Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     real *           vdwgridioffsetptr0;
88     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
89     real *           vdwioffsetptr1;
90     real *           vdwgridioffsetptr1;
91     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
92     real *           vdwioffsetptr2;
93     real *           vdwgridioffsetptr2;
94     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
95     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
96     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
97     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
98     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
99     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m256d           c6grid_00;
109     __m256d           c6grid_10;
110     __m256d           c6grid_20;
111     real             *vdwgridparam;
112     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
113     __m256d           one_half  = _mm256_set1_pd(0.5);
114     __m256d           minus_one = _mm256_set1_pd(-1.0);
115     __m128i          ewitab;
116     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
118     real             *ewtab;
119     __m256d          dummy_mask,cutoff_mask;
120     __m128           tmpmask0,tmpmask1;
121     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
122     __m256d          one     = _mm256_set1_pd(1.0);
123     __m256d          two     = _mm256_set1_pd(2.0);
124     x                = xx[0];
125     f                = ff[0];
126
127     nri              = nlist->nri;
128     iinr             = nlist->iinr;
129     jindex           = nlist->jindex;
130     jjnr             = nlist->jjnr;
131     shiftidx         = nlist->shift;
132     gid              = nlist->gid;
133     shiftvec         = fr->shift_vec[0];
134     fshift           = fr->fshift[0];
135     facel            = _mm256_set1_pd(fr->epsfac);
136     charge           = mdatoms->chargeA;
137     nvdwtype         = fr->ntype;
138     vdwparam         = fr->nbfp;
139     vdwtype          = mdatoms->typeA;
140     vdwgridparam     = fr->ljpme_c6grid;
141     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
142     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
143     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
144
145     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
146     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
147     beta2            = _mm256_mul_pd(beta,beta);
148     beta3            = _mm256_mul_pd(beta,beta2);
149
150     ewtab            = fr->ic->tabq_coul_FDV0;
151     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
152     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
153
154     /* Setup water-specific parameters */
155     inr              = nlist->iinr[0];
156     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
157     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
158     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
159     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
160     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
161
162     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
163     rcutoff_scalar   = fr->rcoulomb;
164     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
165     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
166
167     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
168     rvdw             = _mm256_set1_pd(fr->rvdw);
169
170     /* Avoid stupid compiler warnings */
171     jnrA = jnrB = jnrC = jnrD = 0;
172     j_coord_offsetA = 0;
173     j_coord_offsetB = 0;
174     j_coord_offsetC = 0;
175     j_coord_offsetD = 0;
176
177     outeriter        = 0;
178     inneriter        = 0;
179
180     for(iidx=0;iidx<4*DIM;iidx++)
181     {
182         scratch[iidx] = 0.0;
183     }
184
185     /* Start outer loop over neighborlists */
186     for(iidx=0; iidx<nri; iidx++)
187     {
188         /* Load shift vector for this list */
189         i_shift_offset   = DIM*shiftidx[iidx];
190
191         /* Load limits for loop over neighbors */
192         j_index_start    = jindex[iidx];
193         j_index_end      = jindex[iidx+1];
194
195         /* Get outer coordinate index */
196         inr              = iinr[iidx];
197         i_coord_offset   = DIM*inr;
198
199         /* Load i particle coords and add shift vector */
200         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
201                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
202
203         fix0             = _mm256_setzero_pd();
204         fiy0             = _mm256_setzero_pd();
205         fiz0             = _mm256_setzero_pd();
206         fix1             = _mm256_setzero_pd();
207         fiy1             = _mm256_setzero_pd();
208         fiz1             = _mm256_setzero_pd();
209         fix2             = _mm256_setzero_pd();
210         fiy2             = _mm256_setzero_pd();
211         fiz2             = _mm256_setzero_pd();
212
213         /* Reset potential sums */
214         velecsum         = _mm256_setzero_pd();
215         vvdwsum          = _mm256_setzero_pd();
216
217         /* Start inner kernel loop */
218         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
219         {
220
221             /* Get j neighbor index, and coordinate index */
222             jnrA             = jjnr[jidx];
223             jnrB             = jjnr[jidx+1];
224             jnrC             = jjnr[jidx+2];
225             jnrD             = jjnr[jidx+3];
226             j_coord_offsetA  = DIM*jnrA;
227             j_coord_offsetB  = DIM*jnrB;
228             j_coord_offsetC  = DIM*jnrC;
229             j_coord_offsetD  = DIM*jnrD;
230
231             /* load j atom coordinates */
232             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
233                                                  x+j_coord_offsetC,x+j_coord_offsetD,
234                                                  &jx0,&jy0,&jz0);
235
236             /* Calculate displacement vector */
237             dx00             = _mm256_sub_pd(ix0,jx0);
238             dy00             = _mm256_sub_pd(iy0,jy0);
239             dz00             = _mm256_sub_pd(iz0,jz0);
240             dx10             = _mm256_sub_pd(ix1,jx0);
241             dy10             = _mm256_sub_pd(iy1,jy0);
242             dz10             = _mm256_sub_pd(iz1,jz0);
243             dx20             = _mm256_sub_pd(ix2,jx0);
244             dy20             = _mm256_sub_pd(iy2,jy0);
245             dz20             = _mm256_sub_pd(iz2,jz0);
246
247             /* Calculate squared distance and things based on it */
248             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
249             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
250             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
251
252             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
253             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
254             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
255
256             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
257             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
258             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
259
260             /* Load parameters for j particles */
261             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
262                                                                  charge+jnrC+0,charge+jnrD+0);
263             vdwjidx0A        = 2*vdwtype[jnrA+0];
264             vdwjidx0B        = 2*vdwtype[jnrB+0];
265             vdwjidx0C        = 2*vdwtype[jnrC+0];
266             vdwjidx0D        = 2*vdwtype[jnrD+0];
267
268             fjx0             = _mm256_setzero_pd();
269             fjy0             = _mm256_setzero_pd();
270             fjz0             = _mm256_setzero_pd();
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             if (gmx_mm256_any_lt(rsq00,rcutoff2))
277             {
278
279             r00              = _mm256_mul_pd(rsq00,rinv00);
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq00             = _mm256_mul_pd(iq0,jq0);
283             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
