Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     real *           vdwgridioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m256d           c6grid_00;
98     real             *vdwgridparam;
99     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
100     __m256d           one_half  = _mm256_set1_pd(0.5);
101     __m256d           minus_one = _mm256_set1_pd(-1.0);
102     __m128i          ewitab;
103     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
105     real             *ewtab;
106     __m256d          dummy_mask,cutoff_mask;
107     __m128           tmpmask0,tmpmask1;
108     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
109     __m256d          one     = _mm256_set1_pd(1.0);
110     __m256d          two     = _mm256_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_pd(fr->ic->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127     vdwgridparam     = fr->ljpme_c6grid;
128     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
129     ewclj            = _mm256_set1_pd(fr->ic->ewaldcoeff_lj);
130     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
131
132     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
133     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
134     beta2            = _mm256_mul_pd(beta,beta);
135     beta3            = _mm256_mul_pd(beta,beta2);
136
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
142     rcutoff_scalar   = fr->ic->rcoulomb;
143     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
144     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
145
146     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
147     rvdw             = _mm256_set1_pd(fr->ic->rvdw);
148
149     /* Avoid stupid compiler warnings */
150     jnrA = jnrB = jnrC = jnrD = 0;
151     j_coord_offsetA = 0;
152     j_coord_offsetB = 0;
153     j_coord_offsetC = 0;
154     j_coord_offsetD = 0;
155
156     outeriter        = 0;
157     inneriter        = 0;
158
159     for(iidx=0;iidx<4*DIM;iidx++)
160     {
161         scratch[iidx] = 0.0;
162     }
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
180
181         fix0             = _mm256_setzero_pd();
182         fiy0             = _mm256_setzero_pd();
183         fiz0             = _mm256_setzero_pd();
184
185         /* Load parameters for i particles */
186         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
187         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
188         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
189
190         /* Reset potential sums */
191         velecsum         = _mm256_setzero_pd();
192         vvdwsum          = _mm256_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_pd(ix0,jx0);
215             dy00             = _mm256_sub_pd(iy0,jy0);
216             dz00             = _mm256_sub_pd(iz0,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
220
221             rinv00           = avx256_invsqrt_d(rsq00);
222
223             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
227                                                                  charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             if (gmx_mm256_any_lt(rsq00,rcutoff2))
238             {
239
240             r00              = _mm256_mul_pd(rsq00,rinv00);
241
242             /* Compute parameters for interactions between i and j atoms */
243             qq00             = _mm256_mul_pd(iq0,jq0);
244             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
245                                             vdwioffsetptr0+vdwjidx0B,
246                                             vdwioffsetptr0+vdwjidx0C,
247                                             vdwioffsetptr0+vdwjidx0D,
248                                             &c6_00,&c12_00);
249
250             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
251                                                                   vdwgridioffsetptr0+vdwjidx0B,
252                                                                   vdwgridioffsetptr0+vdwjidx0C,
253                                                                   vdwgridioffsetptr0+vdwjidx0D);
254
255             /* EWALD ELECTROSTATICS */
256
257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
258             ewrt             = _mm256_mul_pd(r00,ewtabscale);
259             ewitab           = _mm256_cvttpd_epi32(ewrt);
260             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
261             ewitab           = _mm_slli_epi32(ewitab,2);
262             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
263             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
264             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
265             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
266             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
267             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
268             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
269             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
270             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
271
272             /* Analytical LJ-PME */
273             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
274             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
275             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
276             exponent         = avx256_exp_d(ewcljrsq);
277             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
278             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
279             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
280             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
281             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
282             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
283                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
284             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
285             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
286
287             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velec            = _mm256_and_pd(velec,cutoff_mask);
291             velecsum         = _mm256_add_pd(velecsum,velec);
292             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
293             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
294
295             fscal            = _mm256_add_pd(felec,fvdw);
296
297             fscal            = _mm256_and_pd(fscal,cutoff_mask);
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm256_mul_pd(fscal,dx00);
301             ty               = _mm256_mul_pd(fscal,dy00);
302             tz               = _mm256_mul_pd(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm256_add_pd(fix0,tx);
306             fiy0             = _mm256_add_pd(fiy0,ty);
307             fiz0             = _mm256_add_pd(fiz0,tz);
308
309             fjptrA             = f+j_coord_offsetA;
310             fjptrB             = f+j_coord_offsetB;
311             fjptrC             = f+j_coord_offsetC;
312             fjptrD             = f+j_coord_offsetD;
313             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
314
315             }
316
317             /* Inner loop uses 82 flops */
318         }
319
320         if(jidx<j_index_end)
321         {
322
323             /* Get j neighbor index, and coordinate index */
324             jnrlistA         = jjnr[jidx];
325             jnrlistB         = jjnr[jidx+1];
326             jnrlistC         = jjnr[jidx+2];
327             jnrlistD         = jjnr[jidx+3];
328             /* Sign of each element will be negative for non-real atoms.
