Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     real *           vdwgridioffsetptr0;
86     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
97     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
98     __m256d           c6grid_00;
99     real             *vdwgridparam;
100     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
101     __m256d           one_half  = _mm256_set1_pd(0.5);
102     __m256d           minus_one = _mm256_set1_pd(-1.0);
103     __m128i          ewitab;
104     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
106     real             *ewtab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128     vdwgridparam     = fr->ljpme_c6grid;
129     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
130     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
131     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
132
133     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
134     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
135     beta2            = _mm256_mul_pd(beta,beta);
136     beta3            = _mm256_mul_pd(beta,beta2);
137
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
141
142     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
143     rcutoff_scalar   = fr->rcoulomb;
144     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
145     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
146
147     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
148     rvdw             = _mm256_set1_pd(fr->rvdw);
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = jnrC = jnrD = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154     j_coord_offsetC = 0;
155     j_coord_offsetD = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
181
182         fix0             = _mm256_setzero_pd();
183         fiy0             = _mm256_setzero_pd();
184         fiz0             = _mm256_setzero_pd();
185
186         /* Load parameters for i particles */
187         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
188         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
189         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
190
191         /* Reset potential sums */
192         velecsum         = _mm256_setzero_pd();
193         vvdwsum          = _mm256_setzero_pd();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
211                                                  x+j_coord_offsetC,x+j_coord_offsetD,
212                                                  &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm256_sub_pd(ix0,jx0);
216             dy00             = _mm256_sub_pd(iy0,jy0);
217             dz00             = _mm256_sub_pd(iz0,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
221
222             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
223
224             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
228                                                                  charge+jnrC+0,charge+jnrD+0);
229             vdwjidx0A        = 2*vdwtype[jnrA+0];
230             vdwjidx0B        = 2*vdwtype[jnrB+0];
231             vdwjidx0C        = 2*vdwtype[jnrC+0];
232             vdwjidx0D        = 2*vdwtype[jnrD+0];
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             if (gmx_mm256_any_lt(rsq00,rcutoff2))
239             {
240
241             r00              = _mm256_mul_pd(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm256_mul_pd(iq0,jq0);
245             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
246                                             vdwioffsetptr0+vdwjidx0B,
247                                             vdwioffsetptr0+vdwjidx0C,
248                                             vdwioffsetptr0+vdwjidx0D,
249                                             &c6_00,&c12_00);
250
251             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
252                                                                   vdwgridioffsetptr0+vdwjidx0B,
253                                                                   vdwgridioffsetptr0+vdwjidx0C,
254                                                                   vdwgridioffsetptr0+vdwjidx0D);
255
256             /* EWALD ELECTROSTATICS */
257
258             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
259             ewrt             = _mm256_mul_pd(r00,ewtabscale);
260             ewitab           = _mm256_cvttpd_epi32(ewrt);
261             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
262             ewitab           = _mm_slli_epi32(ewitab,2);
263             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
264             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
265             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
266             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
267             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
268             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
269             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
270             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
271             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
272
273             /* Analytical LJ-PME */
274             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
275             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
276             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
277             exponent         = gmx_simd_exp_d(ewcljrsq);
278             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
279             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
280             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
281             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
282             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
283             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
284                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
285             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
286             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
287
288             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velec            = _mm256_and_pd(velec,cutoff_mask);
292             velecsum         = _mm256_add_pd(velecsum,velec);
293             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
294             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
295
296             fscal            = _mm256_add_pd(felec,fvdw);
297
298             fscal            = _mm256_and_pd(fscal,cutoff_mask);
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm256_mul_pd(fscal,dx00);
302             ty               = _mm256_mul_pd(fscal,dy00);
303             tz               = _mm256_mul_pd(fscal,dz00);
304
305             /* Update vectorial force */
306             fix0             = _mm256_add_pd(fix0,tx);
307             fiy0             = _mm256_add_pd(fiy0,ty);
308             fiz0             = _mm256_add_pd(fiz0,tz);
309
310             fjptrA             = f+j_coord_offsetA;
311             fjptrB             = f+j_coord_offsetB;
312             fjptrC             = f+j_coord_offsetC;
313             fjptrD             = f+j_coord_offsetD;
314             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
315
316             }
317
318             /* Inner loop uses 82 flops */
319         }
320
321         if(jidx<j_index_end)
322         {
323
324             /* Get j neighbor index, and coordinate index */
325             jnrlistA         = jjnr[jidx];
326             jnrlistB         = jjnr[jidx+1];
327             jnrlistC         = jjnr[jidx+2];
328             jnrlistD         = jjnr[jidx+3];
329             /* Sign of each element will be negative for non-real atoms.
