Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_256_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     real *           vdwgridioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     real *           vdwgridioffsetptr1;
88     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     real *           vdwioffsetptr2;
90     real *           vdwgridioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m256d           c6grid_00;
106     __m256d           c6grid_10;
107     __m256d           c6grid_20;
108     real             *vdwgridparam;
109     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
110     __m256d           one_half  = _mm256_set1_pd(0.5);
111     __m256d           minus_one = _mm256_set1_pd(-1.0);
112     __m128i          ewitab;
113     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
115     real             *ewtab;
116     __m256d          dummy_mask,cutoff_mask;
117     __m128           tmpmask0,tmpmask1;
118     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
119     __m256d          one     = _mm256_set1_pd(1.0);
120     __m256d          two     = _mm256_set1_pd(2.0);
121     x                = xx[0];
122     f                = ff[0];
123
124     nri              = nlist->nri;
125     iinr             = nlist->iinr;
126     jindex           = nlist->jindex;
127     jjnr             = nlist->jjnr;
128     shiftidx         = nlist->shift;
129     gid              = nlist->gid;
130     shiftvec         = fr->shift_vec[0];
131     fshift           = fr->fshift[0];
132     facel            = _mm256_set1_pd(fr->ic->epsfac);
133     charge           = mdatoms->chargeA;
134     nvdwtype         = fr->ntype;
135     vdwparam         = fr->nbfp;
136     vdwtype          = mdatoms->typeA;
137     vdwgridparam     = fr->ljpme_c6grid;
138     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
139     ewclj            = _mm256_set1_pd(fr->ic->ewaldcoeff_lj);
140     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
141
142     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
143     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
144     beta2            = _mm256_mul_pd(beta,beta);
145     beta3            = _mm256_mul_pd(beta,beta2);
146
147     ewtab            = fr->ic->tabq_coul_FDV0;
148     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
149     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
150
151     /* Setup water-specific parameters */
152     inr              = nlist->iinr[0];
153     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
154     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
155     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
156     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
157     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
158
159     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
160     rcutoff_scalar   = fr->ic->rcoulomb;
161     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
162     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
163
164     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
165     rvdw             = _mm256_set1_pd(fr->ic->rvdw);
166
167     /* Avoid stupid compiler warnings */
168     jnrA = jnrB = jnrC = jnrD = 0;
169     j_coord_offsetA = 0;
170     j_coord_offsetB = 0;
171     j_coord_offsetC = 0;
172     j_coord_offsetD = 0;
173
174     outeriter        = 0;
175     inneriter        = 0;
176
177     for(iidx=0;iidx<4*DIM;iidx++)
178     {
179         scratch[iidx] = 0.0;
180     }
181
182     /* Start outer loop over neighborlists */
183     for(iidx=0; iidx<nri; iidx++)
184     {
185         /* Load shift vector for this list */
186         i_shift_offset   = DIM*shiftidx[iidx];
187
188         /* Load limits for loop over neighbors */
189         j_index_start    = jindex[iidx];
190         j_index_end      = jindex[iidx+1];
191
192         /* Get outer coordinate index */
193         inr              = iinr[iidx];
194         i_coord_offset   = DIM*inr;
195
196         /* Load i particle coords and add shift vector */
197         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
198                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
199
200         fix0             = _mm256_setzero_pd();
201         fiy0             = _mm256_setzero_pd();
202         fiz0             = _mm256_setzero_pd();
203         fix1             = _mm256_setzero_pd();
204         fiy1             = _mm256_setzero_pd();
205         fiz1             = _mm256_setzero_pd();
206         fix2             = _mm256_setzero_pd();
207         fiy2             = _mm256_setzero_pd();
208         fiz2             = _mm256_setzero_pd();
209
210         /* Reset potential sums */
211         velecsum         = _mm256_setzero_pd();
212         vvdwsum          = _mm256_setzero_pd();
213
214         /* Start inner kernel loop */
215         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
216         {
217
218             /* Get j neighbor index, and coordinate index */
219             jnrA             = jjnr[jidx];
220             jnrB             = jjnr[jidx+1];
221             jnrC             = jjnr[jidx+2];
222             jnrD             = jjnr[jidx+3];
223             j_coord_offsetA  = DIM*jnrA;
224             j_coord_offsetB  = DIM*jnrB;
225             j_coord_offsetC  = DIM*jnrC;
226             j_coord_offsetD  = DIM*jnrD;
227
228             /* load j atom coordinates */
229             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
230                                                  x+j_coord_offsetC,x+j_coord_offsetD,
231                                                  &jx0,&jy0,&jz0);
232
233             /* Calculate displacement vector */
234             dx00             = _mm256_sub_pd(ix0,jx0);
235             dy00             = _mm256_sub_pd(iy0,jy0);
236             dz00             = _mm256_sub_pd(iz0,jz0);
237             dx10             = _mm256_sub_pd(ix1,jx0);
238             dy10             = _mm256_sub_pd(iy1,jy0);
239             dz10             = _mm256_sub_pd(iz1,jz0);
240             dx20             = _mm256_sub_pd(ix2,jx0);
241             dy20             = _mm256_sub_pd(iy2,jy0);
242             dz20             = _mm256_sub_pd(iz2,jz0);
243
244             /* Calculate squared distance and things based on it */
245             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
246             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
247             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
248
249             rinv00           = avx256_invsqrt_d(rsq00);
250             rinv10           = avx256_invsqrt_d(rsq10);
251             rinv20           = avx256_invsqrt_d(rsq20);
252
253             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
254             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
255             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
256
257             /* Load parameters for j particles */
258             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
259                                                                  charge+jnrC+0,charge+jnrD+0);
260             vdwjidx0A        = 2*vdwtype[jnrA+0];
261             vdwjidx0B        = 2*vdwtype[jnrB+0];
262             vdwjidx0C        = 2*vdwtype[jnrC+0];
263             vdwjidx0D        = 2*vdwtype[jnrD+0];
264
265             fjx0             = _mm256_setzero_pd();
266             fjy0             = _mm256_setzero_pd();
267             fjz0             = _mm256_setzero_pd();
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             if (gmx_mm256_any_lt(rsq00,rcutoff2))
274             {
275
276             r00              = _mm256_mul_pd(rsq00,rinv00);
277
278             /* Compute parameters for interactions between i and j atoms */
279             qq00             = _mm256_mul_pd(iq0,jq0);
280             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
281                                             vdwioffsetptr0+vdwjidx0B,
282                                             vdwioffsetptr0+vdwjidx0C,
