Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     real *           vdwgridioffsetptr0;
88     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
99     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
100     __m256d           c6grid_00;
101     real             *vdwgridparam;
102     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     __m256d           one_half  = _mm256_set1_pd(0.5);
104     __m256d           minus_one = _mm256_set1_pd(-1.0);
105     __m128i          ewitab;
106     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
108     real             *ewtab;
109     __m256d          dummy_mask,cutoff_mask;
110     __m128           tmpmask0,tmpmask1;
111     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
112     __m256d          one     = _mm256_set1_pd(1.0);
113     __m256d          two     = _mm256_set1_pd(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_pd(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130     vdwgridparam     = fr->ljpme_c6grid;
131     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
132     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
133     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
134
135     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
136     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
137     beta2            = _mm256_mul_pd(beta,beta);
138     beta3            = _mm256_mul_pd(beta,beta2);
139
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
143
144     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
145     rcutoff_scalar   = fr->rcoulomb;
146     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
147     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
148
149     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
150     rvdw             = _mm256_set1_pd(fr->rvdw);
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = jnrC = jnrD = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156     j_coord_offsetC = 0;
157     j_coord_offsetD = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     for(iidx=0;iidx<4*DIM;iidx++)
163     {
164         scratch[iidx] = 0.0;
165     }
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
183
184         fix0             = _mm256_setzero_pd();
185         fiy0             = _mm256_setzero_pd();
186         fiz0             = _mm256_setzero_pd();
187
188         /* Load parameters for i particles */
189         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
190         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
191         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
192
193         /* Reset potential sums */
194         velecsum         = _mm256_setzero_pd();
195         vvdwsum          = _mm256_setzero_pd();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             j_coord_offsetA  = DIM*jnrA;
207             j_coord_offsetB  = DIM*jnrB;
208             j_coord_offsetC  = DIM*jnrC;
209             j_coord_offsetD  = DIM*jnrD;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm256_sub_pd(ix0,jx0);
218             dy00             = _mm256_sub_pd(iy0,jy0);
219             dz00             = _mm256_sub_pd(iz0,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
223
224             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
225
226             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
230                                                                  charge+jnrC+0,charge+jnrD+0);
231             vdwjidx0A        = 2*vdwtype[jnrA+0];
232             vdwjidx0B        = 2*vdwtype[jnrB+0];
233             vdwjidx0C        = 2*vdwtype[jnrC+0];
234             vdwjidx0D        = 2*vdwtype[jnrD+0];
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             if (gmx_mm256_any_lt(rsq00,rcutoff2))
241             {
242
243             r00              = _mm256_mul_pd(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm256_mul_pd(iq0,jq0);
247             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
248                                             vdwioffsetptr0+vdwjidx0B,
249                                             vdwioffsetptr0+vdwjidx0C,
250                                             vdwioffsetptr0+vdwjidx0D,
251                                             &c6_00,&c12_00);
252
253             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
254                                                                   vdwgridioffsetptr0+vdwjidx0B,
255                                                                   vdwgridioffsetptr0+vdwjidx0C,
256                                                                   vdwgridioffsetptr0+vdwjidx0D);
257
258             /* EWALD ELECTROSTATICS */
259
260             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
261             ewrt             = _mm256_mul_pd(r00,ewtabscale);
262             ewitab           = _mm256_cvttpd_epi32(ewrt);
263             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
264             ewitab           = _mm_slli_epi32(ewitab,2);
265             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
266             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
267             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
268             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
269             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
270             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
271             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
272             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
273             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
274
275             /* Analytical LJ-PME */
276             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
277             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
278             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
279             exponent         = gmx_simd_exp_d(ewcljrsq);
280             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
281             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
282             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
283             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
284             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
285             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
286                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
287             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
288             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
289
290             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velec            = _mm256_and_pd(velec,cutoff_mask);
294             velecsum         = _mm256_add_pd(velecsum,velec);
295             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
296             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
297
298             fscal            = _mm256_add_pd(felec,fvdw);
299
300             fscal            = _mm256_and_pd(fscal,cutoff_mask);
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm256_mul_pd(fscal,dx00);
304             ty               = _mm256_mul_pd(fscal,dy00);
305             tz               = _mm256_mul_pd(fscal,dz00);
306
307             /* Update vectorial force */
308             fix0             = _mm256_add_pd(fix0,tx);
309             fiy0             = _mm256_add_pd(fiy0,ty);
310             fiz0             = _mm256_add_pd(fiz0,tz);
311
312             fjptrA             = f+j_coord_offsetA;
313             fjptrB             = f+j_coord_offsetB;
314             fjptrC             = f+j_coord_offsetC;
315             fjptrD             = f+j_coord_offsetD;
316             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
317
318             }
319
320             /* Inner loop uses 82 flops */
321         }
322
323         if(jidx<j_index_end)
324         {
325
326             /* Get j neighbor index, and coordinate index */
327             jnrlistA         = jjnr[jidx];
328             jnrlistB         = jjnr[jidx+1];
329             jnrlistC         = jjnr[jidx+2];
330             jnrlistD         = jjnr[jidx+3];
331             /* Sign of each element will be negative for non-real atoms.