330              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
331              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
332              */
333             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
334
335             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
336             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
337             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
338
339             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
340             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
341             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
342             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
343             j_coord_offsetA  = DIM*jnrA;
344             j_coord_offsetB  = DIM*jnrB;
345             j_coord_offsetC  = DIM*jnrC;
346             j_coord_offsetD  = DIM*jnrD;
347
348             /* load j atom coordinates */
349             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
350                                                  x+j_coord_offsetC,x+j_coord_offsetD,
351                                                  &jx0,&jy0,&jz0);
352
353             /* Calculate displacement vector */
354             dx00             = _mm256_sub_pd(ix0,jx0);
355             dy00             = _mm256_sub_pd(iy0,jy0);
356             dz00             = _mm256_sub_pd(iz0,jz0);
357
358             /* Calculate squared distance and things based on it */
359             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
360
361             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
362
363             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
364
365             /* Load parameters for j particles */
366             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
367                                                                  charge+jnrC+0,charge+jnrD+0);
368             vdwjidx0A        = 2*vdwtype[jnrA+0];
369             vdwjidx0B        = 2*vdwtype[jnrB+0];
370             vdwjidx0C        = 2*vdwtype[jnrC+0];
371             vdwjidx0D        = 2*vdwtype[jnrD+0];
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             if (gmx_mm256_any_lt(rsq00,rcutoff2))
378             {
379
380             r00              = _mm256_mul_pd(rsq00,rinv00);
381             r00              = _mm256_andnot_pd(dummy_mask,r00);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq00             = _mm256_mul_pd(iq0,jq0);
385             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
386                                             vdwioffsetptr0+vdwjidx0B,
387                                             vdwioffsetptr0+vdwjidx0C,
388                                             vdwioffsetptr0+vdwjidx0D,
389                                             &c6_00,&c12_00);
390
391             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
392                                                                   vdwgridioffsetptr0+vdwjidx0B,
393                                                                   vdwgridioffsetptr0+vdwjidx0C,
394                                                                   vdwgridioffsetptr0+vdwjidx0D);
395
396             /* EWALD ELECTROSTATICS */
397
398             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
399             ewrt             = _mm256_mul_pd(r00,ewtabscale);
400             ewitab           = _mm256_cvttpd_epi32(ewrt);
401             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
402             ewitab           = _mm_slli_epi32(ewitab,2);
403             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
404             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
405             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
406             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
407             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
408             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
409             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
410             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
411             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
412
413             /* Analytical LJ-PME */
414             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
415             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
416             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
417             exponent         = gmx_simd_exp_d(ewcljrsq);
418             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
419             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
420             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
421             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
422             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
423             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
424                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
425             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
426             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
427
428             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velec            = _mm256_and_pd(velec,cutoff_mask);
432             velec            = _mm256_andnot_pd(dummy_mask,velec);
433             velecsum         = _mm256_add_pd(velecsum,velec);
434             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
435             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
436             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
437
438             fscal            = _mm256_add_pd(felec,fvdw);
439
440             fscal            = _mm256_and_pd(fscal,cutoff_mask);
441
442             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
443
444             /* Calculate temporary vectorial force */
445             tx               = _mm256_mul_pd(fscal,dx00);
446             ty               = _mm256_mul_pd(fscal,dy00);
447             tz               = _mm256_mul_pd(fscal,dz00);
448
449             /* Update vectorial force */
450             fix0             = _mm256_add_pd(fix0,tx);
451             fiy0             = _mm256_add_pd(fiy0,ty);
452             fiz0             = _mm256_add_pd(fiz0,tz);
453
454             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
455             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
456             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
457             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
458             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
459
460             }
461
462             /* Inner loop uses 83 flops */
463         }
464
465         /* End of innermost loop */
466
467         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
468                                                  f+i_coord_offset,fshift+i_shift_offset);
469
470         ggid                        = gid[iidx];
471         /* Update potential energies */
472         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
473         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
474
475         /* Increment number of inner iterations */
476         inneriter                  += j_index_end - j_index_start;
477
478         /* Outer loop uses 9 flops */
479     }
480
481     /* Increment number of outer iterations */
482     outeriter        += nri;
483
484     /* Update outer/inner flops */
485
486     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*83);
487 }
488 /*
489  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_256_double
490  * Electrostatics interaction: Ewald
491  * VdW interaction:            LJEwald
492  * Geometry:                   Particle-Particle
493  * Calculate force/pot:        Force
494  */
495 void
496 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_256_double
497                     (t_nblist                    * gmx_restrict       nlist,
498                      rvec                        * gmx_restrict          xx,
499                      rvec                        * gmx_restrict          ff,
500                      t_forcerec                  * gmx_restrict          fr,
501                      t_mdatoms                   * gmx_restrict     mdatoms,
502                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
503                      t_nrnb                      * gmx_restrict        nrnb)
504 {
505     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
506      * just 0 for non-waters.