283                                             vdwioffsetptr0+vdwjidx0D,
284                                             &c6_00,&c12_00);
285
286             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
287                                                                   vdwgridioffsetptr0+vdwjidx0B,
288                                                                   vdwgridioffsetptr0+vdwjidx0C,
289                                                                   vdwgridioffsetptr0+vdwjidx0D);
290
291             /* EWALD ELECTROSTATICS */
292
293             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
294             ewrt             = _mm256_mul_pd(r00,ewtabscale);
295             ewitab           = _mm256_cvttpd_epi32(ewrt);
296             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
297             ewitab           = _mm_slli_epi32(ewitab,2);
298             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
299             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
300             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
301             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
302             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
303             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
304             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
305             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
306             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
307
308             /* Analytical LJ-PME */
309             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
310             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
311             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
312             exponent         = avx256_exp_d(ewcljrsq);
313             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
314             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
315             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
316             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
317             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
318             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
319                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
320             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
321             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
322
323             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velec            = _mm256_and_pd(velec,cutoff_mask);
327             velecsum         = _mm256_add_pd(velecsum,velec);
328             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
329             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
330
331             fscal            = _mm256_add_pd(felec,fvdw);
332
333             fscal            = _mm256_and_pd(fscal,cutoff_mask);
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm256_mul_pd(fscal,dx00);
337             ty               = _mm256_mul_pd(fscal,dy00);
338             tz               = _mm256_mul_pd(fscal,dz00);
339
340             /* Update vectorial force */
341             fix0             = _mm256_add_pd(fix0,tx);
342             fiy0             = _mm256_add_pd(fiy0,ty);
343             fiz0             = _mm256_add_pd(fiz0,tz);
344
345             fjx0             = _mm256_add_pd(fjx0,tx);
346             fjy0             = _mm256_add_pd(fjy0,ty);
347             fjz0             = _mm256_add_pd(fjz0,tz);
348
349             }
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm256_any_lt(rsq10,rcutoff2))
356             {
357
358             r10              = _mm256_mul_pd(rsq10,rinv10);
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq10             = _mm256_mul_pd(iq1,jq0);
362
363             /* EWALD ELECTROSTATICS */
364
365             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
366             ewrt             = _mm256_mul_pd(r10,ewtabscale);
367             ewitab           = _mm256_cvttpd_epi32(ewrt);
368             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
369             ewitab           = _mm_slli_epi32(ewitab,2);
370             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
371             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
372             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
373             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
374             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
375             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
376             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
377             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
378             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
379
380             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velec            = _mm256_and_pd(velec,cutoff_mask);
384             velecsum         = _mm256_add_pd(velecsum,velec);
385
386             fscal            = felec;
387
388             fscal            = _mm256_and_pd(fscal,cutoff_mask);
389
390             /* Calculate temporary vectorial force */
391             tx               = _mm256_mul_pd(fscal,dx10);
392             ty               = _mm256_mul_pd(fscal,dy10);
393             tz               = _mm256_mul_pd(fscal,dz10);
394
395             /* Update vectorial force */
396             fix1             = _mm256_add_pd(fix1,tx);
397             fiy1             = _mm256_add_pd(fiy1,ty);
398             fiz1             = _mm256_add_pd(fiz1,tz);
399
400             fjx0             = _mm256_add_pd(fjx0,tx);
401             fjy0             = _mm256_add_pd(fjy0,ty);
402             fjz0             = _mm256_add_pd(fjz0,tz);
403
404             }
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             if (gmx_mm256_any_lt(rsq20,rcutoff2))
411             {
412
413             r20              = _mm256_mul_pd(rsq20,rinv20);
414
415             /* Compute parameters for interactions between i and j atoms */
416             qq20             = _mm256_mul_pd(iq2,jq0);
417
418             /* EWALD ELECTROSTATICS */
419
420             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
421             ewrt             = _mm256_mul_pd(r20,ewtabscale);
422             ewitab           = _mm256_cvttpd_epi32(ewrt);
423             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
424             ewitab           = _mm_slli_epi32(ewitab,2);
425             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
426             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
427             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
428             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
429             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
430             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
431             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
432             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
433             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
434
435             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
436
437             /* Update potential sum for this i atom from the interaction with this j atom. */
438             velec            = _mm256_and_pd(velec,cutoff_mask);
439             velecsum         = _mm256_add_pd(velecsum,velec);
440
441             fscal            = felec;
442
443             fscal            = _mm256_and_pd(fscal,cutoff_mask);
444
445             /* Calculate temporary vectorial force */
446             tx               = _mm256_mul_pd(fscal,dx20);
447             ty               = _mm256_mul_pd(fscal,dy20);
448             tz               = _mm256_mul_pd(fscal,dz20);
449
450             /* Update vectorial force */
451             fix2             = _mm256_add_pd(fix2,tx);
452             fiy2             = _mm256_add_pd(fiy2,ty);
453             fiz2             = _mm256_add_pd(fiz2,tz);
454
455             fjx0             = _mm256_add_pd(fjx0,tx);