332              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
333              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
334              */
335             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
336
337             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
338             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
339             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
340
341             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
342             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
343             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
344             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
345             j_coord_offsetA  = DIM*jnrA;
346             j_coord_offsetB  = DIM*jnrB;
347             j_coord_offsetC  = DIM*jnrC;
348             j_coord_offsetD  = DIM*jnrD;
349
350             /* load j atom coordinates */
351             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
352                                                  x+j_coord_offsetC,x+j_coord_offsetD,
353                                                  &jx0,&jy0,&jz0);
354
355             /* Calculate displacement vector */
356             dx00             = _mm256_sub_pd(ix0,jx0);
357             dy00             = _mm256_sub_pd(iy0,jy0);
358             dz00             = _mm256_sub_pd(iz0,jz0);
359
360             /* Calculate squared distance and things based on it */
361             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
362
363             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
364
365             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
366
367             /* Load parameters for j particles */
368             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
369                                                                  charge+jnrC+0,charge+jnrD+0);
370             vdwjidx0A        = 2*vdwtype[jnrA+0];
371             vdwjidx0B        = 2*vdwtype[jnrB+0];
372             vdwjidx0C        = 2*vdwtype[jnrC+0];
373             vdwjidx0D        = 2*vdwtype[jnrD+0];
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             if (gmx_mm256_any_lt(rsq00,rcutoff2))
380             {
381
382             r00              = _mm256_mul_pd(rsq00,rinv00);
383             r00              = _mm256_andnot_pd(dummy_mask,r00);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq00             = _mm256_mul_pd(iq0,jq0);
387             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
388                                             vdwioffsetptr0+vdwjidx0B,
389                                             vdwioffsetptr0+vdwjidx0C,
390                                             vdwioffsetptr0+vdwjidx0D,
391                                             &c6_00,&c12_00);
392
393             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
394                                                                   vdwgridioffsetptr0+vdwjidx0B,
395                                                                   vdwgridioffsetptr0+vdwjidx0C,
396                                                                   vdwgridioffsetptr0+vdwjidx0D);
397
398             /* EWALD ELECTROSTATICS */
399
400             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
401             ewrt             = _mm256_mul_pd(r00,ewtabscale);
402             ewitab           = _mm256_cvttpd_epi32(ewrt);
403             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
404             ewitab           = _mm_slli_epi32(ewitab,2);
405             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
406             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
407             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
408             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
409             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
410             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
411             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
412             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
413             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
414
415             /* Analytical LJ-PME */
416             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
417             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
418             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
419             exponent         = gmx_simd_exp_d(ewcljrsq);
420             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
421             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
422             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
423             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
424             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
425             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
426                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
427             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
428             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
429
430             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velec            = _mm256_and_pd(velec,cutoff_mask);
434             velec            = _mm256_andnot_pd(dummy_mask,velec);
435             velecsum         = _mm256_add_pd(velecsum,velec);
436             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
437             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
438             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
439
440             fscal            = _mm256_add_pd(felec,fvdw);
441
442             fscal            = _mm256_and_pd(fscal,cutoff_mask);
443
444             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
445
446             /* Calculate temporary vectorial force */
447             tx               = _mm256_mul_pd(fscal,dx00);
448             ty               = _mm256_mul_pd(fscal,dy00);
449             tz               = _mm256_mul_pd(fscal,dz00);
450
451             /* Update vectorial force */
452             fix0             = _mm256_add_pd(fix0,tx);
453             fiy0             = _mm256_add_pd(fiy0,ty);
454             fiz0             = _mm256_add_pd(fiz0,tz);
455
456             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
457             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
458             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
459             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
460             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
461
462             }
463
464             /* Inner loop uses 83 flops */
465         }
466
467         /* End of innermost loop */
468
469         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
470                                                  f+i_coord_offset,fshift+i_shift_offset);
471
472         ggid                        = gid[iidx];
473         /* Update potential energies */
474         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
475         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
476
477         /* Increment number of inner iterations */
478         inneriter                  += j_index_end - j_index_start;
479
480         /* Outer loop uses 9 flops */
481     }
482
483     /* Increment number of outer iterations */
484     outeriter        += nri;
485
486     /* Update outer/inner flops */
487
488     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*83);
489 }
490 /*
491  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_256_double
492  * Electrostatics interaction: Ewald
493  * VdW interaction:            LJEwald
494  * Geometry:                   Particle-Particle
495  * Calculate force/pot:        Force
496  */
497 void
498 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_256_double
499                     (t_nblist                    * gmx_restrict       nlist,
500                      rvec                        * gmx_restrict          xx,
501                      rvec                        * gmx_restrict          ff,
502                      t_forcerec                  * gmx_restrict          fr,
503                      t_mdatoms                   * gmx_restrict     mdatoms,
504                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
505                      t_nrnb                      * gmx_restrict        nrnb)
506 {
507     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
508      * just 0 for non-waters.