284                                             vdwioffsetptr0+vdwjidx0B,
285                                             vdwioffsetptr0+vdwjidx0C,
286                                             vdwioffsetptr0+vdwjidx0D,
287                                             &c6_00,&c12_00);
288
289             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
290                                                                   vdwgridioffsetptr0+vdwjidx0B,
291                                                                   vdwgridioffsetptr0+vdwjidx0C,
292                                                                   vdwgridioffsetptr0+vdwjidx0D);
293
294             /* EWALD ELECTROSTATICS */
295
296             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
297             ewrt             = _mm256_mul_pd(r00,ewtabscale);
298             ewitab           = _mm256_cvttpd_epi32(ewrt);
299             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
300             ewitab           = _mm_slli_epi32(ewitab,2);
301             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
302             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
303             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
304             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
305             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
306             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
307             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
308             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
309             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
310
311             /* Analytical LJ-PME */
312             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
313             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
314             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
315             exponent         = gmx_simd_exp_d(ewcljrsq);
316             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
317             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
318             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
319             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
320             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
321             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
322                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
323             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
324             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
325
326             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velec            = _mm256_and_pd(velec,cutoff_mask);
330             velecsum         = _mm256_add_pd(velecsum,velec);
331             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
332             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
333
334             fscal            = _mm256_add_pd(felec,fvdw);
335
336             fscal            = _mm256_and_pd(fscal,cutoff_mask);
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm256_mul_pd(fscal,dx00);
340             ty               = _mm256_mul_pd(fscal,dy00);
341             tz               = _mm256_mul_pd(fscal,dz00);
342
343             /* Update vectorial force */
344             fix0             = _mm256_add_pd(fix0,tx);
345             fiy0             = _mm256_add_pd(fiy0,ty);
346             fiz0             = _mm256_add_pd(fiz0,tz);
347
348             fjx0             = _mm256_add_pd(fjx0,tx);
349             fjy0             = _mm256_add_pd(fjy0,ty);
350             fjz0             = _mm256_add_pd(fjz0,tz);
351
352             }
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             if (gmx_mm256_any_lt(rsq10,rcutoff2))
359             {
360
361             r10              = _mm256_mul_pd(rsq10,rinv10);
362
363             /* Compute parameters for interactions between i and j atoms */
364             qq10             = _mm256_mul_pd(iq1,jq0);
365
366             /* EWALD ELECTROSTATICS */
367
368             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
369             ewrt             = _mm256_mul_pd(r10,ewtabscale);
370             ewitab           = _mm256_cvttpd_epi32(ewrt);
371             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
372             ewitab           = _mm_slli_epi32(ewitab,2);
373             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
374             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
375             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
376             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
377             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
378             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
379             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
380             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
381             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
382
383             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velec            = _mm256_and_pd(velec,cutoff_mask);
387             velecsum         = _mm256_add_pd(velecsum,velec);
388
389             fscal            = felec;
390
391             fscal            = _mm256_and_pd(fscal,cutoff_mask);
392
393             /* Calculate temporary vectorial force */
394             tx               = _mm256_mul_pd(fscal,dx10);
395             ty               = _mm256_mul_pd(fscal,dy10);
396             tz               = _mm256_mul_pd(fscal,dz10);
397
398             /* Update vectorial force */
399             fix1             = _mm256_add_pd(fix1,tx);
400             fiy1             = _mm256_add_pd(fiy1,ty);
401             fiz1             = _mm256_add_pd(fiz1,tz);
402
403             fjx0             = _mm256_add_pd(fjx0,tx);
404             fjy0             = _mm256_add_pd(fjy0,ty);
405             fjz0             = _mm256_add_pd(fjz0,tz);
406
407             }
408
409             /**************************
410              * CALCULATE INTERACTIONS *
411              **************************/
412
413             if (gmx_mm256_any_lt(rsq20,rcutoff2))
414             {
415
416             r20              = _mm256_mul_pd(rsq20,rinv20);
417
418             /* Compute parameters for interactions between i and j atoms */
419             qq20             = _mm256_mul_pd(iq2,jq0);
420
421             /* EWALD ELECTROSTATICS */
422
423             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
424             ewrt             = _mm256_mul_pd(r20,ewtabscale);
425             ewitab           = _mm256_cvttpd_epi32(ewrt);
426             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
427             ewitab           = _mm_slli_epi32(ewitab,2);
428             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
429             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
430             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
431             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
432             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
433             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
434             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
435             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
436             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
437
438             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
439
440             /* Update potential sum for this i atom from the interaction with this j atom. */
441             velec            = _mm256_and_pd(velec,cutoff_mask);
442             velecsum         = _mm256_add_pd(velecsum,velec);
443
444             fscal            = felec;
445
446             fscal            = _mm256_and_pd(fscal,cutoff_mask);
447
448             /* Calculate temporary vectorial force */
449             tx               = _mm256_mul_pd(fscal,dx20);
450             ty               = _mm256_mul_pd(fscal,dy20);
451             tz               = _mm256_mul_pd(fscal,dz20);
452
453             /* Update vectorial force */