507      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
508      * jnr indices corresponding to data put in the four positions in the SIMD register.
509      */
510     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
511     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
512     int              jnrA,jnrB,jnrC,jnrD;
513     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
514     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
515     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
516     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
517     real             rcutoff_scalar;
518     real             *shiftvec,*fshift,*x,*f;
519     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
520     real             scratch[4*DIM];
521     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
522     real *           vdwioffsetptr0;
523     real *           vdwgridioffsetptr0;
524     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
525     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
526     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
527     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
528     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
529     real             *charge;
530     int              nvdwtype;
531     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
532     int              *vdwtype;
533     real             *vdwparam;
534     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
535     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
536     __m256d           c6grid_00;
537     real             *vdwgridparam;
538     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
539     __m256d           one_half  = _mm256_set1_pd(0.5);
540     __m256d           minus_one = _mm256_set1_pd(-1.0);
541     __m128i          ewitab;
542     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
543     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
544     real             *ewtab;
545     __m256d          dummy_mask,cutoff_mask;
546     __m128           tmpmask0,tmpmask1;
547     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
548     __m256d          one     = _mm256_set1_pd(1.0);
549     __m256d          two     = _mm256_set1_pd(2.0);
550     x                = xx[0];
551     f                = ff[0];
552
553     nri              = nlist->nri;
554     iinr             = nlist->iinr;
555     jindex           = nlist->jindex;
556     jjnr             = nlist->jjnr;
557     shiftidx         = nlist->shift;
558     gid              = nlist->gid;
559     shiftvec         = fr->shift_vec[0];
560     fshift           = fr->fshift[0];
561     facel            = _mm256_set1_pd(fr->epsfac);
562     charge           = mdatoms->chargeA;
563     nvdwtype         = fr->ntype;
564     vdwparam         = fr->nbfp;
565     vdwtype          = mdatoms->typeA;
566     vdwgridparam     = fr->ljpme_c6grid;
567     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
568     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
569     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
570
571     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
572     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
573     beta2            = _mm256_mul_pd(beta,beta);
574     beta3            = _mm256_mul_pd(beta,beta2);
575
576     ewtab            = fr->ic->tabq_coul_F;
577     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
578     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
579
580     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
581     rcutoff_scalar   = fr->rcoulomb;
582     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
583     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
584
585     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
586     rvdw             = _mm256_set1_pd(fr->rvdw);
587
588     /* Avoid stupid compiler warnings */
589     jnrA = jnrB = jnrC = jnrD = 0;
590     j_coord_offsetA = 0;
591     j_coord_offsetB = 0;
592     j_coord_offsetC = 0;
593     j_coord_offsetD = 0;
594
595     outeriter        = 0;
596     inneriter        = 0;
597
598     for(iidx=0;iidx<4*DIM;iidx++)
599     {
600         scratch[iidx] = 0.0;
601     }
602
603     /* Start outer loop over neighborlists */
604     for(iidx=0; iidx<nri; iidx++)
605     {
606         /* Load shift vector for this list */
607         i_shift_offset   = DIM*shiftidx[iidx];
608
609         /* Load limits for loop over neighbors */
610         j_index_start    = jindex[iidx];
611         j_index_end      = jindex[iidx+1];
612
613         /* Get outer coordinate index */
614         inr              = iinr[iidx];
615         i_coord_offset   = DIM*inr;
616
617         /* Load i particle coords and add shift vector */
618         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
619
620         fix0             = _mm256_setzero_pd();
621         fiy0             = _mm256_setzero_pd();
622         fiz0             = _mm256_setzero_pd();
623
624         /* Load parameters for i particles */
625         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
626         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
627         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
628
629         /* Start inner kernel loop */
630         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
631         {
632
633             /* Get j neighbor index, and coordinate index */
634             jnrA             = jjnr[jidx];
635             jnrB             = jjnr[jidx+1];
636             jnrC             = jjnr[jidx+2];