509      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
510      * jnr indices corresponding to data put in the four positions in the SIMD register.
511      */
512     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
513     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
514     int              jnrA,jnrB,jnrC,jnrD;
515     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
516     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
517     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
518     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
519     real             rcutoff_scalar;
520     real             *shiftvec,*fshift,*x,*f;
521     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
522     real             scratch[4*DIM];
523     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
524     real *           vdwioffsetptr0;
525     real *           vdwgridioffsetptr0;
526     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
527     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
528     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
529     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
530     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
531     real             *charge;
532     int              nvdwtype;
533     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
534     int              *vdwtype;
535     real             *vdwparam;
536     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
537     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
538     __m256d           c6grid_00;
539     real             *vdwgridparam;
540     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
541     __m256d           one_half  = _mm256_set1_pd(0.5);
542     __m256d           minus_one = _mm256_set1_pd(-1.0);
543     __m128i          ewitab;
544     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
545     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
546     real             *ewtab;
547     __m256d          dummy_mask,cutoff_mask;
548     __m128           tmpmask0,tmpmask1;
549     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
550     __m256d          one     = _mm256_set1_pd(1.0);
551     __m256d          two     = _mm256_set1_pd(2.0);
552     x                = xx[0];
553     f                = ff[0];
554
555     nri              = nlist->nri;
556     iinr             = nlist->iinr;
557     jindex           = nlist->jindex;
558     jjnr             = nlist->jjnr;
559     shiftidx         = nlist->shift;
560     gid              = nlist->gid;
561     shiftvec         = fr->shift_vec[0];
562     fshift           = fr->fshift[0];
563     facel            = _mm256_set1_pd(fr->epsfac);
564     charge           = mdatoms->chargeA;
565     nvdwtype         = fr->ntype;
566     vdwparam         = fr->nbfp;
567     vdwtype          = mdatoms->typeA;
568     vdwgridparam     = fr->ljpme_c6grid;
569     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
570     ewclj            = _mm256_set1_pd(fr->ewaldcoeff_lj);
571     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
572
573     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
574     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
575     beta2            = _mm256_mul_pd(beta,beta);
576     beta3            = _mm256_mul_pd(beta,beta2);
577
578     ewtab            = fr->ic->tabq_coul_F;
579     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
580     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
581
582     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
583     rcutoff_scalar   = fr->rcoulomb;
584     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
585     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
586
587     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
588     rvdw             = _mm256_set1_pd(fr->rvdw);
589
590     /* Avoid stupid compiler warnings */
591     jnrA = jnrB = jnrC = jnrD = 0;
592     j_coord_offsetA = 0;
593     j_coord_offsetB = 0;
594     j_coord_offsetC = 0;
595     j_coord_offsetD = 0;
596
597     outeriter        = 0;
598     inneriter        = 0;
599
600     for(iidx=0;iidx<4*DIM;iidx++)
601     {
602         scratch[iidx] = 0.0;
603     }
604
605     /* Start outer loop over neighborlists */
606     for(iidx=0; iidx<nri; iidx++)
607     {
608         /* Load shift vector for this list */
609         i_shift_offset   = DIM*shiftidx[iidx];
610
611         /* Load limits for loop over neighbors */
612         j_index_start    = jindex[iidx];
613         j_index_end      = jindex[iidx+1];
614
615         /* Get outer coordinate index */
616         inr              = iinr[iidx];
617         i_coord_offset   = DIM*inr;
618
619         /* Load i particle coords and add shift vector */
620         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
621
622         fix0             = _mm256_setzero_pd();
623         fiy0             = _mm256_setzero_pd();
624         fiz0             = _mm256_setzero_pd();
625
626         /* Load parameters for i particles */
627         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
628         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
629         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
630
631         /* Start inner kernel loop */
632         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
633         {
634
635             /* Get j neighbor index, and coordinate index */
636             jnrA             = jjnr[jidx];
637             jnrB             = jjnr[jidx+1];