454             fix2             = _mm256_add_pd(fix2,tx);
455             fiy2             = _mm256_add_pd(fiy2,ty);
456             fiz2             = _mm256_add_pd(fiz2,tz);
457
458             fjx0             = _mm256_add_pd(fjx0,tx);
459             fjy0             = _mm256_add_pd(fjy0,ty);
460             fjz0             = _mm256_add_pd(fjz0,tz);
461
462             }
463
464             fjptrA             = f+j_coord_offsetA;
465             fjptrB             = f+j_coord_offsetB;
466             fjptrC             = f+j_coord_offsetC;
467             fjptrD             = f+j_coord_offsetD;
468
469             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
470
471             /* Inner loop uses 177 flops */
472         }
473
474         if(jidx<j_index_end)
475         {
476
477             /* Get j neighbor index, and coordinate index */
478             jnrlistA         = jjnr[jidx];
479             jnrlistB         = jjnr[jidx+1];
480             jnrlistC         = jjnr[jidx+2];
481             jnrlistD         = jjnr[jidx+3];
482             /* Sign of each element will be negative for non-real atoms.
483              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
484              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
485              */
486             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
487
488             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
489             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
490             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
491
492             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
493             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
494             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
495             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
496             j_coord_offsetA  = DIM*jnrA;
497             j_coord_offsetB  = DIM*jnrB;
498             j_coord_offsetC  = DIM*jnrC;
499             j_coord_offsetD  = DIM*jnrD;
500
501             /* load j atom coordinates */
502             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
503                                                  x+j_coord_offsetC,x+j_coord_offsetD,
504                                                  &jx0,&jy0,&jz0);
505
506             /* Calculate displacement vector */
507             dx00             = _mm256_sub_pd(ix0,jx0);
508             dy00             = _mm256_sub_pd(iy0,jy0);
509             dz00             = _mm256_sub_pd(iz0,jz0);
510             dx10             = _mm256_sub_pd(ix1,jx0);
511             dy10             = _mm256_sub_pd(iy1,jy0);
512             dz10             = _mm256_sub_pd(iz1,jz0);
513             dx20             = _mm256_sub_pd(ix2,jx0);
514             dy20             = _mm256_sub_pd(iy2,jy0);
515             dz20             = _mm256_sub_pd(iz2,jz0);
516
517             /* Calculate squared distance and things based on it */
518             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
519             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
520             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
521
522             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
523             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
524             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
525
526             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
527             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
528             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
529
530             /* Load parameters for j particles */
531             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
532                                                                  charge+jnrC+0,charge+jnrD+0);
533             vdwjidx0A        = 2*vdwtype[jnrA+0];
534             vdwjidx0B        = 2*vdwtype[jnrB+0];
535             vdwjidx0C        = 2*vdwtype[jnrC+0];
536             vdwjidx0D        = 2*vdwtype[jnrD+0];
537
538             fjx0             = _mm256_setzero_pd();
539             fjy0             = _mm256_setzero_pd();
540             fjz0             = _mm256_setzero_pd();
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             if (gmx_mm256_any_lt(rsq00,rcutoff2))
547             {
548
549             r00              = _mm256_mul_pd(rsq00,rinv00);
550             r00              = _mm256_andnot_pd(dummy_mask,r00);
551
552             /* Compute parameters for interactions between i and j atoms */
553             qq00             = _mm256_mul_pd(iq0,jq0);
554             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
555                                             vdwioffsetptr0+vdwjidx0B,
556                                             vdwioffsetptr0+vdwjidx0C,
557                                             vdwioffsetptr0+vdwjidx0D,
558                                             &c6_00,&c12_00);
559
560             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
561                                                                   vdwgridioffsetptr0+vdwjidx0B,
562                                                                   vdwgridioffsetptr0+vdwjidx0C,
563                                                                   vdwgridioffsetptr0+vdwjidx0D);
564
565             /* EWALD ELECTROSTATICS */
566
567             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
568             ewrt             = _mm256_mul_pd(r00,ewtabscale);
569             ewitab           = _mm256_cvttpd_epi32(ewrt);
570             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
571             ewitab           = _mm_slli_epi32(ewitab,2);
572             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
573             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
574             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
575             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
576             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
577             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
578             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
579             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
580             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
581
582             /* Analytical LJ-PME */
583             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
584             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
585             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
586             exponent         = gmx_simd_exp_d(ewcljrsq);
587             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
588             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
589             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
590             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
591             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
592             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
593                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
594             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
595             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
596
597             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
598
599             /* Update potential sum for this i atom from the interaction with this j atom. */
600             velec            = _mm256_and_pd(velec,cutoff_mask);
601             velec            = _mm256_andnot_pd(dummy_mask,velec);
602             velecsum         = _mm256_add_pd(velecsum,velec);
603             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
604             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
605             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
606
607             fscal            = _mm256_add_pd(felec,fvdw);
608
609             fscal            = _mm256_and_pd(fscal,cutoff_mask);
610
611             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm256_mul_pd(fscal,dx00);
615             ty               = _mm256_mul_pd(fscal,dy00);
