,cutoff_mask;
118     __m128           tmpmask0,tmpmask1;
119     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
120     __m256d          one     = _mm256_set1_pd(1.0);
121     __m256d          two     = _mm256_set1_pd(2.0);
122     x                = xx[0];
123     f                = ff[0];
124
125     nri              = nlist->nri;
126     iinr             = nlist->iinr;
127     jindex           = nlist->jindex;
128     jjnr             = nlist->jjnr;
129     shiftidx         = nlist->shift;
130     gid              = nlist->gid;
131     shiftvec         = fr->shift_vec[0];
132     fshift           = fr->fshift[0];
133     facel            = _mm256_set1_pd(fr->epsfac);
134     charge           = mdatoms->chargeA;
135     nvdwtype         = fr->ntype;
136     vdwparam         = fr->nbfp;
137     vdwtype          = mdatoms->typeA;
138     vdwgridparam     = fr->ljpme_c6grid;
139     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
140     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
141     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
142
143     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
144     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
145     beta2            = _mm256_mul_pd(beta,beta);
146     beta3            = _mm256_mul_pd(beta,beta2);
147
148     ewtab            = fr->ic->tabq_coul_FDV0;
149     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
150     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
151
152     /* Setup water-specific parameters */
153     inr              = nlist->iinr[0];
154     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
155     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
156     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
157     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
158     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
159
160     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
161     rcutoff_scalar   = fr->rcoulomb;
162     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
163     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
164
165     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
166     rvdw             = _mm256_set1_pd(fr->rvdw);
167
168     /* Avoid stupid compiler warnings */
169     jnrA = jnrB = jnrC = jnrD = 0;
170     j_coord_offsetA = 0;
171     j_coord_offsetB = 0;
172     j_coord_offsetC = 0;
173     j_coord_offsetD = 0;
174
175     outeriter        = 0;
176     inneriter        = 0;
177
178     for(iidx=0;iidx<4*DIM;iidx++)
179     {
180         scratch[iidx] = 0.0;
181     }
182
183     /* Start outer loop over neighborlists */
184     for(iidx=0; iidx<nri; iidx++)
185     {
186         /* Load shift vector for this list */
187         i_shift_offset   = DIM*shiftidx[iidx];
188
189         /* Load limits for loop over neighbors */
190         j_index_start    = jindex[iidx];
191         j_index_end      = jindex[iidx+1];
192
193         /* Get outer coordinate index */
194         inr              = iinr[iidx];
195         i_coord_offset   = DIM*inr;
196
197         /* Load i particle coords and add shift vector */
198         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
199                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
200
201         fix0             = _mm256_setzero_pd();
202         fiy0             = _mm256_setzero_pd();
203         fiz0             = _mm256_setzero_pd();
204         fix1             = _mm256_setzero_pd();
205         fiy1             = _mm256_setzero_pd();
206         fiz1             = _mm256_setzero_pd();
207         fix2             = _mm256_setzero_pd();
208         fiy2             = _mm256_setzero_pd();
209         fiz2             = _mm256_setzero_pd();
210
211         /* Reset potential sums */
212         velecsum         = _mm256_setzero_pd();
213         vvdwsum          = _mm256_setzero_pd();
214
215         /* Start inner kernel loop */
216         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
217         {
218
219             /* Get j neighbor index, and coordinate index */
220             jnrA             = jjnr[jidx];
221             jnrB             = jjnr[jidx+1];
222             jnrC             = jjnr[jidx+2];
223             jnrD             = jjnr[jidx+3];
224             j_coord_offsetA  = DIM*jnrA;
225             j_coord_offsetB  = DIM*jnrB;
226             j_coord_offsetC  = DIM*jnrC;
227             j_coord_offsetD  = DIM*jnrD;
228
229             /* load j atom coordinates */
230             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
231                                                  x+j_coord_offsetC,x+j_coord_offsetD,
232                                                  &jx0,&jy0,&jz0);
233
234             /* Calculate displacement vector */
235             dx00             = _mm256_sub_pd(ix0,jx0);
236             dy00             = _mm256_sub_pd(iy0,jy0);
237             dz00             = _mm256_sub_pd(iz0,jz0);
238             dx10             = _mm256_sub_pd(ix1,jx0);
239             dy10             = _mm256_sub_pd(iy1,jy0);
240             dz10             = _mm256_sub_pd(iz1,jz0);
241             dx20             = _mm256_sub_pd(ix2,jx0);
242             dy20             = _mm256_sub_pd(iy2,jy0);
243             dz20             = _mm256_sub_pd(iz2,jz0);
244
245             /* Calculate squared distance and things based on it */
246             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
247             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
248             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
249
250             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
251             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
252             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
253
254             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
255             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
256             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
257
258             /* Load parameters for j particles */
259             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
260                                                                  charge+jnrC+0,charge+jnrD+0);
261             vdwjidx0A        = 2*vdwtype[jnrA+0];
262             vdwjidx0B        = 2*vdwtype[jnrB+0];
263             vdwjidx0C        = 2*vdwtype[jnrC+0];
264             vdwjidx0D        = 2*vdwtype[jnrD+0];
265
266             fjx0             = _mm256_setzero_pd();
267             fjy0             = _mm256_setzero_pd();
268             fjz0             = _mm256_setzero_pd();
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             if (gmx_mm256_any_lt(rsq00,rcutoff2))
275             {
276
277             r00              = _mm256_mul_pd(rsq00,rinv00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq00             = _mm256_mul_pd(iq0,jq0);
281             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
282                                             vdwioffsetptr0+vdwjidx0B,
283                                             vdwioffsetptr0+vdwjidx0C,
284                                             vdwioffsetptr0+vdwjidx0D,
285                                             &c6_00,&c12_00);
286
287             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
288                                                                   vdwgridioffsetptr0+vdwjidx0B,
289                                                                   vdwgridioffsetptr0+vdwjidx0C,
290                                                                   vdwgridioffsetptr0+vdwjidx0D);
291
292             /* EWALD ELECTROSTATICS */
293
294             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
295             ewrt             = _mm256_mul_pd(r00,ewtabscale);
296             ewitab           = _mm256_cvttpd_epi32(ewrt);
297             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
298             ewitab           = _mm_slli_epi32(ewitab,2);
299             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