329              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
330              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
331              */
332             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
333
334             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
335             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
336             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
337
338             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
339             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
340             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
341             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
342             j_coord_offsetA  = DIM*jnrA;
343             j_coord_offsetB  = DIM*jnrB;
344             j_coord_offsetC  = DIM*jnrC;
345             j_coord_offsetD  = DIM*jnrD;
346
347             /* load j atom coordinates */
348             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
349                                                  x+j_coord_offsetC,x+j_coord_offsetD,
350                                                  &jx0,&jy0,&jz0);
351
352             /* Calculate displacement vector */
353             dx00             = _mm256_sub_pd(ix0,jx0);
354             dy00             = _mm256_sub_pd(iy0,jy0);
355             dz00             = _mm256_sub_pd(iz0,jz0);
356
357             /* Calculate squared distance and things based on it */
358             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
359
360             rinv00           = avx256_invsqrt_d(rsq00);
361
362             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
363
364             /* Load parameters for j particles */
365             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
366                                                                  charge+jnrC+0,charge+jnrD+0);
367             vdwjidx0A        = 2*vdwtype[jnrA+0];
368             vdwjidx0B        = 2*vdwtype[jnrB+0];
369             vdwjidx0C        = 2*vdwtype[jnrC+0];
370             vdwjidx0D        = 2*vdwtype[jnrD+0];
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             if (gmx_mm256_any_lt(rsq00,rcutoff2))
377             {
378
379             r00              = _mm256_mul_pd(rsq00,rinv00);
380             r00              = _mm256_andnot_pd(dummy_mask,r00);
381
382             /* Compute parameters for interactions between i and j atoms */
383             qq00             = _mm256_mul_pd(iq0,jq0);
384             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
385                                             vdwioffsetptr0+vdwjidx0B,
386                                             vdwioffsetptr0+vdwjidx0C,
387                                             vdwioffsetptr0+vdwjidx0D,
388                                             &c6_00,&c12_00);
389
390             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
391                                                                   vdwgridioffsetptr0+vdwjidx0B,
392                                                                   vdwgridioffsetptr0+vdwjidx0C,
393                                                                   vdwgridioffsetptr0+vdwjidx0D);
394
395             /* EWALD ELECTROSTATICS */
396
397             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
398             ewrt             = _mm256_mul_pd(r00,ewtabscale);
399             ewitab           = _mm256_cvttpd_epi32(ewrt);
400             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
401             ewitab           = _mm_slli_epi32(ewitab,2);
402             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
403             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
404             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
405             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
406             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
407             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
408             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
409             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
410             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
411
412             /* Analytical LJ-PME */
413             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
414             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
415             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
416             exponent         = avx256_exp_d(ewcljrsq);
417             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
418             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
419             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
420             vvdw6            = _mm256_mul_pd(_mm256_sub_pd(c6_00,_mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly))),rinvsix);
421             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
422             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