616             tz               = _mm256_mul_pd(fscal,dz00);
617
618             /* Update vectorial force */
619             fix0             = _mm256_add_pd(fix0,tx);
620             fiy0             = _mm256_add_pd(fiy0,ty);
621             fiz0             = _mm256_add_pd(fiz0,tz);
622
623             fjx0             = _mm256_add_pd(fjx0,tx);
624             fjy0             = _mm256_add_pd(fjy0,ty);
625             fjz0             = _mm256_add_pd(fjz0,tz);
626
627             }
628
629             /**************************
630              * CALCULATE INTERACTIONS *
631              **************************/
632
633             if (gmx_mm256_any_lt(rsq10,rcutoff2))
634             {
635
636             r10              = _mm256_mul_pd(rsq10,rinv10);
637             r10              = _mm256_andnot_pd(dummy_mask,r10);
638
639             /* Compute parameters for interactions between i and j atoms */
640             qq10             = _mm256_mul_pd(iq1,jq0);
641
642             /* EWALD ELECTROSTATICS */
643
644             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
645             ewrt             = _mm256_mul_pd(r10,ewtabscale);
646             ewitab           = _mm256_cvttpd_epi32(ewrt);
647             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
648             ewitab           = _mm_slli_epi32(ewitab,2);
649             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
650             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
651             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
652             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
653             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
654             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
655             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
656             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
657             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
658
659             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
660
661             /* Update potential sum for this i atom from the interaction with this j atom. */
662             velec            = _mm256_and_pd(velec,cutoff_mask);
663             velec            = _mm256_andnot_pd(dummy_mask,velec);
664             velecsum         = _mm256_add_pd(velecsum,velec);
665
666             fscal            = felec;
667
668             fscal            = _mm256_and_pd(fscal,cutoff_mask);
669
670             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
671
672             /* Calculate temporary vectorial force */
673             tx               = _mm256_mul_pd(fscal,dx10);
674             ty               = _mm256_mul_pd(fscal,dy10);
675             tz               = _mm256_mul_pd(fscal,dz10);
676
677             /* Update vectorial force */
678             fix1             = _mm256_add_pd(fix1,tx);
679             fiy1             = _mm256_add_pd(fiy1,ty);
680             fiz1             = _mm256_add_pd(fiz1,tz);
681
682             fjx0             = _mm256_add_pd(fjx0,tx);
683             fjy0             = _mm256_add_pd(fjy0,ty);
684             fjz0             = _mm256_add_pd(fjz0,tz);
685
686             }
687
688             /**************************
689              * CALCULATE INTERACTIONS *
690              **************************/
691
692             if (gmx_mm256_any_lt(rsq20,rcutoff2))
693             {
694
695             r20              = _mm256_mul_pd(rsq20,rinv20);
696             r20              = _mm256_andnot_pd(dummy_mask,r20);
697
698             /* Compute parameters for interactions between i and j atoms */
699             qq20             = _mm256_mul_pd(iq2,jq0);
700
701             /* EWALD ELECTROSTATICS */
702
703             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
704             ewrt             = _mm256_mul_pd(r20,ewtabscale);
705             ewitab           = _mm256_cvttpd_epi32(ewrt);
706             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
707             ewitab           = _mm_slli_epi32(ewitab,2);
708             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
709             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
710             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
711             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
712             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
713             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
714             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
715             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
716             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
717
718             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
719
720             /* Update potential sum for this i atom from the interaction with this j atom. */
721             velec            = _mm256_and_pd(velec,cutoff_mask);
722             velec            = _mm256_andnot_pd(dummy_mask,velec);
723             velecsum         = _mm256_add_pd(velecsum,velec);
724
725             fscal            = felec;
726
727             fscal            = _mm256_and_pd(fscal,cutoff_mask);
728
729             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
730
731             /* Calculate temporary vectorial force */
732             tx               = _mm256_mul_pd(fscal,dx20);
733             ty               = _mm256_mul_pd(fscal,dy20);
734             tz               = _mm256_mul_pd(fscal,dz20);
735
736             /* Update vectorial force */
737             fix2             = _mm256_add_pd(fix2,tx);
738             fiy2             = _mm256_add_pd(fiy2,ty);
739             fiz2             = _mm256_add_pd(fiz2,tz);
740
741             fjx0             = _mm256_add_pd(fjx0,tx);
742             fjy0             = _mm256_add_pd(fjy0,ty);
743             fjz0             = _mm256_add_pd(fjz0,tz);
744
745             }
746
747             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
748             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
749             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
750             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
751
752             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
753
754             /* Inner loop uses 180 flops */
755         }
756
757         /* End of innermost loop */
758
759         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
760                                                  f+i_coord_offset,fshift+i_shift_offset);
761
762         ggid                        = gid[iidx];
763         /* Update potential energies */
764         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
765         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
766
767         /* Increment number of inner iterations */
768         inneriter                  += j_index_end - j_index_start;
769
770         /* Outer loop uses 20 flops */
771     }
772
773     /* Increment number of outer iterations */
774     outeriter        += nri;
775
776     /* Update outer/inner flops */
777
778     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*180);
779 }
780 /*
781  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_256_double
782  * Electrostatics interaction: Ewald
783  * VdW interaction:            LJEwald
784  * Geometry:                   Water3-Particle
785  * Calculate force/pot:        Force
786  */
787 void
788 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_256_double
789                     (t_nblist                    * gmx_restrict       nlist,
790                      rvec                        * gmx_restrict          xx,
791                      rvec                        * gmx_restrict          ff,
792                      t_forcerec                  * gmx_restrict          fr,
793                      t_mdatoms                   * gmx_restrict     mdatoms,
794                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
795                      t_nrnb                      * gmx_restrict        nrnb)
796 {
797     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
798      * just 0 for non-waters.