300             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
301             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
302             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
303             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
304             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
305             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
306             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
307             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
308
309             /* Analytical LJ-PME */
310             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
311             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
312             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
313             exponent         = gmx_simd_exp_d(ewcljrsq);
314             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
315             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
316             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
317             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
318             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
319             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
320                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
321             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
322             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
323
324             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velec            = _mm256_and_pd(velec,cutoff_mask);
328             velecsum         = _mm256_add_pd(velecsum,velec);
329             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
330             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
331
332             fscal            = _mm256_add_pd(felec,fvdw);
333
334             fscal            = _mm256_and_pd(fscal,cutoff_mask);
335
336             /* Calculate temporary vectorial force */
337             tx               = _mm256_mul_pd(fscal,dx00);
338             ty               = _mm256_mul_pd(fscal,dy00);
339             tz               = _mm256_mul_pd(fscal,dz00);
340
341             /* Update vectorial force */
342             fix0             = _mm256_add_pd(fix0,tx);
343             fiy0             = _mm256_add_pd(fiy0,ty);
344             fiz0             = _mm256_add_pd(fiz0,tz);
345
346             fjx0             = _mm256_add_pd(fjx0,tx);
347             fjy0             = _mm256_add_pd(fjy0,ty);
348             fjz0             = _mm256_add_pd(fjz0,tz);
349
350             }
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             if (gmx_mm256_any_lt(rsq10,rcutoff2))
357             {
358
359             r10              = _mm256_mul_pd(rsq10,rinv10);
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq10             = _mm256_mul_pd(iq1,jq0);
363
364             /* EWALD ELECTROSTATICS */
365
366             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
367             ewrt             = _mm256_mul_pd(r10,ewtabscale);
368             ewitab           = _mm256_cvttpd_epi32(ewrt);
369             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
370             ewitab           = _mm_slli_epi32(ewitab,2);
371             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
372             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
373             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
374             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
375             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
376             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
377             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
378             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
379             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
380
381             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velec            = _mm256_and_pd(velec,cutoff_mask);
385             velecsum         = _mm256_add_pd(velecsum,velec);
386
387             fscal            = felec;
388
389             fscal            = _mm256_and_pd(fscal,cutoff_mask);
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm256_mul_pd(fscal,dx10);
393             ty               = _mm256_mul_pd(fscal,dy10);
394             tz               = _mm256_mul_pd(fscal,dz10);
395
396             /* Update vectorial force */
397             fix1             = _mm256_add_pd(fix1,tx);
398             fiy1             = _mm256_add_pd(fiy1,ty);
399             fiz1             = _mm256_add_pd(fiz1,tz);
400
401             fjx0             = _mm256_add_pd(fjx0,tx);
402             fjy0             = _mm256_add_pd(fjy0,ty);
403             fjz0             = _mm256_add_pd(fjz0,tz);
404
405             }
406
407             /**************************
408              * CALCULATE INTERACTIONS *
409              **************************/
410
411             if (gmx_mm256_any_lt(rsq20,rcutoff2))
412             {
413
414             r20              = _mm256_mul_pd(rsq20,rinv20);
415
416             /* Compute parameters for interactions between i and j atoms */
417             qq20             = _mm256_mul_pd(iq2,jq0);
418
419             /* EWALD ELECTROSTATICS */
420
421             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
422             ewrt             = _mm256_mul_pd(r20,ewtabscale);
423             ewitab           = _mm256_cvttpd_epi32(ewrt);
424             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
425             ewitab           = _mm_slli_epi32(ewitab,2);
426             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
427             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
428             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
429             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
430             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
431             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
432             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
433             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
434             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
435
436             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
437
438             /* Update potential sum for this i atom from the interaction with this j atom. */
439             velec            = _mm256_and_pd(velec,cutoff_mask);
440             velecsum         = _mm256_add_pd(velecsum,velec);
441
442             fscal            = felec;
443
444             fscal            = _mm256_and_pd(fscal,cutoff_mask);
445
446             /* Calculate temporary vectorial force */
447             tx               = _mm256_mul_pd(fscal,dx20);
448             ty               = _mm256_mul_pd(fscal,dy20);
449             tz               = _mm256_mul_pd(fscal,dz20);
450
451             /* Update vectorial force */
452             fix2             = _mm256_add_pd(fix2,tx);
453             fiy2             = _mm256_add_pd(fiy2,ty);
454             fiz2             = _mm256_add_pd(fiz2,tz);
455
456             fjx0             = _mm256_add_pd(fjx0,tx);
457             fjy0             = _mm256_add_pd(fjy0,ty);
458             fjz0             = _mm256_add_pd(fjz0,tz);
459
460             }
461
462             fjptrA             = f+j_coord_offsetA;
463             fjptrB             = f+j_coord_offsetB;
464             fjptrC             = f+j_coord_offsetC;
465             fjptrD             = f+j_coord_offsetD;
466
467             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
468
469             /* Inner loop uses 177 flops */
470         }
471
472         if(jidx<j_index_end)
473         {
474
475             /* Get j neighbor index, and coordinate index */
476             jnrlistA         = jjnr[jidx];
477             jnrlistB         = jjnr[jidx+1];
478             jnrlistC         = jjnr[jidx+2];
479             jnrlistD         = jjnr[jidx+3];
480             /* Sign of each element will be negative for non-real atoms.