423                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_add_pd(_mm256_mul_pd(c6_00,sh_vdw_invrcut6),_mm256_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
424             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
425             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,_mm256_sub_pd(vvdw6,_mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6)))),rinvsq00);
426
427             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
428
429             /* Update potential sum for this i atom from the interaction with this j atom. */
430             velec            = _mm256_and_pd(velec,cutoff_mask);
431             velec            = _mm256_andnot_pd(dummy_mask,velec);
432             velecsum         = _mm256_add_pd(velecsum,velec);
433             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
434             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
435             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
436
437             fscal            = _mm256_add_pd(felec,fvdw);
438
439             fscal            = _mm256_and_pd(fscal,cutoff_mask);
440
441             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
442
443             /* Calculate temporary vectorial force */
444             tx               = _mm256_mul_pd(fscal,dx00);
445             ty               = _mm256_mul_pd(fscal,dy00);
446             tz               = _mm256_mul_pd(fscal,dz00);
447
448             /* Update vectorial force */
449             fix0             = _mm256_add_pd(fix0,tx);
450             fiy0             = _mm256_add_pd(fiy0,ty);
451             fiz0             = _mm256_add_pd(fiz0,tz);
452
453             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
454             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
455             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
456             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
457             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
458
459             }
460
461             /* Inner loop uses 83 flops */
462         }
463
464         /* End of innermost loop */
465
466         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
467                                                  f+i_coord_offset,fshift+i_shift_offset);
468
469         ggid                        = gid[iidx];
470         /* Update potential energies */
471         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
472         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
473
474         /* Increment number of inner iterations */
475         inneriter                  += j_index_end - j_index_start;
476
477         /* Outer loop uses 9 flops */
478     }
479
480     /* Increment number of outer iterations */
481     outeriter        += nri;
482
483     /* Update outer/inner flops */
484
485     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*83);
486 }
487 /*
488  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_256_double
489  * Electrostatics interaction: Ewald
490  * VdW interaction:            LJEwald
491  * Geometry:                   Particle-Particle
492  * Calculate force/pot:        Force
493  */
494 void
495 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_256_double
496                     (t_nblist                    * gmx_restrict       nlist,
497                      rvec                        * gmx_restrict          xx,
498                      rvec                        * gmx_restrict          ff,
499                      struct t_forcerec           * gmx_restrict          fr,
500                      t_mdatoms                   * gmx_restrict     mdatoms,
501                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
502                      t_nrnb                      * gmx_restrict        nrnb)
503 {
504     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
505      * just 0 for non-waters.
506      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
507      * jnr indices corresponding to data put in the four positions in the SIMD register.
508      */
509     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
510     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
511     int              jnrA,jnrB,jnrC,jnrD;
512     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
513     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
514     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
515     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
516     real             rcutoff_scalar;
517     real             *shiftvec,*fshift,*x,*f;
518     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
519     real             scratch[4*DIM];
520     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
521     real *           vdwioffsetptr0;
522     real *           vdwgridioffsetptr0;
523     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
524     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
525     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