799      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
800      * jnr indices corresponding to data put in the four positions in the SIMD register.
801      */
802     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
803     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
804     int              jnrA,jnrB,jnrC,jnrD;
805     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
806     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
807     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
808     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
809     real             rcutoff_scalar;
810     real             *shiftvec,*fshift,*x,*f;
811     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
812     real             scratch[4*DIM];
813     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
814     real *           vdwioffsetptr0;
815     real *           vdwgridioffsetptr0;
816     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
817     real *           vdwioffsetptr1;
818     real *           vdwgridioffsetptr1;
819     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
820     real *           vdwioffsetptr2;
821     real *           vdwgridioffsetptr2;
822     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
823     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
824     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
825     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
826     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
827     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
828     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
829     real             *charge;
830     int              nvdwtype;
831     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
832     int              *vdwtype;
833     real             *vdwparam;
834     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
835     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
836     __m256d           c6grid_00;
837     __m256d           c6grid_10;
838     __m256d           c6grid_20;
839     real             *vdwgridparam;
840     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
841     __m256d           one_half  = _mm256_set1_pd(0.5);
842     __m256d           minus_one = _mm256_set1_pd(-1.0);
843     __m128i          ewitab;
844     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
845     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
846     real             *ewtab;
847     __m256d          dummy_mask,cutoff_mask;
848     __m128           tmpmask0,tmpmask1;
849     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
850     __m256d          one     = _mm256_set1_pd(1.0);
851     __m256d          two     = _mm256_set1_pd(2.0);
852     x                = xx[0];
853     f                = ff[0];
854
855     nri              = nlist->nri;
856     iinr             = nlist->iinr;
857     jindex           = nlist->jindex;
858     jjnr             = nlist->jjnr;
859     shiftidx         = nlist->shift;
860     gid              = nlist->gid;
861     shiftvec         = fr->shift_vec[0];
862     fshift           = fr->fshift[0];
863     facel            = _mm256_set1_pd(fr->epsfac);
864     charge           = mdatoms->chargeA;
865     nvdwtype         = fr->ntype;
866     vdwparam         = fr->nbfp;
867     vdwtype          = mdatoms->typeA;
868     vdwgridparam     = fr->ljpme_c6grid;
869     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
870     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
871     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
872
873     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
874     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
875     beta2            = _mm256_mul_pd(beta,beta);
876     beta3            = _mm256_mul_pd(beta,beta2);
877
878     ewtab            = fr->ic->tabq_coul_F;
879     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
880     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
881
882     /* Setup water-specific parameters */
883     inr              = nlist->iinr[0];
884     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
885     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
886     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
887     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
888     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
889
890     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
891     rcutoff_scalar   = fr->rcoulomb;
892     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
893     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
894
895     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
896     rvdw             = _mm256_set1_pd(fr->rvdw);
897
898     /* Avoid stupid compiler warnings */
899     jnrA = jnrB = jnrC = jnrD = 0;
900     j_coord_offsetA = 0;
901     j_coord_offsetB = 0;
902     j_coord_offsetC = 0;
903     j_coord_offsetD = 0;
904
905     outeriter        = 0;
906     inneriter        = 0;
907
908     for(iidx=0;iidx<4*DIM;iidx++)
909     {
910         scratch[iidx] = 0.0;
911     }
912
913     /* Start outer loop over neighborlists */
914     for(iidx=0; iidx<nri; iidx++)
915     {
916         /* Load shift vector for this list */
917         i_shift_offset   = DIM*shiftidx[iidx];
918
919         /* Load limits for loop over neighbors */
920         j_index_start    = jindex[iidx];
921         j_index_end      = jindex[iidx+1];
922
923         /* Get outer coordinate index */
924         inr              = iinr[iidx];
925         i_coord_offset   = DIM*inr;
926
927         /* Load i particle coords and add shift vector */
928         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
929                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
930
931         fix0             = _mm256_setzero_pd();
932         fiy0             = _mm256_setzero_pd();
933         fiz0             = _mm256_setzero_pd();
934         fix1             = _mm256_setzero_pd();
935         fiy1             = _mm256_setzero_pd();
936         fiz1             = _mm256_setzero_pd();
937         fix2             = _mm256_setzero_pd();
938         fiy2             = _mm256_setzero_pd();
939         fiz2             = _mm256_setzero_pd();
940
941         /* Start inner kernel loop */
942         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
943         {
944
945             /* Get j neighbor index, and coordinate index */
946             jnrA             = jjnr[jidx];
947             jnrB             = jjnr[jidx+1];
948             jnrC             = jjnr[jidx+2];
949             jnrD             = jjnr[jidx+3];
950             j_coord_offsetA  = DIM*jnrA;
951             j_coord_offsetB  = DIM*jnrB;
952             j_coord_offsetC  = DIM*jnrC;
953             j_coord_offsetD  = DIM*jnrD;
954
955             /* load j atom coordinates */
956             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
957                                                  x+j_coord_offsetC,x+j_coord_offsetD,
958                                                  &jx0,&jy0,&jz0);
959
960             /* Calculate displacement vector */
961             dx00             = _mm256_sub_pd(ix0,jx0);
962             dy00             = _mm256_sub_pd(iy0,jy0);
963             dz00             = _mm256_sub_pd(iz0,jz0);