481              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
482              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
483              */
484             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
485
486             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
487             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
488             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
489
490             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
491             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
492             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
493             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
494             j_coord_offsetA  = DIM*jnrA;
495             j_coord_offsetB  = DIM*jnrB;
496             j_coord_offsetC  = DIM*jnrC;
497             j_coord_offsetD  = DIM*jnrD;
498
499             /* load j atom coordinates */
500             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
501                                                  x+j_coord_offsetC,x+j_coord_offsetD,
502                                                  &jx0,&jy0,&jz0);
503
504             /* Calculate displacement vector */
505             dx00             = _mm256_sub_pd(ix0,jx0);
506             dy00             = _mm256_sub_pd(iy0,jy0);
507             dz00             = _mm256_sub_pd(iz0,jz0);
508             dx10             = _mm256_sub_pd(ix1,jx0);
509             dy10             = _mm256_sub_pd(iy1,jy0);
510             dz10             = _mm256_sub_pd(iz1,jz0);
511             dx20             = _mm256_sub_pd(ix2,jx0);
512             dy20             = _mm256_sub_pd(iy2,jy0);
513             dz20             = _mm256_sub_pd(iz2,jz0);
514
515             /* Calculate squared distance and things based on it */
516             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
517             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
518             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
519
520             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
521             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
522             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
523
524             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
525             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
526             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
527
528             /* Load parameters for j particles */
529             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
530                                                                  charge+jnrC+0,charge+jnrD+0);
531             vdwjidx0A        = 2*vdwtype[jnrA+0];
532             vdwjidx0B        = 2*vdwtype[jnrB+0];
533             vdwjidx0C        = 2*vdwtype[jnrC+0];
534             vdwjidx0D        = 2*vdwtype[jnrD+0];
535
536             fjx0             = _mm256_setzero_pd();
537             fjy0             = _mm256_setzero_pd();
538             fjz0             = _mm256_setzero_pd();
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             if (gmx_mm256_any_lt(rsq00,rcutoff2))
545             {
546
547             r00              = _mm256_mul_pd(rsq00,rinv00);
548             r00              = _mm256_andnot_pd(dummy_mask,r00);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq00             = _mm256_mul_pd(iq0,jq0);
552             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
553                                             vdwioffsetptr0+vdwjidx0B,
554                                             vdwioffsetptr0+vdwjidx0C,
555                                             vdwioffsetptr0+vdwjidx0D,
556                                             &c6_00,&c12_00);
557
558             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
559                                                                   vdwgridioffsetptr0+vdwjidx0B,
560                                                                   vdwgridioffsetptr0+vdwjidx0C,
561                                                                   vdwgridioffsetptr0+vdwjidx0D);
562
563             /* EWALD ELECTROSTATICS */
564
565             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
566             ewrt             = _mm256_mul_pd(r00,ewtabscale);
567             ewitab           = _mm256_cvttpd_epi32(ewrt);
568             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
569             ewitab           = _mm_slli_epi32(ewitab,2);
570             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
571             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
572             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
573             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
574             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
575             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
576             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
577             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
578             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
579
580             /* Analytical LJ-PME */
581             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
582             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
583             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
584             exponent         = gmx_simd_exp_d(ewcljrsq);
585             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
586             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
587             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
588             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
589             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
590             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
591                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
592             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
593             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
594
595             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
596
597             /* Update potential sum for this i atom from the interaction with this j atom. */
598             velec            = _mm256_and_pd(velec,cutoff_mask);
599             velec            = _mm256_andnot_pd(dummy_mask,velec);
600             velecsum         = _mm256_add_pd(velecsum,velec);
601             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
602             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
603             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
604
605             fscal            = _mm256_add_pd(felec,fvdw);
606
607             fscal            = _mm256_and_pd(fscal,cutoff_mask);
608
609             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
610
611             /* Calculate temporary vectorial force */
612             tx               = _mm256_mul_pd(fscal,dx00);
613             ty               = _mm256_mul_pd(fscal,dy00);
614             tz               = _mm256_mul_pd(fscal,dz00);
615
616             /* Update vectorial force */
617             fix0             = _mm256_add_pd(fix0,tx);
618             fiy0             = _mm256_add_pd(fiy0,ty);
619             fiz0             = _mm256_add_pd(fiz0,tz);
620
621             fjx0             = _mm256_add_pd(fjx0,tx);
622             fjy0             = _mm256_add_pd(fjy0,ty);
623             fjz0             = _mm256_add_pd(fjz0,tz);