526     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
527     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
528     real             *charge;
529     int              nvdwtype;
530     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
531     int              *vdwtype;
532     real             *vdwparam;
533     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
534     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
535     __m256d           c6grid_00;
536     real             *vdwgridparam;
537     __m256d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
538     __m256d           one_half  = _mm256_set1_pd(0.5);
539     __m256d           minus_one = _mm256_set1_pd(-1.0);
540     __m128i          ewitab;
541     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
542     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
543     real             *ewtab;
544     __m256d          dummy_mask,cutoff_mask;
545     __m128           tmpmask0,tmpmask1;
546     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
547     __m256d          one     = _mm256_set1_pd(1.0);
548     __m256d          two     = _mm256_set1_pd(2.0);
549     x                = xx[0];
550     f                = ff[0];
551
552     nri              = nlist->nri;
553     iinr             = nlist->iinr;
554     jindex           = nlist->jindex;
555     jjnr             = nlist->jjnr;
556     shiftidx         = nlist->shift;
557     gid              = nlist->gid;
558     shiftvec         = fr->shift_vec[0];
559     fshift           = fr->fshift[0];
560     facel            = _mm256_set1_pd(fr->ic->epsfac);
561     charge           = mdatoms->chargeA;
562     nvdwtype         = fr->ntype;
563     vdwparam         = fr->nbfp;
564     vdwtype          = mdatoms->typeA;
565     vdwgridparam     = fr->ljpme_c6grid;
566     sh_lj_ewald      = _mm256_set1_pd(fr->ic->sh_lj_ewald);
567     ewclj            = _mm256_set1_pd(fr->ic->ewaldcoeff_lj);
568     ewclj2           = _mm256_mul_pd(minus_one,_mm256_mul_pd(ewclj,ewclj));
569
570     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
571     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
572     beta2            = _mm256_mul_pd(beta,beta);
573     beta3            = _mm256_mul_pd(beta,beta2);
574
575     ewtab            = fr->ic->tabq_coul_F;
576     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
577     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
578
579     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
580     rcutoff_scalar   = fr->ic->rcoulomb;
581     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
582     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
583
584     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
585     rvdw             = _mm256_set1_pd(fr->ic->rvdw);
586
587     /* Avoid stupid compiler warnings */
588     jnrA = jnrB = jnrC = jnrD = 0;
589     j_coord_offsetA = 0;
590     j_coord_offsetB = 0;
591     j_coord_offsetC = 0;
592     j_coord_offsetD = 0;
593
594     outeriter        = 0;
595     inneriter        = 0;
596
597     for(iidx=0;iidx<4*DIM;iidx++)
598     {
599         scratch[iidx] = 0.0;
600     }
601
602     /* Start outer loop over neighborlists */
603     for(iidx=0; iidx<nri; iidx++)
604     {
605         /* Load shift vector for this list */
606         i_shift_offset   = DIM*shiftidx[iidx];
607
608         /* Load limits for loop over neighbors */
609         j_index_start    = jindex[iidx];
610         j_index_end      = jindex[iidx+1];
611
612         /* Get outer coordinate index */
613         inr              = iinr[iidx];
614         i_coord_offset   = DIM*inr;
615
616         /* Load i particle coords and add shift vector */
617         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
618
619         fix0             = _mm256_setzero_pd();
620         fiy0             = _mm256_setzero_pd();
621         fiz0             = _mm256_setzero_pd();
622
623         /* Load parameters for i particles */
624         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
625         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
626         vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
627
628         /* Start inner kernel loop */
629         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
630         {
631
632             /* Get j neighbor index, and coordinate index */
633             jnrA             = jjnr[jidx];
634             jnrB             = jjnr[jidx+1];
635             jnrC             = jjnr[jidx+2];
636             jnrD             = jjnr[jidx+3];
637             j_coord_offsetA  = DIM*jnrA;
638             j_coord_offsetB  = DIM*jnrB;
639             j_coord_offsetC  = DIM*jnrC;
640             j_coord_offsetD  = DIM*jnrD;
641
642             /* load j atom coordinates */
643             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
644                                                  x+j_coord_offsetC,x+j_coord_offsetD,
645                                                  &jx0,&jy0,&jz0);
646