964             dx10             = _mm256_sub_pd(ix1,jx0);
965             dy10             = _mm256_sub_pd(iy1,jy0);
966             dz10             = _mm256_sub_pd(iz1,jz0);
967             dx20             = _mm256_sub_pd(ix2,jx0);
968             dy20             = _mm256_sub_pd(iy2,jy0);
969             dz20             = _mm256_sub_pd(iz2,jz0);
970
971             /* Calculate squared distance and things based on it */
972             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
973             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
974             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
975
976             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
977             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
978             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
979
980             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
981             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
982             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
983
984             /* Load parameters for j particles */
985             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
986                                                                  charge+jnrC+0,charge+jnrD+0);
987             vdwjidx0A        = 2*vdwtype[jnrA+0];
988             vdwjidx0B        = 2*vdwtype[jnrB+0];
989             vdwjidx0C        = 2*vdwtype[jnrC+0];
990             vdwjidx0D        = 2*vdwtype[jnrD+0];
991
992             fjx0             = _mm256_setzero_pd();
993             fjy0             = _mm256_setzero_pd();
994             fjz0             = _mm256_setzero_pd();
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1001             {
1002
1003             r00              = _mm256_mul_pd(rsq00,rinv00);
1004
1005             /* Compute parameters for interactions between i and j atoms */
1006             qq00             = _mm256_mul_pd(iq0,jq0);
1007             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1008                                             vdwioffsetptr0+vdwjidx0B,
1009                                             vdwioffsetptr0+vdwjidx0C,
1010                                             vdwioffsetptr0+vdwjidx0D,
1011                                             &c6_00,&c12_00);
1012
1013             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1014                                                                   vdwgridioffsetptr0+vdwjidx0B,
1015                                                                   vdwgridioffsetptr0+vdwjidx0C,
1016                                                                   vdwgridioffsetptr0+vdwjidx0D);
1017
1018             /* EWALD ELECTROSTATICS */
1019
1020             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1021             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1022             ewitab           = _mm256_cvttpd_epi32(ewrt);
1023             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1024             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1025                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1026                                             &ewtabF,&ewtabFn);
1027             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1028             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1029
1030             /* Analytical LJ-PME */
1031             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1032             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1033             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1034             exponent         = gmx_simd_exp_d(ewcljrsq);
1035             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1036             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1037             /* f6A = 6 * C6grid * (1 - poly) */
1038             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1039             /* f6B = C6grid * exponent * beta^6 */
1040             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1041             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1042             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1043
1044             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1045
1046             fscal            = _mm256_add_pd(felec,fvdw);
1047
1048             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1049
1050             /* Calculate temporary vectorial force */
1051             tx               = _mm256_mul_pd(fscal,dx00);
1052             ty               = _mm256_mul_pd(fscal,dy00);
1053             tz               = _mm256_mul_pd(fscal,dz00);
1054
1055             /* Update vectorial force */
1056             fix0             = _mm256_add_pd(fix0,tx);
1057             fiy0             = _mm256_add_pd(fiy0,ty);
1058             fiz0             = _mm256_add_pd(fiz0,tz);
1059
1060             fjx0             = _mm256_add_pd(fjx0,tx);
1061             fjy0             = _mm256_add_pd(fjy0,ty);
1062             fjz0             = _mm256_add_pd(fjz0,tz);
1063
1064             }
1065
1066             /**************************
1067              * CALCULATE INTERACTIONS *
1068              **************************/
1069
1070             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1071             {
1072
1073             r10              = _mm256_mul_pd(rsq10,rinv10);
1074
1075             /* Compute parameters for interactions between i and j atoms */
1076             qq10             = _mm256_mul_pd(iq1,jq0);
1077
1078             /* EWALD ELECTROSTATICS */
1079
1080             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1081             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1082             ewitab           = _mm256_cvttpd_epi32(ewrt);
1083             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1084             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1085                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1086                                             &ewtabF,&ewtabFn);
1087             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1088             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1089
1090             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1091
1092             fscal            = felec;
1093
1094             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1095
1096             /* Calculate temporary vectorial force */
1097             tx               = _mm256_mul_pd(fscal,dx10);
1098             ty               = _mm256_mul_pd(fscal,dy10);
1099             tz               = _mm256_mul_pd(fscal,dz10);
1100
1101             /* Update vectorial force */
1102             fix1             = _mm256_add_pd(fix1,tx);
1103             fiy1             = _mm256_add_pd(fiy1,ty);
1104             fiz1             = _mm256_add_pd(fiz1,tz);
1105
1106             fjx0             = _mm256_add_pd(fjx0,tx);
1107             fjy0             = _mm256_add_pd(fjy0,ty);
1108             fjz0             = _mm256_add_pd(fjz0,tz);
1109
1110             }
1111
1112             /**************************
1113              * CALCULATE INTERACTIONS *
1114              **************************/
1115
1116             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1117             {