624
625             }
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             if (gmx_mm256_any_lt(rsq10,rcutoff2))
632             {
633
634             r10              = _mm256_mul_pd(rsq10,rinv10);
635             r10              = _mm256_andnot_pd(dummy_mask,r10);
636
637             /* Compute parameters for interactions between i and j atoms */
638             qq10             = _mm256_mul_pd(iq1,jq0);
639
640             /* EWALD ELECTROSTATICS */
641
642             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
643             ewrt             = _mm256_mul_pd(r10,ewtabscale);
644             ewitab           = _mm256_cvttpd_epi32(ewrt);
645             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
646             ewitab           = _mm_slli_epi32(ewitab,2);
647             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
648             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
649             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
650             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
651             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
652             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
653             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
654             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
655             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
656
657             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
658
659             /* Update potential sum for this i atom from the interaction with this j atom. */
660             velec            = _mm256_and_pd(velec,cutoff_mask);
661             velec            = _mm256_andnot_pd(dummy_mask,velec);
662             velecsum         = _mm256_add_pd(velecsum,velec);
663
664             fscal            = felec;
665
666             fscal            = _mm256_and_pd(fscal,cutoff_mask);
667
668             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
669
670             /* Calculate temporary vectorial force */
671             tx               = _mm256_mul_pd(fscal,dx10);
672             ty               = _mm256_mul_pd(fscal,dy10);
673             tz               = _mm256_mul_pd(fscal,dz10);
674
675             /* Update vectorial force */
676             fix1             = _mm256_add_pd(fix1,tx);
677             fiy1             = _mm256_add_pd(fiy1,ty);
678             fiz1             = _mm256_add_pd(fiz1,tz);
679
680             fjx0             = _mm256_add_pd(fjx0,tx);
681             fjy0             = _mm256_add_pd(fjy0,ty);
682             fjz0             = _mm256_add_pd(fjz0,tz);
683
684             }
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             if (gmx_mm256_any_lt(rsq20,rcutoff2))
691             {
692
693             r20              = _mm256_mul_pd(rsq20,rinv20);
694             r20              = _mm256_andnot_pd(dummy_mask,r20);
695
696             /* Compute parameters for interactions between i and j atoms */
697             qq20             = _mm256_mul_pd(iq2,jq0);
698
699             /* EWALD ELECTROSTATICS */
700
701             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
702             ewrt             = _mm256_mul_pd(r20,ewtabscale);
703             ewitab           = _mm256_cvttpd_epi32(ewrt);
704             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
705             ewitab           = _mm_slli_epi32(ewitab,2);
706             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
707             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
708             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
709             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
710             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
711             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
712             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
713             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
714             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
715
716             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
717
718             /* Update potential sum for this i atom from the interaction with this j atom. */
719             velec            = _mm256_and_pd(velec,cutoff_mask);
720             velec            = _mm256_andnot_pd(dummy_mask,velec);
721             velecsum         = _mm256_add_pd(velecsum,velec);
722
723             fscal            = felec;
724
725             fscal            = _mm256_and_pd(fscal,cutoff_mask);
726
727             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
728
729             /* Calculate temporary vectorial force */
730             tx               = _mm256_mul_pd(fscal,dx20);
731             ty               = _mm256_mul_pd(fscal,dy20);
732             tz               = _mm256_mul_pd(fscal,dz20);
733
734             /* Update vectorial force */
735             fix2             = _mm256_add_pd(fix2,tx);
736             fiy2             = _mm256_add_pd(fiy2,ty);
737             fiz2             = _mm256_add_pd(fiz2,tz);
738
739             fjx0             = _mm256_add_pd(fjx0,tx);
740             fjy0             = _mm256_add_pd(fjy0,ty);
741             fjz0             = _mm256_add_pd(fjz0,tz);
742
743             }
744
745             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
746             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
747             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
748             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
749
750             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
751
752             /* Inner loop uses 180 flops */
753         }
754
755         /* End of innermost loop */
756
757         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
758                                                  f+i_coord_offset,fshift+i_shift_offset);
759
760         ggid                        = gid[iidx];
761         /* Update potential energies */
762         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
763         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
764
765         /* Increment number of inner iterations */
766         inneriter                  += j_index_end - j_index_start;
767
768         /* Outer loop uses 20 flops */
769     }
770
771     /* Increment number of outer iterations */
772     outeriter        += nri;
773
774     /* Update outer/inner flops */
775
776     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*180);
777 }
778 /*
779  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_256_double
780  * Electrostatics interaction: Ewald
781  * VdW interaction:            LJEwald
782  * Geometry:                   Water3-Particle
783  * Calculate force/pot:        Force
784  */
785 void
786 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_256_double
787                     (t_nblist                    * gmx_restrict       nlist,
788                      rvec                        * gmx_restrict          xx,
789                      rvec                        * gmx_restrict          ff,
790                      t_forcerec                  * gmx_restrict          fr,
791                      t_mdatoms                   * gmx_restrict     mdatoms,
792                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
793                      t_nrnb                      * gmx_restrict        nrnb)
794 {
795     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
796      * just 0 for non-waters.