456             fjy0             = _mm256_add_pd(fjy0,ty);
457             fjz0             = _mm256_add_pd(fjz0,tz);
458
459             }
460
461             fjptrA             = f+j_coord_offsetA;
462             fjptrB             = f+j_coord_offsetB;
463             fjptrC             = f+j_coord_offsetC;
464             fjptrD             = f+j_coord_offsetD;
465
466             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
467
468             /* Inner loop uses 177 flops */
469         }
470
471         if(jidx<j_index_end)
472         {
473
474             /* Get j neighbor index, and coordinate index */
475             jnrlistA         = jjnr[jidx];
476             jnrlistB         = jjnr[jidx+1];
477             jnrlistC         = jjnr[jidx+2];
478             jnrlistD         = jjnr[jidx+3];
479             /* Sign of each element will be negative for non-real atoms.
480              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
481              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
482              */
483             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
484
485             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
486             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
487             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
488
489             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
490             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
491             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
492             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
493             j_coord_offsetA  = DIM*jnrA;
494             j_coord_offsetB  = DIM*jnrB;
495             j_coord_offsetC  = DIM*jnrC;
496             j_coord_offsetD  = DIM*jnrD;
497
498             /* load j atom coordinates */
499             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
500                                                  x+j_coord_offsetC,x+j_coord_offsetD,
501                                                  &jx0,&jy0,&jz0);
502
503             /* Calculate displacement vector */
504             dx00             = _mm256_sub_pd(ix0,jx0);
505             dy00             = _mm256_sub_pd(iy0,jy0);
506             dz00             = _mm256_sub_pd(iz0,jz0);
507             dx10             = _mm256_sub_pd(ix1,jx0);
508             dy10             = _mm256_sub_pd(iy1,jy0);
509             dz10             = _mm256_sub_pd(iz1,jz0);
510             dx20             = _mm256_sub_pd(ix2,jx0);
511             dy20             = _mm256_sub_pd(iy2,jy0);
512             dz20             = _mm256_sub_pd(iz2,jz0);
513
514             /* Calculate squared distance and things based on it */
515             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
516             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
517             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
518
519             rinv00           = avx256_invsqrt_d(rsq00);
520             rinv10           = avx256_invsqrt_d(rsq10);
521             rinv20           = avx256_invsqrt_d(rsq20);
522
523             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
524             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
525             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
526
527             /* Load parameters for j particles */
528             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
529                                                                  charge+jnrC+0,charge+jnrD+0);
530             vdwjidx0A        = 2*vdwtype[jnrA+0];
531             vdwjidx0B        = 2*vdwtype[jnrB+0];
532             vdwjidx0C        = 2*vdwtype[jnrC+0];
533             vdwjidx0D        = 2*vdwtype[jnrD+0];
534
535             fjx0             = _mm256_setzero_pd();
536             fjy0             = _mm256_setzero_pd();
537             fjz0             = _mm256_setzero_pd();
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             if (gmx_mm256_any_lt(rsq00,rcutoff2))
544             {
545
546             r00              = _mm256_mul_pd(rsq00,rinv00);
547             r00              = _mm256_andnot_pd(dummy_mask,r00);
548
549             /* Compute parameters for interactions between i and j atoms */
550             qq00             = _mm256_mul_pd(iq0,jq0);
551             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
552                                             vdwioffsetptr0+vdwjidx0B,
553                                             vdwioffsetptr0+vdwjidx0C,
554                                             vdwioffsetptr0+vdwjidx0D,
555                                             &c6_00,&c12_00);
556
557             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
558                                                                   vdwgridioffsetptr0+vdwjidx0B,
559                                                                   vdwgridioffsetptr0+vdwjidx0C,
560                                                                   vdwgridioffsetptr0+vdwjidx0D);
561
562             /* EWALD ELECTROSTATICS */
563
564             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
565             ewrt             = _mm256_mul_pd(r00,ewtabscale);
566             ewitab           = _mm256_cvttpd_epi32(ewrt);
567             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
568             ewitab           = _mm_slli_epi32(ewitab,2);
569             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
570             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
571             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
572             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
573             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
574             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
575             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
576             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
577             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
578
579             /* Analytical LJ-PME */
580             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
581             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
582             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
583             exponent         = avx256_exp_d(ewcljrsq);
584             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
585             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
586             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
587             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
588             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
589             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
590                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
591             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
592             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
593
594             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
595
596             /* Update potential sum for this i atom from the interaction with this j atom. */
597             velec            = _mm256_and_pd(velec,cutoff_mask);
598             velec            = _mm256_andnot_pd(dummy_mask,velec);
599             velecsum         = _mm256_add_pd(velecsum,velec);
600             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
601             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
602             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
603
604             fscal            = _mm256_add_pd(felec,fvdw);
605
606             fscal            = _mm256_and_pd(fscal,cutoff_mask);
607
608             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
609
610             /* Calculate temporary vectorial force */
611             tx               = _mm256_mul_pd(fscal,dx00);
612             ty               = _mm256_mul_pd(fscal,dy00);
613             tz               = _mm256_mul_pd(fscal,dz00);