638             jnrC             = jjnr[jidx+2];
639             jnrD             = jjnr[jidx+3];
640             j_coord_offsetA  = DIM*jnrA;
641             j_coord_offsetB  = DIM*jnrB;
642             j_coord_offsetC  = DIM*jnrC;
643             j_coord_offsetD  = DIM*jnrD;
644
645             /* load j atom coordinates */
646             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
647                                                  x+j_coord_offsetC,x+j_coord_offsetD,
648                                                  &jx0,&jy0,&jz0);
649
650             /* Calculate displacement vector */
651             dx00             = _mm256_sub_pd(ix0,jx0);
652             dy00             = _mm256_sub_pd(iy0,jy0);
653             dz00             = _mm256_sub_pd(iz0,jz0);
654
655             /* Calculate squared distance and things based on it */
656             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
657
658             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
659
660             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
661
662             /* Load parameters for j particles */
663             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
664                                                                  charge+jnrC+0,charge+jnrD+0);
665             vdwjidx0A        = 2*vdwtype[jnrA+0];
666             vdwjidx0B        = 2*vdwtype[jnrB+0];
667             vdwjidx0C        = 2*vdwtype[jnrC+0];
668             vdwjidx0D        = 2*vdwtype[jnrD+0];
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             if (gmx_mm256_any_lt(rsq00,rcutoff2))
675             {
676
677             r00              = _mm256_mul_pd(rsq00,rinv00);
678
679             /* Compute parameters for interactions between i and j atoms */
680             qq00             = _mm256_mul_pd(iq0,jq0);
681             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
682                                             vdwioffsetptr0+vdwjidx0B,
683                                             vdwioffsetptr0+vdwjidx0C,
684                                             vdwioffsetptr0+vdwjidx0D,
685                                             &c6_00,&c12_00);
686
687             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
688                                                                   vdwgridioffsetptr0+vdwjidx0B,
689                                                                   vdwgridioffsetptr0+vdwjidx0C,
690                                                                   vdwgridioffsetptr0+vdwjidx0D);
691
692             /* EWALD ELECTROSTATICS */
693
694             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
695             ewrt             = _mm256_mul_pd(r00,ewtabscale);
696             ewitab           = _mm256_cvttpd_epi32(ewrt);
697             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
698             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
699                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
700                                             &ewtabF,&ewtabFn);
701             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
702             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
703
704             /* Analytical LJ-PME */
705             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
706             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
707             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
708             exponent         = gmx_simd_exp_d(ewcljrsq);
709             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
710             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
711             /* f6A = 6 * C6grid * (1 - poly) */
712             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
713             /* f6B = C6grid * exponent * beta^6 */
714             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
715             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
716             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
717
718             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
719
720             fscal            = _mm256_add_pd(felec,fvdw);
721
722             fscal            = _mm256_and_pd(fscal,cutoff_mask);
723
724             /* Calculate temporary vectorial force */
725             tx               = _mm256_mul_pd(fscal,dx00);
726             ty               = _mm256_mul_pd(fscal,dy00);
727             tz               = _mm256_mul_pd(fscal,dz00);
728
729             /* Update vectorial force */
730             fix0             = _mm256_add_pd(fix0,tx);
731             fiy0             = _mm256_add_pd(fiy0,ty);
732             fiz0             = _mm256_add_pd(fiz0,tz);
733
734             fjptrA             = f+j_coord_offsetA;
735             fjptrB             = f+j_coord_offsetB;
736             fjptrC             = f+j_coord_offsetC;
737             fjptrD             = f+j_coord_offsetD;
738             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
739
740             }
741
742             /* Inner loop uses 62 flops */
743         }
744
745         if(jidx<j_index_end)
746         {
747
748             /* Get j neighbor index, and coordinate index */
749             jnrlistA         = jjnr[jidx];
750             jnrlistB         = jjnr[jidx+1];
751             jnrlistC         = jjnr[jidx+2];
752             jnrlistD         = jjnr[jidx+3];
753             /* Sign of each element will be negative for non-real atoms.