797      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
798      * jnr indices corresponding to data put in the four positions in the SIMD register.
799      */
800     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
801     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
802     int              jnrA,jnrB,jnrC,jnrD;
803     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
804     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
805     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
806     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
807     real             rcutoff_scalar;
808     real             *shiftvec,*fshift,*x,*f;
809     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
810     real             scratch[4*DIM];
811     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
812     real *           vdwioffsetptr0;
813     real *           vdwgridioffsetptr0;
814     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
815     real *           vdwioffsetptr1;
816     real *           vdwgridioffsetptr1;
817     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
818     real *           vdwioffsetptr2;
819     real *           vdwgridioffsetptr2;
820     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
821     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
822     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
823     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
824     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
825     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
826     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
827     real             *charge;
828     int              nvdwtype;
829     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
830     int              *vdwtype;
831     real             *vdwparam;
832     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
833     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
834     __m256d           c6grid_00;
835     __m256d           c6grid_10;
836     __m256d           c6grid_20;
837     real             *vdwgridparam;
838     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
839     __m256d           one_half  = _mm256_set1_pd(0.5);
840     __m256d           minus_one = _mm256_set1_pd(-1.0);
841     __m128i          ewitab;
842     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
843     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
844     real             *ewtab;
845     __m256d          dummy_mask,cutoff_mask;
846     __m128           tmpmask0,tmpmask1;
847     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
848     __m256d          one     = _mm256_set1_pd(1.0);
849     __m256d          two     = _mm256_set1_pd(2.0);
850     x                = xx[0];
851     f                = ff[0];
852
853     nri              = nlist->nri;
854     iinr             = nlist->iinr;
855     jindex           = nlist->jindex;
856     jjnr             = nlist->jjnr;
857     shiftidx         = nlist->shift;
858     gid              = nlist->gid;
859     shiftvec         = fr->shift_vec[0];
860     fshift           = fr->fshift[0];
861     facel            = _mm256_set1_pd(fr->epsfac);
862     charge           = mdatoms->chargeA;
863     nvdwtype         = fr->ntype;
864     vdwparam         = fr->nbfp;
865     vdwtype          = mdatoms->typeA;
866     vdwgridparam     = fr->ljpme_c6grid;
867     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
868     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
869     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
870
871     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
872     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
873     beta2            = _mm256_mul_pd(beta,beta);
874     beta3            = _mm256_mul_pd(beta,beta2);
875
876     ewtab            = fr->ic->tabq_coul_F;
877     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
878     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
879
880     /* Setup water-specific parameters */
881     inr              = nlist->iinr[0];
882     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
883     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
884     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
885     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
886     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
887
888     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
889     rcutoff_scalar   = fr->rcoulomb;
890     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
891     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
892
893     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
894     rvdw             = _mm256_set1_pd(fr->rvdw);
895
896     /* Avoid stupid compiler warnings */
897     jnrA = jnrB = jnrC = jnrD = 0;
898     j_coord_offsetA = 0;
899     j_coord_offsetB = 0;
900     j_coord_offsetC = 0;
901     j_coord_offsetD = 0;
902
903     outeriter        = 0;
904     inneriter        = 0;
905
906     for(iidx=0;iidx<4*DIM;iidx++)
907     {
908         scratch[iidx] = 0.0;
909     }
910
911     /* Start outer loop over neighborlists */
912     for(iidx=0; iidx<nri; iidx++)
913     {
914         /* Load shift vector for this list */
915         i_shift_offset   = DIM*shiftidx[iidx];
916
917         /* Load limits for loop over neighbors */
918         j_index_start    = jindex[iidx];
919         j_index_end      = jindex[iidx+1];
920
921         /* Get outer coordinate index */
922         inr              = iinr[iidx];
923         i_coord_offset   = DIM*inr;
924
925         /* Load i particle coords and add shift vector */
926         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
927                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
928
929         fix0             = _mm256_setzero_pd();
930         fiy0             = _mm256_setzero_pd();
931         fiz0             = _mm256_setzero_pd();
932         fix1             = _mm256_setzero_pd();
933         fiy1             = _mm256_setzero_pd();
934         fiz1             = _mm256_setzero_pd();
935         fix2             = _mm256_setzero_pd();
936         fiy2             = _mm256_setzero_pd();
937         fiz2             = _mm256_setzero_pd();
938
939         /* Start inner kernel loop */
940         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
941         {
942
943             /* Get j neighbor index, and coordinate index */
944             jnrA             = jjnr[jidx];
945             jnrB             = jjnr[jidx+1];
946             jnrC             = jjnr[jidx+2];
947             jnrD             = jjnr[jidx+3];
948             j_coord_offsetA  = DIM*jnrA;
949             j_coord_offsetB  = DIM*jnrB;
950             j_coord_offsetC  = DIM*jnrC;
951             j_coord_offsetD  = DIM*jnrD;
952
953             /* load j atom coordinates */
954             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
955                                                  x+j_coord_offsetC,x+j_coord_offsetD,
956                                                  &jx0,&jy0,&jz0);
957
958             /* Calculate displacement vector */
959             dx00             = _mm256_sub_pd(ix0,jx0);