614
615             /* Update vectorial force */
616             fix0             = _mm256_add_pd(fix0,tx);
617             fiy0             = _mm256_add_pd(fiy0,ty);
618             fiz0             = _mm256_add_pd(fiz0,tz);
619
620             fjx0             = _mm256_add_pd(fjx0,tx);
621             fjy0             = _mm256_add_pd(fjy0,ty);
622             fjz0             = _mm256_add_pd(fjz0,tz);
623
624             }
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             if (gmx_mm256_any_lt(rsq10,rcutoff2))
631             {
632
633             r10              = _mm256_mul_pd(rsq10,rinv10);
634             r10              = _mm256_andnot_pd(dummy_mask,r10);
635
636             /* Compute parameters for interactions between i and j atoms */
637             qq10             = _mm256_mul_pd(iq1,jq0);
638
639             /* EWALD ELECTROSTATICS */
640
641             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
642             ewrt             = _mm256_mul_pd(r10,ewtabscale);
643             ewitab           = _mm256_cvttpd_epi32(ewrt);
644             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
645             ewitab           = _mm_slli_epi32(ewitab,2);
646             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
647             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
648             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
649             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
650             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
651             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
652             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
653             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
654             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
655
656             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
657
658             /* Update potential sum for this i atom from the interaction with this j atom. */
659             velec            = _mm256_and_pd(velec,cutoff_mask);
660             velec            = _mm256_andnot_pd(dummy_mask,velec);
661             velecsum         = _mm256_add_pd(velecsum,velec);
662
663             fscal            = felec;
664
665             fscal            = _mm256_and_pd(fscal,cutoff_mask);
666
667             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
668
669             /* Calculate temporary vectorial force */
670             tx               = _mm256_mul_pd(fscal,dx10);
671             ty               = _mm256_mul_pd(fscal,dy10);
672             tz               = _mm256_mul_pd(fscal,dz10);
673
674             /* Update vectorial force */
675             fix1             = _mm256_add_pd(fix1,tx);
676             fiy1             = _mm256_add_pd(fiy1,ty);
677             fiz1             = _mm256_add_pd(fiz1,tz);
678
679             fjx0             = _mm256_add_pd(fjx0,tx);
680             fjy0             = _mm256_add_pd(fjy0,ty);
681             fjz0             = _mm256_add_pd(fjz0,tz);
682
683             }
684
685             /**************************
686              * CALCULATE INTERACTIONS *
687              **************************/
688
689             if (gmx_mm256_any_lt(rsq20,rcutoff2))
690             {
691
692             r20              = _mm256_mul_pd(rsq20,rinv20);
693             r20              = _mm256_andnot_pd(dummy_mask,r20);
694
695             /* Compute parameters for interactions between i and j atoms */
696             qq20             = _mm256_mul_pd(iq2,jq0);
697
698             /* EWALD ELECTROSTATICS */
699
700             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
701             ewrt             = _mm256_mul_pd(r20,ewtabscale);
702             ewitab           = _mm256_cvttpd_epi32(ewrt);
703             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
704             ewitab           = _mm_slli_epi32(ewitab,2);
705             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
706             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
707             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
708             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
709             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
710             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
711             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
712             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
713             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
714
715             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
716
717             /* Update potential sum for this i atom from the interaction with this j atom. */
718             velec            = _mm256_and_pd(velec,cutoff_mask);
719             velec            = _mm256_andnot_pd(dummy_mask,velec);
720             velecsum         = _mm256_add_pd(velecsum,velec);
721
722             fscal            = felec;
723
724             fscal            = _mm256_and_pd(fscal,cutoff_mask);
725
726             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
727
728             /* Calculate temporary vectorial force */
729             tx               = _mm256_mul_pd(fscal,dx20);
730             ty               = _mm256_mul_pd(fscal,dy20);
731             tz               = _mm256_mul_pd(fscal,dz20);
732
733             /* Update vectorial force */
734             fix2             = _mm256_add_pd(fix2,tx);
735             fiy2             = _mm256_add_pd(fiy2,ty);
736             fiz2             = _mm256_add_pd(fiz2,tz);
737
738             fjx0             = _mm256_add_pd(fjx0,tx);
739             fjy0             = _mm256_add_pd(fjy0,ty);
740             fjz0             = _mm256_add_pd(fjz0,tz);
741
742             }
743
744             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
745             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
746             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
747             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
748
749             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
750
751             /* Inner loop uses 180 flops */
752         }
753
754         /* End of innermost loop */
755
756         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
757                                                  f+i_coord_offset,fshift+i_shift_offset);
758
759         ggid                        = gid[iidx];
760         /* Update potential energies */
761         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
762         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
763
764         /* Increment number of inner iterations */
765         inneriter                  += j_index_end - j_index_start;
766
767         /* Outer loop uses 20 flops */
768     }
769
770     /* Increment number of outer iterations */
771     outeriter        += nri;
772
773     /* Update outer/inner flops */
774
775     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*180);
776 }
777 /*
778  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_256_double
779  * Electrostatics interaction: Ewald
780  * VdW interaction:            LJEwald
781  * Geometry:                   Water3-Particle
782  * Calculate force/pot:        Force
783  */
784 void
785 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_256_double
786                     (t_nblist                    * gmx_restrict       nlist,
787                      rvec                        * gmx_restrict          xx,
788                      rvec                        * gmx_restrict          ff,
789                      struct t_forcerec           * gmx_restrict          fr,
790                      t_mdatoms                   * gmx_restrict     mdatoms,
791                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
792                      t_nrnb                      * gmx_restrict        nrnb)
793 {
794     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
795      * just 0 for non-waters.