647             /* Calculate displacement vector */
648             dx00             = _mm256_sub_pd(ix0,jx0);
649             dy00             = _mm256_sub_pd(iy0,jy0);
650             dz00             = _mm256_sub_pd(iz0,jz0);
651
652             /* Calculate squared distance and things based on it */
653             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
654
655             rinv00           = avx256_invsqrt_d(rsq00);
656
657             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
658
659             /* Load parameters for j particles */
660             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
661                                                                  charge+jnrC+0,charge+jnrD+0);
662             vdwjidx0A        = 2*vdwtype[jnrA+0];
663             vdwjidx0B        = 2*vdwtype[jnrB+0];
664             vdwjidx0C        = 2*vdwtype[jnrC+0];
665             vdwjidx0D        = 2*vdwtype[jnrD+0];
666
667             /**************************
668              * CALCULATE INTERACTIONS *
669              **************************/
670
671             if (gmx_mm256_any_lt(rsq00,rcutoff2))
672             {
673
674             r00              = _mm256_mul_pd(rsq00,rinv00);
675
676             /* Compute parameters for interactions between i and j atoms */
677             qq00             = _mm256_mul_pd(iq0,jq0);
678             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
679                                             vdwioffsetptr0+vdwjidx0B,
680                                             vdwioffsetptr0+vdwjidx0C,
681                                             vdwioffsetptr0+vdwjidx0D,
682                                             &c6_00,&c12_00);
683
684             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
685                                                                   vdwgridioffsetptr0+vdwjidx0B,
686                                                                   vdwgridioffsetptr0+vdwjidx0C,
687                                                                   vdwgridioffsetptr0+vdwjidx0D);
688
689             /* EWALD ELECTROSTATICS */
690
691             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
692             ewrt             = _mm256_mul_pd(r00,ewtabscale);
693             ewitab           = _mm256_cvttpd_epi32(ewrt);
694             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
695             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
696                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
697                                             &ewtabF,&ewtabFn);
698             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
699             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
700
701             /* Analytical LJ-PME */
702             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
703             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
704             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
705             exponent         = avx256_exp_d(ewcljrsq);
706             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
707             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
708             /* f6A = 6 * C6grid * (1 - poly) */
709             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
710             /* f6B = C6grid * exponent * beta^6 */
711             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
712             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
713             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
714
715             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
716
717             fscal            = _mm256_add_pd(felec,fvdw);
718
719             fscal            = _mm256_and_pd(fscal,cutoff_mask);
720
721             /* Calculate temporary vectorial force */
722             tx               = _mm256_mul_pd(fscal,dx00);
723             ty               = _mm256_mul_pd(fscal,dy00);
724             tz               = _mm256_mul_pd(fscal,dz00);
725
726             /* Update vectorial force */
727             fix0             = _mm256_add_pd(fix0,tx);
728             fiy0             = _mm256_add_pd(fiy0,ty);
729             fiz0             = _mm256_add_pd(fiz0,tz);
730
731             fjptrA             = f+j_coord_offsetA;
732             fjptrB             = f+j_coord_offsetB;
733             fjptrC             = f+j_coord_offsetC;
734             fjptrD             = f+j_coord_offsetD;
735             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
736
737             }
738
739             /* Inner loop uses 62 flops */
740         }
741
742         if(jidx<j_index_end)
743         {
744
745             /* Get j neighbor index, and coordinate index */
746             jnrlistA         = jjnr[jidx];
747             jnrlistB         = jjnr[jidx+1];
748             jnrlistC         = jjnr[jidx+2];
749             jnrlistD         = jjnr[jidx+3];
750             /* Sign of each element will be negative for non-real atoms.