960             dy00             = _mm256_sub_pd(iy0,jy0);
961             dz00             = _mm256_sub_pd(iz0,jz0);
962             dx10             = _mm256_sub_pd(ix1,jx0);
963             dy10             = _mm256_sub_pd(iy1,jy0);
964             dz10             = _mm256_sub_pd(iz1,jz0);
965             dx20             = _mm256_sub_pd(ix2,jx0);
966             dy20             = _mm256_sub_pd(iy2,jy0);
967             dz20             = _mm256_sub_pd(iz2,jz0);
968
969             /* Calculate squared distance and things based on it */
970             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
971             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
972             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
973
974             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
975             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
976             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
977
978             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
979             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
980             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
981
982             /* Load parameters for j particles */
983             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
984                                                                  charge+jnrC+0,charge+jnrD+0);
985             vdwjidx0A        = 2*vdwtype[jnrA+0];
986             vdwjidx0B        = 2*vdwtype[jnrB+0];
987             vdwjidx0C        = 2*vdwtype[jnrC+0];
988             vdwjidx0D        = 2*vdwtype[jnrD+0];
989
990             fjx0             = _mm256_setzero_pd();
991             fjy0             = _mm256_setzero_pd();
992             fjz0             = _mm256_setzero_pd();
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             if (gmx_mm256_any_lt(rsq00,rcutoff2))
999             {
1000
1001             r00              = _mm256_mul_pd(rsq00,rinv00);
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             qq00             = _mm256_mul_pd(iq0,jq0);
1005             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1006                                             vdwioffsetptr0+vdwjidx0B,
1007                                             vdwioffsetptr0+vdwjidx0C,
1008                                             vdwioffsetptr0+vdwjidx0D,
1009                                             &c6_00,&c12_00);
1010
1011             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1012                                                                   vdwgridioffsetptr0+vdwjidx0B,
1013                                                                   vdwgridioffsetptr0+vdwjidx0C,
1014                                                                   vdwgridioffsetptr0+vdwjidx0D);
1015
1016             /* EWALD ELECTROSTATICS */
1017
1018             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1019             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1020             ewitab           = _mm256_cvttpd_epi32(ewrt);
1021             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1022             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1023                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1024                                             &ewtabF,&ewtabFn);
1025             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1026             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1027
1028             /* Analytical LJ-PME */
1029             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1030             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1031             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1032             exponent         = gmx_simd_exp_d(ewcljrsq);
1033             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1034             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1035             /* f6A = 6 * C6grid * (1 - poly) */
1036             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1037             /* f6B = C6grid * exponent * beta^6 */
1038             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1039             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1040             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1041
1042             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1043
1044             fscal            = _mm256_add_pd(felec,fvdw);
1045
1046             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1047
1048             /* Calculate temporary vectorial force */
1049             tx               = _mm256_mul_pd(fscal,dx00);
1050             ty               = _mm256_mul_pd(fscal,dy00);
1051             tz               = _mm256_mul_pd(fscal,dz00);
1052
1053             /* Update vectorial force */
1054             fix0             = _mm256_add_pd(fix0,tx);
1055             fiy0             = _mm256_add_pd(fiy0,ty);
1056             fiz0             = _mm256_add_pd(fiz0,tz);
1057
1058             fjx0             = _mm256_add_pd(fjx0,tx);
1059             fjy0             = _mm256_add_pd(fjy0,ty);
1060             fjz0             = _mm256_add_pd(fjz0,tz);
1061
1062             }
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1069             {
1070
1071             r10              = _mm256_mul_pd(rsq10,rinv10);
1072
1073             /* Compute parameters for interactions between i and j atoms */
1074             qq10             = _mm256_mul_pd(iq1,jq0);
1075
1076             /* EWALD ELECTROSTATICS */
1077
1078             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1079             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1080             ewitab           = _mm256_cvttpd_epi32(ewrt);
1081             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1082             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1083                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1084                                             &ewtabF,&ewtabFn);
1085             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1086             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1087
1088             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1089
1090             fscal            = felec;
1091
1092             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm256_mul_pd(fscal,dx10);
1096             ty               = _mm256_mul_pd(fscal,dy10);
1097             tz               = _mm256_mul_pd(fscal,dz10);
1098
1099             /* Update vectorial force */
1100             fix1             = _mm256_add_pd(fix1,tx);
1101             fiy1             = _mm256_add_pd(fiy1,ty);
1102             fiz1             = _mm256_add_pd(fiz1,tz);
1103
1104             fjx0             = _mm256_add_pd(fjx0,tx);
1105             fjy0             = _mm256_add_pd(fjy0,ty);
1106             fjz0             = _mm256_add_pd(fjz0,tz);
1107
1108             }
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1115             {
1116
1117             r20              = _mm256_mul_pd(rsq20,rinv20);
1118
1119             /* Compute parameters for interactions between i and j atoms */
1120             qq20             = _mm256_mul_pd(iq2,jq0);