796      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
797      * jnr indices corresponding to data put in the four positions in the SIMD register.
798      */
799     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
800     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
801     int              jnrA,jnrB,jnrC,jnrD;
802     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
803     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
804     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
805     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
806     real             rcutoff_scalar;
807     real             *shiftvec,*fshift,*x,*f;
808     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
809     real             scratch[4*DIM];
810     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
811     real *           vdwioffsetptr0;
812     real *           vdwgridioffsetptr0;
813     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
814     real *           vdwioffsetptr1;
815     real *           vdwgridioffsetptr1;
816     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
817     real *           vdwioffsetptr2;
818     real *           vdwgridioffsetptr2;
819     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
820     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
821     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
822     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
823     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
824     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
825     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
826     real             *charge;
827     int              nvdwtype;
828     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
829     int              *vdwtype;
830     real             *vdwparam;
831     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
832     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
833     __m256d           c6grid_00;
834     __m256d           c6grid_10;
835     __m256d           c6grid_20;
836     real             *vdwgridparam;
837     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
838     __m256d           one_half  = _mm256_set1_pd(0.5);
839     __m256d           minus_one = _mm256_set1_pd(-1.0);
840     __m128i          ewitab;
841     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
842     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
843     real             *ewtab;
844     __m256d          dummy_mask,cutoff_mask;
845     __m128           tmpmask0,tmpmask1;
846     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
847     __m256d          one     = _mm256_set1_pd(1.0);
848     __m256d          two     = _mm256_set1_pd(2.0);
849     x                = xx[0];
850     f                = ff[0];
851
852     nri              = nlist->nri;
853     iinr             = nlist->iinr;
854     jindex           = nlist->jindex;
855     jjnr             = nlist->jjnr;
856     shiftidx         = nlist->shift;
857     gid              = nlist->gid;
858     shiftvec         = fr->shift_vec[0];
859     fshift           = fr->fshift[0];
860     facel            = _mm256_set1_pd(fr->ic->epsfac);
861     charge           = mdatoms->chargeA;
862     nvdwtype         = fr->ntype;
863     vdwparam         = fr->nbfp;
864     vdwtype          = mdatoms->typeA;
865     vdwgridparam     = fr->ljpme_c6grid;
866     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
867     ewclj            = _mm256_set1_pd(fr->ic->ewaldcoeff_lj);
868     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
869
870     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
871     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
872     beta2            = _mm256_mul_pd(beta,beta);
873     beta3            = _mm256_mul_pd(beta,beta2);
874
875     ewtab            = fr->ic->tabq_coul_F;
876     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
877     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
878
879     /* Setup water-specific parameters */
880     inr              = nlist->iinr[0];
881     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
882     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
883     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
884     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
885     vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
886
887     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
888     rcutoff_scalar   = fr->ic->rcoulomb;
889     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
890     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
891
892     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
893     rvdw             = _mm256_set1_pd(fr->ic->rvdw);
894
895     /* Avoid stupid compiler warnings */
896     jnrA = jnrB = jnrC = jnrD = 0;
897     j_coord_offsetA = 0;
898     j_coord_offsetB = 0;
899     j_coord_offsetC = 0;
900     j_coord_offsetD = 0;
901
902     outeriter        = 0;
903     inneriter        = 0;
904
905     for(iidx=0;iidx<4*DIM;iidx++)
906     {
907         scratch[iidx] = 0.0;
908     }
909
910     /* Start outer loop over neighborlists */
911     for(iidx=0; iidx<nri; iidx++)
912     {
913         /* Load shift vector for this list */
914         i_shift_offset   = DIM*shiftidx[iidx];
915
916         /* Load limits for loop over neighbors */
917         j_index_start    = jindex[iidx];
918         j_index_end      = jindex[iidx+1];
919
920         /* Get outer coordinate index */
921         inr              = iinr[iidx];
922         i_coord_offset   = DIM*inr;
923
924         /* Load i particle coords and add shift vector */
925         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
926                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
927
928         fix0             = _mm256_setzero_pd();
929         fiy0             = _mm256_setzero_pd();
930         fiz0             = _mm256_setzero_pd();
931         fix1             = _mm256_setzero_pd();
932         fiy1             = _mm256_setzero_pd();
933         fiz1             = _mm256_setzero_pd();
934         fix2             = _mm256_setzero_pd();
935         fiy2             = _mm256_setzero_pd();
936         fiz2             = _mm256_setzero_pd();
937
938         /* Start inner kernel loop */
939         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
940         {
941
942             /* Get j neighbor index, and coordinate index */
943             jnrA             = jjnr[jidx];
944             jnrB             = jjnr[jidx+1];
945             jnrC             = jjnr[jidx+2];
946             jnrD             = jjnr[jidx+3];
947             j_coord_offsetA  = DIM*jnrA;
948             j_coord_offsetB  = DIM*jnrB;
949             j_coord_offsetC  = DIM*jnrC;
950             j_coord_offsetD  = DIM*jnrD;
951
952             /* load j atom coordinates */
953             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
954                                                  x+j_coord_offsetC,x+j_coord_offsetD,
955                                                  &jx0,&jy0,&jz0);
956
957             /* Calculate displacement vector */
958             dx00             = _mm256_sub_pd(ix0,jx0);
959             dy00             = _mm256_sub_pd(iy0,jy0);