754              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
755              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
756              */
757             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
758
759             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
760             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
761             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
762
763             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
764             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
765             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
766             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
767             j_coord_offsetA  = DIM*jnrA;
768             j_coord_offsetB  = DIM*jnrB;
769             j_coord_offsetC  = DIM*jnrC;
770             j_coord_offsetD  = DIM*jnrD;
771
772             /* load j atom coordinates */
773             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
774                                                  x+j_coord_offsetC,x+j_coord_offsetD,
775                                                  &jx0,&jy0,&jz0);
776
777             /* Calculate displacement vector */
778             dx00             = _mm256_sub_pd(ix0,jx0);
779             dy00             = _mm256_sub_pd(iy0,jy0);
780             dz00             = _mm256_sub_pd(iz0,jz0);
781
782             /* Calculate squared distance and things based on it */
783             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
784
785             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
786
787             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
788
789             /* Load parameters for j particles */
790             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
791                                                                  charge+jnrC+0,charge+jnrD+0);
792             vdwjidx0A        = 2*vdwtype[jnrA+0];
793             vdwjidx0B        = 2*vdwtype[jnrB+0];
794             vdwjidx0C        = 2*vdwtype[jnrC+0];
795             vdwjidx0D        = 2*vdwtype[jnrD+0];
796
797             /**************************
798              * CALCULATE INTERACTIONS *
799              **************************/
800
801             if (gmx_mm256_any_lt(rsq00,rcutoff2))
802             {
803
804             r00              = _mm256_mul_pd(rsq00,rinv00);
805             r00              = _mm256_andnot_pd(dummy_mask,r00);
806
807             /* Compute parameters for interactions between i and j atoms */
808             qq00             = _mm256_mul_pd(iq0,jq0);
809             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
810                                             vdwioffsetptr0+vdwjidx0B,
811                                             vdwioffsetptr0+vdwjidx0C,
812                                             vdwioffsetptr0+vdwjidx0D,
813                                             &c6_00,&c12_00);
814
815             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
816                                                                   vdwgridioffsetptr0+vdwjidx0B,
817                                                                   vdwgridioffsetptr0+vdwjidx0C,
818                                                                   vdwgridioffsetptr0+vdwjidx0D);
819
820             /* EWALD ELECTROSTATICS */
821
822             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
823             ewrt             = _mm256_mul_pd(r00,ewtabscale);
824             ewitab           = _mm256_cvttpd_epi32(ewrt);
825             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
826             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
827                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
828                                             &ewtabF,&ewtabFn);
829             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
830             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
831
832             /* Analytical LJ-PME */
833             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
834             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
835             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
836             exponent         = gmx_simd_exp_d(ewcljrsq);
837             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
838             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
839             /* f6A = 6 * C6grid * (1 - poly) */
840             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
841             /* f6B = C6grid * exponent * beta^6 */
842             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
843             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
844             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
845
846             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
847
848             fscal            = _mm256_add_pd(felec,fvdw);
849
850             fscal            = _mm256_and_pd(fscal,cutoff_mask);
851
852             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
853
854             /* Calculate temporary vectorial force */
855             tx               = _mm256_mul_pd(fscal,dx00);
856             ty               = _mm256_mul_pd(fscal,dy00);
857             tz               = _mm256_mul_pd(fscal,dz00);
858
859             /* Update vectorial force */
860             fix0             = _mm256_add_pd(fix0,tx);
861             fiy0             = _mm256_add_pd(fiy0,ty);
862             fiz0             = _mm256_add_pd(fiz0,tz);
863
864             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
865             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
866             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
867             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
868             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
869
870             }
871
872             /* Inner loop uses 63 flops */
873         }
874
875         /* End of innermost loop */
876
877         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
878                                                  f+i_coord_offset,fshift+i_shift_offset);
879
880         /* Increment number of inner iterations */
881         inneriter                  += j_index_end - j_index_start;
882
883         /* Outer loop uses 7 flops */
884     }
885
886     /* Increment number of outer iterations */
887     outeriter        += nri;
888
889     /* Update outer/inner flops */
890
891     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
892 }