1121
1122             /* EWALD ELECTROSTATICS */
1123
1124             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1125             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1126             ewitab           = _mm256_cvttpd_epi32(ewrt);
1127             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1128             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1129                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1130                                             &ewtabF,&ewtabFn);
1131             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1132             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1133
1134             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1135
1136             fscal            = felec;
1137
1138             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1139
1140             /* Calculate temporary vectorial force */
1141             tx               = _mm256_mul_pd(fscal,dx20);
1142             ty               = _mm256_mul_pd(fscal,dy20);
1143             tz               = _mm256_mul_pd(fscal,dz20);
1144
1145             /* Update vectorial force */
1146             fix2             = _mm256_add_pd(fix2,tx);
1147             fiy2             = _mm256_add_pd(fiy2,ty);
1148             fiz2             = _mm256_add_pd(fiz2,tz);
1149
1150             fjx0             = _mm256_add_pd(fjx0,tx);
1151             fjy0             = _mm256_add_pd(fjy0,ty);
1152             fjz0             = _mm256_add_pd(fjz0,tz);
1153
1154             }
1155
1156             fjptrA             = f+j_coord_offsetA;
1157             fjptrB             = f+j_coord_offsetB;
1158             fjptrC             = f+j_coord_offsetC;
1159             fjptrD             = f+j_coord_offsetD;
1160
1161             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1162
1163             /* Inner loop uses 143 flops */
1164         }
1165
1166         if(jidx<j_index_end)
1167         {
1168
1169             /* Get j neighbor index, and coordinate index */
1170             jnrlistA         = jjnr[jidx];
1171             jnrlistB         = jjnr[jidx+1];
1172             jnrlistC         = jjnr[jidx+2];
1173             jnrlistD         = jjnr[jidx+3];
1174             /* Sign of each element will be negative for non-real atoms.
1175              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1176              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1177              */
1178             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1179
1180             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1181             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1182             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1183
1184             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1185             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1186             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1187             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1188             j_coord_offsetA  = DIM*jnrA;
1189             j_coord_offsetB  = DIM*jnrB;
1190             j_coord_offsetC  = DIM*jnrC;
1191             j_coord_offsetD  = DIM*jnrD;
1192
1193             /* load j atom coordinates */
1194             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1195                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1196                                                  &jx0,&jy0,&jz0);
1197
1198             /* Calculate displacement vector */
1199             dx00             = _mm256_sub_pd(ix0,jx0);
1200             dy00             = _mm256_sub_pd(iy0,jy0);
1201             dz00             = _mm256_sub_pd(iz0,jz0);
1202             dx10             = _mm256_sub_pd(ix1,jx0);
1203             dy10             = _mm256_sub_pd(iy1,jy0);
1204             dz10             = _mm256_sub_pd(iz1,jz0);
1205             dx20             = _mm256_sub_pd(ix2,jx0);
1206             dy20             = _mm256_sub_pd(iy2,jy0);
1207             dz20             = _mm256_sub_pd(iz2,jz0);
1208
1209             /* Calculate squared distance and things based on it */
1210             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1211             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1212             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1213
1214             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1215             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1216             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1217
1218             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1219             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1220             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1221
1222             /* Load parameters for j particles */
1223             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1224                                                                  charge+jnrC+0,charge+jnrD+0);
1225             vdwjidx0A        = 2*vdwtype[jnrA+0];
1226             vdwjidx0B        = 2*vdwtype[jnrB+0];
1227             vdwjidx0C        = 2*vdwtype[jnrC+0];
1228             vdwjidx0D        = 2*vdwtype[jnrD+0];
1229
1230             fjx0             = _mm256_setzero_pd();
1231             fjy0             = _mm256_setzero_pd();
1232             fjz0             = _mm256_setzero_pd();
1233
1234             /**************************
1235              * CALCULATE INTERACTIONS *
1236              **************************/
1237
1238             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1239             {
1240
1241             r00              = _mm256_mul_pd(rsq00,rinv00);
1242             r00              = _mm256_andnot_pd(dummy_mask,r00);
1243
1244             /* Compute parameters for interactions between i and j atoms */
1245             qq00             = _mm256_mul_pd(iq0,jq0);
1246             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1247                                             vdwioffsetptr0+vdwjidx0B,
1248                                             vdwioffsetptr0+vdwjidx0C,
1249                                             vdwioffsetptr0+vdwjidx0D,
1250                                             &c6_00,&c12_00);
1251
1252             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1253                                                                   vdwgridioffsetptr0+vdwjidx0B,
1254                                                                   vdwgridioffsetptr0+vdwjidx0C,
1255                                                                   vdwgridioffsetptr0+vdwjidx0D);
1256
1257             /* EWALD ELECTROSTATICS */
1258
1259             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1260             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1261             ewitab           = _mm256_cvttpd_epi32(ewrt);
1262             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1263             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1264                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1265                                             &ewtabF,&ewtabFn);