960             dz00             = _mm256_sub_pd(iz0,jz0);
961             dx10             = _mm256_sub_pd(ix1,jx0);
962             dy10             = _mm256_sub_pd(iy1,jy0);
963             dz10             = _mm256_sub_pd(iz1,jz0);
964             dx20             = _mm256_sub_pd(ix2,jx0);
965             dy20             = _mm256_sub_pd(iy2,jy0);
966             dz20             = _mm256_sub_pd(iz2,jz0);
967
968             /* Calculate squared distance and things based on it */
969             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
970             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
971             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
972
973             rinv00           = avx256_invsqrt_d(rsq00);
974             rinv10           = avx256_invsqrt_d(rsq10);
975             rinv20           = avx256_invsqrt_d(rsq20);
976
977             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
978             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
979             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
980
981             /* Load parameters for j particles */
982             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
983                                                                  charge+jnrC+0,charge+jnrD+0);
984             vdwjidx0A        = 2*vdwtype[jnrA+0];
985             vdwjidx0B        = 2*vdwtype[jnrB+0];
986             vdwjidx0C        = 2*vdwtype[jnrC+0];
987             vdwjidx0D        = 2*vdwtype[jnrD+0];
988
989             fjx0             = _mm256_setzero_pd();
990             fjy0             = _mm256_setzero_pd();
991             fjz0             = _mm256_setzero_pd();
992
993             /**************************
994              * CALCULATE INTERACTIONS *
995              **************************/
996
997             if (gmx_mm256_any_lt(rsq00,rcutoff2))
998             {
999
1000             r00              = _mm256_mul_pd(rsq00,rinv00);
1001
1002             /* Compute parameters for interactions between i and j atoms */
1003             qq00             = _mm256_mul_pd(iq0,jq0);
1004             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1005                                             vdwioffsetptr0+vdwjidx0B,
1006                                             vdwioffsetptr0+vdwjidx0C,
1007                                             vdwioffsetptr0+vdwjidx0D,
1008                                             &c6_00,&c12_00);
1009
1010             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1011                                                                   vdwgridioffsetptr0+vdwjidx0B,
1012                                                                   vdwgridioffsetptr0+vdwjidx0C,
1013                                                                   vdwgridioffsetptr0+vdwjidx0D);
1014
1015             /* EWALD ELECTROSTATICS */
1016
1017             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1018             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1019             ewitab           = _mm256_cvttpd_epi32(ewrt);
1020             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1021             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1022                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1023                                             &ewtabF,&ewtabFn);
1024             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1025             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1026
1027             /* Analytical LJ-PME */
1028             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1029             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1030             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1031             exponent         = avx256_exp_d(ewcljrsq);
1032             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1033             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1034             /* f6A = 6 * C6grid * (1 - poly) */
1035             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1036             /* f6B = C6grid * exponent * beta^6 */
1037             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1038             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1039             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1040
1041             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1042
1043             fscal            = _mm256_add_pd(felec,fvdw);
1044
1045             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1046
1047             /* Calculate temporary vectorial force */
1048             tx               = _mm256_mul_pd(fscal,dx00);
1049             ty               = _mm256_mul_pd(fscal,dy00);
1050             tz               = _mm256_mul_pd(fscal,dz00);
1051
1052             /* Update vectorial force */
1053             fix0             = _mm256_add_pd(fix0,tx);
1054             fiy0             = _mm256_add_pd(fiy0,ty);
1055             fiz0             = _mm256_add_pd(fiz0,tz);
1056
1057             fjx0             = _mm256_add_pd(fjx0,tx);
1058             fjy0             = _mm256_add_pd(fjy0,ty);
1059             fjz0             = _mm256_add_pd(fjz0,tz);
1060
1061             }
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1068             {
1069
1070             r10              = _mm256_mul_pd(rsq10,rinv10);
1071
1072             /* Compute parameters for interactions between i and j atoms */
1073             qq10             = _mm256_mul_pd(iq1,jq0);
1074
1075             /* EWALD ELECTROSTATICS */
1076
1077             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1078             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1079             ewitab           = _mm256_cvttpd_epi32(ewrt);
1080             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1081             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1082                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1083                                             &ewtabF,&ewtabFn);
1084             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1085             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1086
1087             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1088
1089             fscal            = felec;
1090
1091             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1092
1093             /* Calculate temporary vectorial force */
1094             tx               = _mm256_mul_pd(fscal,dx10);
1095             ty               = _mm256_mul_pd(fscal,dy10);
1096             tz               = _mm256_mul_pd(fscal,dz10);
1097
1098             /* Update vectorial force */
1099             fix1             = _mm256_add_pd(fix1,tx);
1100             fiy1             = _mm256_add_pd(fiy1,ty);
1101             fiz1             = _mm256_add_pd(fiz1,tz);
1102
1103             fjx0             = _mm256_add_pd(fjx0,tx);
1104             fjy0             = _mm256_add_pd(fjy0,ty);
1105             fjz0             = _mm256_add_pd(fjz0,tz);
1106
1107             }
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1114             {
1115
1116             r20              = _mm256_mul_pd(rsq20,rinv20);