637             jnrD             = jjnr[jidx+3];
638             j_coord_offsetA  = DIM*jnrA;
639             j_coord_offsetB  = DIM*jnrB;
640             j_coord_offsetC  = DIM*jnrC;
641             j_coord_offsetD  = DIM*jnrD;
642
643             /* load j atom coordinates */
644             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
645                                                  x+j_coord_offsetC,x+j_coord_offsetD,
646                                                  &jx0,&jy0,&jz0);
647
648             /* Calculate displacement vector */
649             dx00             = _mm256_sub_pd(ix0,jx0);
650             dy00             = _mm256_sub_pd(iy0,jy0);
651             dz00             = _mm256_sub_pd(iz0,jz0);
652
653             /* Calculate squared distance and things based on it */
654             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
655
656             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
657
658             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
659
660             /* Load parameters for j particles */
661             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
662                                                                  charge+jnrC+0,charge+jnrD+0);
663             vdwjidx0A        = 2*vdwtype[jnrA+0];
664             vdwjidx0B        = 2*vdwtype[jnrB+0];
665             vdwjidx0C        = 2*vdwtype[jnrC+0];
666             vdwjidx0D        = 2*vdwtype[jnrD+0];
667
668             /**************************
669              * CALCULATE INTERACTIONS *
670              **************************/
671
672             if (gmx_mm256_any_lt(rsq00,rcutoff2))
673             {
674
675             r00              = _mm256_mul_pd(rsq00,rinv00);
676
677             /* Compute parameters for interactions between i and j atoms */
678             qq00             = _mm256_mul_pd(iq0,jq0);
679             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
680                                             vdwioffsetptr0+vdwjidx0B,
681                                             vdwioffsetptr0+vdwjidx0C,
682                                             vdwioffsetptr0+vdwjidx0D,
683                                             &c6_00,&c12_00);
684
685             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
686                                                                   vdwgridioffsetptr0+vdwjidx0B,
687                                                                   vdwgridioffsetptr0+vdwjidx0C,
688                                                                   vdwgridioffsetptr0+vdwjidx0D);
689
690             /* EWALD ELECTROSTATICS */
691
692             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
693             ewrt             = _mm256_mul_pd(r00,ewtabscale);
694             ewitab           = _mm256_cvttpd_epi32(ewrt);
695             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
696             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
697                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
698                                             &ewtabF,&ewtabFn);
699             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
700             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
701
702             /* Analytical LJ-PME */
703             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
704             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
705             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
706             exponent         = gmx_simd_exp_d(ewcljrsq);
707             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
708             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
709             /* f6A = 6 * C6grid * (1 - poly) */
710             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
711             /* f6B = C6grid * exponent * beta^6 */
712             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
713             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
714             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
715
716             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
717
718             fscal            = _mm256_add_pd(felec,fvdw);
719
720             fscal            = _mm256_and_pd(fscal,cutoff_mask);
721
722             /* Calculate temporary vectorial force */
723             tx               = _mm256_mul_pd(fscal,dx00);
724             ty               = _mm256_mul_pd(fscal,dy00);
725             tz               = _mm256_mul_pd(fscal,dz00);
726
727             /* Update vectorial force */
728             fix0             = _mm256_add_pd(fix0,tx);
729             fiy0             = _mm256_add_pd(fiy0,ty);
730             fiz0             = _mm256_add_pd(fiz0,tz);
731
732             fjptrA             = f+j_coord_offsetA;
733             fjptrB             = f+j_coord_offsetB;
734             fjptrC             = f+j_coord_offsetC;
735             fjptrD             = f+j_coord_offsetD;
736             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
737
738             }
739
740             /* Inner loop uses 62 flops */
741         }
742
743         if(jidx<j_index_end)
744         {
745
746             /* Get j neighbor index, and coordinate index */
747             jnrlistA         = jjnr[jidx];
748             jnrlistB         = jjnr[jidx+1];
749             jnrlistC         = jjnr[jidx+2];
750             jnrlistD         = jjnr[jidx+3];
751             /* Sign of each element will be negative for non-real atoms.