1266             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1267             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1268
1269             /* Analytical LJ-PME */
1270             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1271             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1272             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1273             exponent         = gmx_simd_exp_d(ewcljrsq);
1274             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1275             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1276             /* f6A = 6 * C6grid * (1 - poly) */
1277             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1278             /* f6B = C6grid * exponent * beta^6 */
1279             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1280             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1281             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1282
1283             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1284
1285             fscal            = _mm256_add_pd(felec,fvdw);
1286
1287             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1288
1289             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1290
1291             /* Calculate temporary vectorial force */
1292             tx               = _mm256_mul_pd(fscal,dx00);
1293             ty               = _mm256_mul_pd(fscal,dy00);
1294             tz               = _mm256_mul_pd(fscal,dz00);
1295
1296             /* Update vectorial force */
1297             fix0             = _mm256_add_pd(fix0,tx);
1298             fiy0             = _mm256_add_pd(fiy0,ty);
1299             fiz0             = _mm256_add_pd(fiz0,tz);
1300
1301             fjx0             = _mm256_add_pd(fjx0,tx);
1302             fjy0             = _mm256_add_pd(fjy0,ty);
1303             fjz0             = _mm256_add_pd(fjz0,tz);
1304
1305             }
1306
1307             /**************************
1308              * CALCULATE INTERACTIONS *
1309              **************************/
1310
1311             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1312             {
1313
1314             r10              = _mm256_mul_pd(rsq10,rinv10);
1315             r10              = _mm256_andnot_pd(dummy_mask,r10);
1316
1317             /* Compute parameters for interactions between i and j atoms */
1318             qq10             = _mm256_mul_pd(iq1,jq0);
1319
1320             /* EWALD ELECTROSTATICS */
1321
1322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1323             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1324             ewitab           = _mm256_cvttpd_epi32(ewrt);
1325             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1326             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1327                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1328                                             &ewtabF,&ewtabFn);
1329             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1330             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1331
1332             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1333
1334             fscal            = felec;
1335
1336             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1337
1338             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1339
1340             /* Calculate temporary vectorial force */
1341             tx               = _mm256_mul_pd(fscal,dx10);
1342             ty               = _mm256_mul_pd(fscal,dy10);
1343             tz               = _mm256_mul_pd(fscal,dz10);
1344
1345             /* Update vectorial force */
1346             fix1             = _mm256_add_pd(fix1,tx);
1347             fiy1             = _mm256_add_pd(fiy1,ty);
1348             fiz1             = _mm256_add_pd(fiz1,tz);
1349
1350             fjx0             = _mm256_add_pd(fjx0,tx);
1351             fjy0             = _mm256_add_pd(fjy0,ty);
1352             fjz0             = _mm256_add_pd(fjz0,tz);
1353
1354             }
1355
1356             /**************************
1357              * CALCULATE INTERACTIONS *
1358              **************************/
1359
1360             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1361             {
1362
1363             r20              = _mm256_mul_pd(rsq20,rinv20);
1364             r20              = _mm256_andnot_pd(dummy_mask,r20);
1365
1366             /* Compute parameters for interactions between i and j atoms */
1367             qq20             = _mm256_mul_pd(iq2,jq0);
1368
1369             /* EWALD ELECTROSTATICS */
1370
1371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1372             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1373             ewitab           = _mm256_cvttpd_epi32(ewrt);
1374             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1375             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1376                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1377                                             &ewtabF,&ewtabFn);
1378             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1379             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1380
1381             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1382
1383             fscal            = felec;
1384
1385             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1386
1387             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1388
1389             /* Calculate temporary vectorial force */
1390             tx               = _mm256_mul_pd(fscal,dx20);
1391             ty               = _mm256_mul_pd(fscal,dy20);
1392             tz               = _mm256_mul_pd(fscal,dz20);
1393
1394             /* Update vectorial force */
1395             fix2             = _mm256_add_pd(fix2,tx);
1396             fiy2             = _mm256_add_pd(fiy2,ty);
1397             fiz2             = _mm256_add_pd(fiz2,tz);
1398
1399             fjx0             = _mm256_add_pd(fjx0,tx);
1400             fjy0             = _mm256_add_pd(fjy0,ty);
1401             fjz0             = _mm256_add_pd(fjz0,tz);
1402
1403             }
1404
1405             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1406             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1407             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1408             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1409
1410             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1411
1412             /* Inner loop uses 146 flops */
1413         }
1414
1415         /* End of innermost loop */
1416
1417         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1418                                                  f+i_coord_offset,fshift+i_shift_offset);
1419
1420         /* Increment number of inner iterations */
1421         inneriter                  += j_index_end - j_index_start;
1422
1423         /* Outer loop uses 18 flops */
1424     }
1425
1426     /* Increment number of outer iterations */
1427     outeriter        += nri;
1428
1429     /* Update outer/inner flops */
1430
1431     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*146);
1432 }