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq20             = _mm256_mul_pd(iq2,jq0);
1120
1121             /* EWALD ELECTROSTATICS */
1122
1123             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1124             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1125             ewitab           = _mm256_cvttpd_epi32(ewrt);
1126             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1127             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1128                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1129                                             &ewtabF,&ewtabFn);
1130             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1131             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1132
1133             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1134
1135             fscal            = felec;
1136
1137             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1138
1139             /* Calculate temporary vectorial force */
1140             tx               = _mm256_mul_pd(fscal,dx20);
1141             ty               = _mm256_mul_pd(fscal,dy20);
1142             tz               = _mm256_mul_pd(fscal,dz20);
1143
1144             /* Update vectorial force */
1145             fix2             = _mm256_add_pd(fix2,tx);
1146             fiy2             = _mm256_add_pd(fiy2,ty);
1147             fiz2             = _mm256_add_pd(fiz2,tz);
1148
1149             fjx0             = _mm256_add_pd(fjx0,tx);
1150             fjy0             = _mm256_add_pd(fjy0,ty);
1151             fjz0             = _mm256_add_pd(fjz0,tz);
1152
1153             }
1154
1155             fjptrA             = f+j_coord_offsetA;
1156             fjptrB             = f+j_coord_offsetB;
1157             fjptrC             = f+j_coord_offsetC;
1158             fjptrD             = f+j_coord_offsetD;
1159
1160             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1161
1162             /* Inner loop uses 143 flops */
1163         }
1164
1165         if(jidx<j_index_end)
1166         {
1167
1168             /* Get j neighbor index, and coordinate index */
1169             jnrlistA         = jjnr[jidx];
1170             jnrlistB         = jjnr[jidx+1];
1171             jnrlistC         = jjnr[jidx+2];
1172             jnrlistD         = jjnr[jidx+3];
1173             /* Sign of each element will be negative for non-real atoms.
1174              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1175              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1176              */
1177             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1178
1179             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1180             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1181             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1182
1183             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1184             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1185             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1186             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1187             j_coord_offsetA  = DIM*jnrA;
1188             j_coord_offsetB  = DIM*jnrB;
1189             j_coord_offsetC  = DIM*jnrC;
1190             j_coord_offsetD  = DIM*jnrD;
1191
1192             /* load j atom coordinates */
1193             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1194                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1195                                                  &jx0,&jy0,&jz0);
1196
1197             /* Calculate displacement vector */
1198             dx00             = _mm256_sub_pd(ix0,jx0);
1199             dy00             = _mm256_sub_pd(iy0,jy0);
1200             dz00             = _mm256_sub_pd(iz0,jz0);
1201             dx10             = _mm256_sub_pd(ix1,jx0);
1202             dy10             = _mm256_sub_pd(iy1,jy0);
1203             dz10             = _mm256_sub_pd(iz1,jz0);
1204             dx20             = _mm256_sub_pd(ix2,jx0);
1205             dy20             = _mm256_sub_pd(iy2,jy0);
1206             dz20             = _mm256_sub_pd(iz2,jz0);
1207
1208             /* Calculate squared distance and things based on it */
1209             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1210             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1211             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1212
1213             rinv00           = avx256_invsqrt_d(rsq00);
1214             rinv10           = avx256_invsqrt_d(rsq10);
1215             rinv20           = avx256_invsqrt_d(rsq20);
1216
1217             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1218             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1219             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1220
1221             /* Load parameters for j particles */
1222             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1223                                                                  charge+jnrC+0,charge+jnrD+0);
1224             vdwjidx0A        = 2*vdwtype[jnrA+0];
1225             vdwjidx0B        = 2*vdwtype[jnrB+0];
1226             vdwjidx0C        = 2*vdwtype[jnrC+0];
1227             vdwjidx0D        = 2*vdwtype[jnrD+0];
1228
1229             fjx0             = _mm256_setzero_pd();
1230             fjy0             = _mm256_setzero_pd();
1231             fjz0             = _mm256_setzero_pd();
1232
1233             /**************************
1234              * CALCULATE INTERACTIONS *
1235              **************************/
1236
1237             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1238             {
1239
1240             r00              = _mm256_mul_pd(rsq00,rinv00);
1241             r00              = _mm256_andnot_pd(dummy_mask,r00);
1242
1243             /* Compute parameters for interactions between i and j atoms */
1244             qq00             = _mm256_mul_pd(iq0,jq0);
1245             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1246                                             vdwioffsetptr0+vdwjidx0B,
1247                                             vdwioffsetptr0+vdwjidx0C,
1248                                             vdwioffsetptr0+vdwjidx0D,
1249                                             &c6_00,&c12_00);
1250
1251             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
1252                                                                   vdwgridioffsetptr0+vdwjidx0B,
1253                                                                   vdwgridioffsetptr0+vdwjidx0C,
1254                                                                   vdwgridioffsetptr0+vdwjidx0D);
1255
1256             /* EWALD ELECTROSTATICS */
1257
1258             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1259             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1260             ewitab           = _mm256_cvttpd_epi32(ewrt);
1261             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1262             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1263                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1264                                             &ewtabF,&ewtabFn);