1118
1119             r20              = _mm256_mul_pd(rsq20,rinv20);
1120
1121             /* Compute parameters for interactions between i and j atoms */
1122             qq20             = _mm256_mul_pd(iq2,jq0);
1123
1124             /* EWALD ELECTROSTATICS */
1125
1126             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1127             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1128             ewitab           = _mm256_cvttpd_epi32(ewrt);
1129             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1130             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1131                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1132                                             &ewtabF,&ewtabFn);
1133             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1134             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1135
1136             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1137
1138             fscal            = felec;
1139
1140             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1141
1142             /* Calculate temporary vectorial force */
1143             tx               = _mm256_mul_pd(fscal,dx20);
1144             ty               = _mm256_mul_pd(fscal,dy20);
1145             tz               = _mm256_mul_pd(fscal,dz20);
1146
1147             /* Update vectorial force */
1148             fix2             = _mm256_add_pd(fix2,tx);
1149             fiy2             = _mm256_add_pd(fiy2,ty);
1150             fiz2             = _mm256_add_pd(fiz2,tz);
1151
1152             fjx0             = _mm256_add_pd(fjx0,tx);
1153             fjy0             = _mm256_add_pd(fjy0,ty);
1154             fjz0             = _mm256_add_pd(fjz0,tz);
1155
1156             }
1157
1158             fjptrA             = f+j_coord_offsetA;
1159             fjptrB             = f+j_coord_offsetB;
1160             fjptrC             = f+j_coord_offsetC;
1161             fjptrD             = f+j_coord_offsetD;
1162
1163             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1164
1165             /* Inner loop uses 143 flops */
1166         }
1167
1168         if(jidx<j_index_end)
1169         {
1170
1171             /* Get j neighbor index, and coordinate index */
1172             jnrlistA         = jjnr[jidx];
1173             jnrlistB         = jjnr[jidx+1];
1174             jnrlistC         = jjnr[jidx+2];
1175             jnrlistD         = jjnr[jidx+3];
1176             /* Sign of each element will be negative for non-real atoms.
1177              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1178              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1179              */
1180             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1181
1182             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1183             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1184             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1185
1186             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1187             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1188             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1189             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1190             j_coord_offsetA  = DIM*jnrA;
1191             j_coord_offsetB  = DIM*jnrB;
1192             j_coord_offsetC  = DIM*jnrC;
1193             j_coord_offsetD  = DIM*jnrD;
1194
1195             /* load j atom coordinates */
1196             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1198                                                  &jx0,&jy0,&jz0);
1199
1200             /* Calculate displacement vector */
1201             dx00             = _mm256_sub_pd(ix0,jx0);
1202             dy00             = _mm256_sub_pd(iy0,jy0);
1203             dz00             = _mm256_sub_pd(iz0,jz0);
1204             dx10             = _mm256_sub_pd(ix1,jx0);
1205             dy10             = _mm256_sub_pd(iy1,jy0);
1206             dz10             = _mm256_sub_pd(iz1,jz0);
1207             dx20             = _mm256_sub_pd(ix2,jx0);
1208             dy20             = _mm256_sub_pd(iy2,jy0);
1209             dz20             = _mm256_sub_pd(iz2,jz0);
1210
1211             /* Calculate squared distance and things based on it */
1212             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1213             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1214             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1215
1216             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1217             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1218             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1219
1220             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1221             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1222             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1223
1224             /* Load parameters for j particles */
1225             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1226                                                                  charge+jnrC+0,charge+jnrD+0);
1227             vdwjidx0A        = 2*vdwtype[jnrA+0];
1228             vdwjidx0B        = 2*vdwtype[jnrB+0];
1229             vdwjidx0C        = 2*vdwtype[jnrC+0];
1230             vdwjidx0D        = 2*vdwtype[jnrD+0];
1231
1232             fjx0             = _mm256_setzero_pd();
1233             fjy0             = _mm256_setzero_pd();
1234             fjz0             = _mm256_setzero_pd();
1235
1236             /**************************
1237              * CALCULATE INTERACTIONS *
1238              **************************/
1239
1240             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1241             {
1242
1243             r00              = _mm256_mul_pd(rsq00,rinv00);
1244             r00              = _mm256_andnot_pd(dummy_mask,r00);
1245
1246             /* Compute parameters for interactions between i and j atoms */
1247             qq00             = _mm256_mul_pd(iq0,jq0);
1248             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1249                                             vdwioffsetptr0+vdwjidx0B,
1250                                             vdwioffsetptr0+vdwjidx0C,
1251                                             vdwioffsetptr0+vdwjidx0D,
1252                                             &c6_00,&c12_00);
1253
1254             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1255                                                                   vdwgridioffsetptr0+vdwjidx0B,
1256                                                                   vdwgridioffsetptr0+vdwjidx0C,
1257                                                                   vdwgridioffsetptr0+vdwjidx0D);
1258
1259             /* EWALD ELECTROSTATICS */
1260
1261             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1262             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1263             ewitab           = _mm256_cvttpd_epi32(ewrt);
1264             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1265             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1266                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1267                                             &ewtabF,&ewtabFn);