752              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
753              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
754              */
755             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
756
757             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
758             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
759             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
760
761             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
762             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
763             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
764             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
765             j_coord_offsetA  = DIM*jnrA;
766             j_coord_offsetB  = DIM*jnrB;
767             j_coord_offsetC  = DIM*jnrC;
768             j_coord_offsetD  = DIM*jnrD;
769
770             /* load j atom coordinates */
771             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
772                                                  x+j_coord_offsetC,x+j_coord_offsetD,
773                                                  &jx0,&jy0,&jz0);
774
775             /* Calculate displacement vector */
776             dx00             = _mm256_sub_pd(ix0,jx0);
777             dy00             = _mm256_sub_pd(iy0,jy0);
778             dz00             = _mm256_sub_pd(iz0,jz0);
779
780             /* Calculate squared distance and things based on it */
781             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
782
783             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
784
785             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
786
787             /* Load parameters for j particles */
788             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
789                                                                  charge+jnrC+0,charge+jnrD+0);
790             vdwjidx0A        = 2*vdwtype[jnrA+0];
791             vdwjidx0B        = 2*vdwtype[jnrB+0];
792             vdwjidx0C        = 2*vdwtype[jnrC+0];
793             vdwjidx0D        = 2*vdwtype[jnrD+0];
794
795             /**************************
796              * CALCULATE INTERACTIONS *
797              **************************/
798
799             if (gmx_mm256_any_lt(rsq00,rcutoff2))
800             {
801
802             r00              = _mm256_mul_pd(rsq00,rinv00);
803             r00              = _mm256_andnot_pd(dummy_mask,r00);
804
805             /* Compute parameters for interactions between i and j atoms */
806             qq00             = _mm256_mul_pd(iq0,jq0);
807             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
808                                             vdwioffsetptr0+vdwjidx0B,
809                                             vdwioffsetptr0+vdwjidx0C,
810                                             vdwioffsetptr0+vdwjidx0D,
811                                             &c6_00,&c12_00);
812
813             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
814                                                                   vdwgridioffsetptr0+vdwjidx0B,
815                                                                   vdwgridioffsetptr0+vdwjidx0C,
816                                                                   vdwgridioffsetptr0+vdwjidx0D);
817
818             /* EWALD ELECTROSTATICS */
819
820             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
821             ewrt             = _mm256_mul_pd(r00,ewtabscale);
822             ewitab           = _mm256_cvttpd_epi32(ewrt);
823             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
824             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
825                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
826                                             &ewtabF,&ewtabFn);
827             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
828             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
829
830             /* Analytical LJ-PME */
831             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
832             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
833             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
834             exponent         = gmx_simd_exp_d(ewcljrsq);
835             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
836             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
837             /* f6A = 6 * C6grid * (1 - poly) */
838             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
839             /* f6B = C6grid * exponent * beta^6 */
840             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
841             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
842             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
843
844             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
845
846             fscal            = _mm256_add_pd(felec,fvdw);
847
848             fscal            = _mm256_and_pd(fscal,cutoff_mask);
849
850             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
851
852             /* Calculate temporary vectorial force */
853             tx               = _mm256_mul_pd(fscal,dx00);
854             ty               = _mm256_mul_pd(fscal,dy00);
855             tz               = _mm256_mul_pd(fscal,dz00);
856
857             /* Update vectorial force */
858             fix0             = _mm256_add_pd(fix0,tx);
859             fiy0             = _mm256_add_pd(fiy0,ty);
860             fiz0             = _mm256_add_pd(fiz0,tz);
861
862             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
863             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
864             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
865             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
866             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
867
868             }
869
870             /* Inner loop uses 63 flops */
871         }
872
873         /* End of innermost loop */
874
875         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
876                                                  f+i_coord_offset,fshift+i_shift_offset);
877
878         /* Increment number of inner iterations */
879         inneriter                  += j_index_end - j_index_start;
880
881         /* Outer loop uses 7 flops */
882     }
883
884     /* Increment number of outer iterations */
885     outeriter        += nri;
886
887     /* Update outer/inner flops */
888
889     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
890 }