1265             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1266             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1267
1268             /* Analytical LJ-PME */
1269             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1270             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
1271             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
1272             exponent         = avx256_exp_d(ewcljrsq);
1273             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1274             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1275             /* f6A = 6 * C6grid * (1 - poly) */
1276             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
1277             /* f6B = C6grid * exponent * beta^6 */
1278             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
1279             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1280             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1281
1282             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1283
1284             fscal            = _mm256_add_pd(felec,fvdw);
1285
1286             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1287
1288             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1289
1290             /* Calculate temporary vectorial force */
1291             tx               = _mm256_mul_pd(fscal,dx00);
1292             ty               = _mm256_mul_pd(fscal,dy00);
1293             tz               = _mm256_mul_pd(fscal,dz00);
1294
1295             /* Update vectorial force */
1296             fix0             = _mm256_add_pd(fix0,tx);
1297             fiy0             = _mm256_add_pd(fiy0,ty);
1298             fiz0             = _mm256_add_pd(fiz0,tz);
1299
1300             fjx0             = _mm256_add_pd(fjx0,tx);
1301             fjy0             = _mm256_add_pd(fjy0,ty);
1302             fjz0             = _mm256_add_pd(fjz0,tz);
1303
1304             }
1305
1306             /**************************
1307              * CALCULATE INTERACTIONS *
1308              **************************/
1309
1310             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1311             {
1312
1313             r10              = _mm256_mul_pd(rsq10,rinv10);
1314             r10              = _mm256_andnot_pd(dummy_mask,r10);
1315
1316             /* Compute parameters for interactions between i and j atoms */
1317             qq10             = _mm256_mul_pd(iq1,jq0);
1318
1319             /* EWALD ELECTROSTATICS */
1320
1321             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1322             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1323             ewitab           = _mm256_cvttpd_epi32(ewrt);
1324             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1325             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1326                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1327                                             &ewtabF,&ewtabFn);
1328             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1329             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1330
1331             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1332
1333             fscal            = felec;
1334
1335             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1336
1337             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1338
1339             /* Calculate temporary vectorial force */
1340             tx               = _mm256_mul_pd(fscal,dx10);
1341             ty               = _mm256_mul_pd(fscal,dy10);
1342             tz               = _mm256_mul_pd(fscal,dz10);
1343
1344             /* Update vectorial force */
1345             fix1             = _mm256_add_pd(fix1,tx);
1346             fiy1             = _mm256_add_pd(fiy1,ty);
1347             fiz1             = _mm256_add_pd(fiz1,tz);
1348
1349             fjx0             = _mm256_add_pd(fjx0,tx);
1350             fjy0             = _mm256_add_pd(fjy0,ty);
1351             fjz0             = _mm256_add_pd(fjz0,tz);
1352
1353             }
1354
1355             /**************************
1356              * CALCULATE INTERACTIONS *
1357              **************************/
1358
1359             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1360             {
1361
1362             r20              = _mm256_mul_pd(rsq20,rinv20);
1363             r20              = _mm256_andnot_pd(dummy_mask,r20);
1364
1365             /* Compute parameters for interactions between i and j atoms */
1366             qq20             = _mm256_mul_pd(iq2,jq0);
1367
1368             /* EWALD ELECTROSTATICS */
1369
1370             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1371             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1372             ewitab           = _mm256_cvttpd_epi32(ewrt);
1373             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1374             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1375                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1376                                             &ewtabF,&ewtabFn);
1377             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1378             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1379
1380             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1381
1382             fscal            = felec;
1383
1384             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1385
1386             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1387
1388             /* Calculate temporary vectorial force */
1389             tx               = _mm256_mul_pd(fscal,dx20);
1390             ty               = _mm256_mul_pd(fscal,dy20);
1391             tz               = _mm256_mul_pd(fscal,dz20);
1392
1393             /* Update vectorial force */
1394             fix2             = _mm256_add_pd(fix2,tx);
1395             fiy2             = _mm256_add_pd(fiy2,ty);
1396             fiz2             = _mm256_add_pd(fiz2,tz);
1397
1398             fjx0             = _mm256_add_pd(fjx0,tx);
1399             fjy0             = _mm256_add_pd(fjy0,ty);
1400             fjz0             = _mm256_add_pd(fjz0,tz);
1401
1402             }
1403
1404             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1405             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1406             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1407             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1408
1409             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1410
1411             /* Inner loop uses 146 flops */
1412         }
1413
1414         /* End of innermost loop */
1415
1416         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1417                                                  f+i_coord_offset,fshift+i_shift_offset);
1418
1419         /* Increment number of inner iterations */
1420         inneriter                  += j_index_end - j_index_start;
1421
1422         /* Outer loop uses 18 flops */
1423     }
1424
1425     /* Increment number of outer iterations */
1426     outeriter        += nri;
1427
1428     /* Update outer/inner flops */
1429
1430     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*146);
1431 }