1268             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1269             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1270
1271             /* Analytical LJ-PME */
1272             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1273             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1274             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1275             exponent         = gmx_simd_exp_d(ewcljrsq);
1276             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1277             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1278             /* f6A = 6 * C6grid * (1 - poly) */
1279             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1280             /* f6B = C6grid * exponent * beta^6 */
1281             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1282             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1283             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1284
1285             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1286
1287             fscal            = _mm256_add_pd(felec,fvdw);
1288
1289             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1290
1291             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1292
1293             /* Calculate temporary vectorial force */
1294             tx               = _mm256_mul_pd(fscal,dx00);
1295             ty               = _mm256_mul_pd(fscal,dy00);
1296             tz               = _mm256_mul_pd(fscal,dz00);
1297
1298             /* Update vectorial force */
1299             fix0             = _mm256_add_pd(fix0,tx);
1300             fiy0             = _mm256_add_pd(fiy0,ty);
1301             fiz0             = _mm256_add_pd(fiz0,tz);
1302
1303             fjx0             = _mm256_add_pd(fjx0,tx);
1304             fjy0             = _mm256_add_pd(fjy0,ty);
1305             fjz0             = _mm256_add_pd(fjz0,tz);
1306
1307             }
1308
1309             /**************************
1310              * CALCULATE INTERACTIONS *
1311              **************************/
1312
1313             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1314             {
1315
1316             r10              = _mm256_mul_pd(rsq10,rinv10);
1317             r10              = _mm256_andnot_pd(dummy_mask,r10);
1318
1319             /* Compute parameters for interactions between i and j atoms */
1320             qq10             = _mm256_mul_pd(iq1,jq0);
1321
1322             /* EWALD ELECTROSTATICS */
1323
1324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1325             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1326             ewitab           = _mm256_cvttpd_epi32(ewrt);
1327             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1328             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1329                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1330                                             &ewtabF,&ewtabFn);
1331             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1332             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1333
1334             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1335
1336             fscal            = felec;
1337
1338             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1339
1340             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1341
1342             /* Calculate temporary vectorial force */
1343             tx               = _mm256_mul_pd(fscal,dx10);
1344             ty               = _mm256_mul_pd(fscal,dy10);
1345             tz               = _mm256_mul_pd(fscal,dz10);
1346
1347             /* Update vectorial force */
1348             fix1             = _mm256_add_pd(fix1,tx);
1349             fiy1             = _mm256_add_pd(fiy1,ty);
1350             fiz1             = _mm256_add_pd(fiz1,tz);
1351
1352             fjx0             = _mm256_add_pd(fjx0,tx);
1353             fjy0             = _mm256_add_pd(fjy0,ty);
1354             fjz0             = _mm256_add_pd(fjz0,tz);
1355
1356             }
1357
1358             /**************************
1359              * CALCULATE INTERACTIONS *
1360              **************************/
1361
1362             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1363             {
1364
1365             r20              = _mm256_mul_pd(rsq20,rinv20);
1366             r20              = _mm256_andnot_pd(dummy_mask,r20);
1367
1368             /* Compute parameters for interactions between i and j atoms */
1369             qq20             = _mm256_mul_pd(iq2,jq0);
1370
1371             /* EWALD ELECTROSTATICS */
1372
1373             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1374             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1375             ewitab           = _mm256_cvttpd_epi32(ewrt);
1376             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1377             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1378                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1379                                             &ewtabF,&ewtabFn);
1380             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1381             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1382
1383             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1384
1385             fscal            = felec;
1386
1387             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1388
1389             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1390
1391             /* Calculate temporary vectorial force */
1392             tx               = _mm256_mul_pd(fscal,dx20);
1393             ty               = _mm256_mul_pd(fscal,dy20);
1394             tz               = _mm256_mul_pd(fscal,dz20);
1395
1396             /* Update vectorial force */
1397             fix2             = _mm256_add_pd(fix2,tx);
1398             fiy2             = _mm256_add_pd(fiy2,ty);
1399             fiz2             = _mm256_add_pd(fiz2,tz);
1400
1401             fjx0             = _mm256_add_pd(fjx0,tx);
1402             fjy0             = _mm256_add_pd(fjy0,ty);
1403             fjz0             = _mm256_add_pd(fjz0,tz);
1404
1405             }
1406
1407             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1408             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1409             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1410             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1411
1412             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1413
1414             /* Inner loop uses 146 flops */
1415         }
1416
1417         /* End of innermost loop */
1418
1419         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1420                                                  f+i_coord_offset,fshift+i_shift_offset);
1421
1422         /* Increment number of inner iterations */
1423         inneriter                  += j_index_end - j_index_start;
1424
1425         /* Outer loop uses 18 flops */
1426     }
1427
1428     /* Increment number of outer iterations */
1429     outeriter        += nri;
1430
1431     /* Update outer/inner flops */
1432
1433     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*146);
1434 }