751              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
752              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
753              */
754             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
755
756             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
757             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
758             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
759
760             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
761             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
762             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
763             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
764             j_coord_offsetA  = DIM*jnrA;
765             j_coord_offsetB  = DIM*jnrB;
766             j_coord_offsetC  = DIM*jnrC;
767             j_coord_offsetD  = DIM*jnrD;
768
769             /* load j atom coordinates */
770             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
771                                                  x+j_coord_offsetC,x+j_coord_offsetD,
772                                                  &jx0,&jy0,&jz0);
773
774             /* Calculate displacement vector */
775             dx00             = _mm256_sub_pd(ix0,jx0);
776             dy00             = _mm256_sub_pd(iy0,jy0);
777             dz00             = _mm256_sub_pd(iz0,jz0);
778
779             /* Calculate squared distance and things based on it */
780             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
781
782             rinv00           = avx256_invsqrt_d(rsq00);
783
784             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
785
786             /* Load parameters for j particles */
787             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
788                                                                  charge+jnrC+0,charge+jnrD+0);
789             vdwjidx0A        = 2*vdwtype[jnrA+0];
790             vdwjidx0B        = 2*vdwtype[jnrB+0];
791             vdwjidx0C        = 2*vdwtype[jnrC+0];
792             vdwjidx0D        = 2*vdwtype[jnrD+0];
793
794             /**************************
795              * CALCULATE INTERACTIONS *
796              **************************/
797
798             if (gmx_mm256_any_lt(rsq00,rcutoff2))
799             {
800
801             r00              = _mm256_mul_pd(rsq00,rinv00);
802             r00              = _mm256_andnot_pd(dummy_mask,r00);
803
804             /* Compute parameters for interactions between i and j atoms */
805             qq00             = _mm256_mul_pd(iq0,jq0);
806             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
807                                             vdwioffsetptr0+vdwjidx0B,
808                                             vdwioffsetptr0+vdwjidx0C,
809                                             vdwioffsetptr0+vdwjidx0D,
810                                             &c6_00,&c12_00);
811
812             c6grid_00       = gmx_mm256_load_4real_swizzle_pd(vdwgridioffsetptr0+vdwjidx0A,
813                                                                   vdwgridioffsetptr0+vdwjidx0B,
814                                                                   vdwgridioffsetptr0+vdwjidx0C,
815                                                                   vdwgridioffsetptr0+vdwjidx0D);
816
817             /* EWALD ELECTROSTATICS */
818
819             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
820             ewrt             = _mm256_mul_pd(r00,ewtabscale);
821             ewitab           = _mm256_cvttpd_epi32(ewrt);
822             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
823             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
824                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
825                                             &ewtabF,&ewtabFn);
826             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
827             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
828
829             /* Analytical LJ-PME */
830             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
831             ewcljrsq         = _mm256_mul_pd(ewclj2,rsq00);
832             ewclj6           = _mm256_mul_pd(ewclj2,_mm256_mul_pd(ewclj2,ewclj2));
833             exponent         = avx256_exp_d(ewcljrsq);
834             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
835             poly             = _mm256_mul_pd(exponent,_mm256_add_pd(_mm256_sub_pd(one,ewcljrsq),_mm256_mul_pd(_mm256_mul_pd(ewcljrsq,ewcljrsq),one_half)));
836             /* f6A = 6 * C6grid * (1 - poly) */
837             f6A              = _mm256_mul_pd(c6grid_00,_mm256_sub_pd(one,poly));
838             /* f6B = C6grid * exponent * beta^6 */
839             f6B              = _mm256_mul_pd(_mm256_mul_pd(c6grid_00,one_sixth),_mm256_mul_pd(exponent,ewclj6));
840             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
841             fvdw              = _mm256_mul_pd(_mm256_add_pd(_mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),_mm256_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
842
843             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
844
845             fscal            = _mm256_add_pd(felec,fvdw);
846
847             fscal            = _mm256_and_pd(fscal,cutoff_mask);
848
849             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
850
851             /* Calculate temporary vectorial force */
852             tx               = _mm256_mul_pd(fscal,dx00);
853             ty               = _mm256_mul_pd(fscal,dy00);
854             tz               = _mm256_mul_pd(fscal,dz00);
855
856             /* Update vectorial force */
857             fix0             = _mm256_add_pd(fix0,tx);
858             fiy0             = _mm256_add_pd(fiy0,ty);
859             fiz0             = _mm256_add_pd(fiz0,tz);
860
861             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
862             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
863             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
864             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
865             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
866
867             }
868
869             /* Inner loop uses 63 flops */
870         }
871
872         /* End of innermost loop */
873
874         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
875                                                  f+i_coord_offset,fshift+i_shift_offset);
876
877         /* Increment number of inner iterations */
878         inneriter                  += j_index_end - j_index_start;
879
880         /* Outer loop uses 7 flops */
881     }
882
883     /* Increment number of outer iterations */
884     outeriter        += nri;
885
886     /* Update outer/inner flops */
887
888     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
889 }