Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwNone_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     /* Setup water-specific parameters */
119     inr              = nlist->iinr[0];
120     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
121     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
122     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
155                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
156
157         fix1             = _mm256_setzero_pd();
158         fiy1             = _mm256_setzero_pd();
159         fiz1             = _mm256_setzero_pd();
160         fix2             = _mm256_setzero_pd();
161         fiy2             = _mm256_setzero_pd();
162         fiz2             = _mm256_setzero_pd();
163         fix3             = _mm256_setzero_pd();
164         fiy3             = _mm256_setzero_pd();
165         fiz3             = _mm256_setzero_pd();
166
167         /* Reset potential sums */
168         velecsum         = _mm256_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx10             = _mm256_sub_pd(ix1,jx0);
191             dy10             = _mm256_sub_pd(iy1,jy0);
192             dz10             = _mm256_sub_pd(iz1,jz0);
193             dx20             = _mm256_sub_pd(ix2,jx0);
194             dy20             = _mm256_sub_pd(iy2,jy0);
195             dz20             = _mm256_sub_pd(iz2,jz0);
196             dx30             = _mm256_sub_pd(ix3,jx0);
197             dy30             = _mm256_sub_pd(iy3,jy0);
198             dz30             = _mm256_sub_pd(iz3,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
202             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
203             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
204
205             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
206             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
207             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
208
209             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
210             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
211             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
215                                                                  charge+jnrC+0,charge+jnrD+0);
216
217             fjx0             = _mm256_setzero_pd();
218             fjy0             = _mm256_setzero_pd();
219             fjz0             = _mm256_setzero_pd();
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq10             = _mm256_mul_pd(iq1,jq0);
227
228             /* COULOMB ELECTROSTATICS */
229             velec            = _mm256_mul_pd(qq10,rinv10);
230             felec            = _mm256_mul_pd(velec,rinvsq10);
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             velecsum         = _mm256_add_pd(velecsum,velec);
234
235             fscal            = felec;
236
237             /* Calculate temporary vectorial force */
238             tx               = _mm256_mul_pd(fscal,dx10);
239             ty               = _mm256_mul_pd(fscal,dy10);
240             tz               = _mm256_mul_pd(fscal,dz10);
241
242             /* Update vectorial force */
243             fix1             = _mm256_add_pd(fix1,tx);
244             fiy1             = _mm256_add_pd(fiy1,ty);
245             fiz1             = _mm256_add_pd(fiz1,tz);
246
247             fjx0             = _mm256_add_pd(fjx0,tx);
248             fjy0             = _mm256_add_pd(fjy0,ty);
249             fjz0             = _mm256_add_pd(fjz0,tz);
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             /* Compute parameters for interactions between i and j atoms */
256             qq20             = _mm256_mul_pd(iq2,jq0);
257
258             /* COULOMB ELECTROSTATICS */
259             velec            = _mm256_mul_pd(qq20,rinv20);
260             felec            = _mm256_mul_pd(velec,rinvsq20);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _mm256_add_pd(velecsum,velec);
264
265             fscal            = felec;
266
267             /* Calculate temporary vectorial force */
268             tx               = _mm256_mul_pd(fscal,dx20);
269             ty               = _mm256_mul_pd(fscal,dy20);
270             tz               = _mm256_mul_pd(fscal,dz20);
271
272             /* Update vectorial force */
273             fix2             = _mm256_add_pd(fix2,tx);
274             fiy2             = _mm256_add_pd(fiy2,ty);
275             fiz2             = _mm256_add_pd(fiz2,tz);
276
277             fjx0             = _mm256_add_pd(fjx0,tx);
278             fjy0             = _mm256_add_pd(fjy0,ty);
279             fjz0             = _mm256_add_pd(fjz0,tz);
280
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq30             = _mm256_mul_pd(iq3,jq0);
287
288             /* COULOMB ELECTROSTATICS */
289             velec            = _mm256_mul_pd(qq30,rinv30);
290             felec            = _mm256_mul_pd(velec,rinvsq30);
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velecsum         = _mm256_add_pd(velecsum,velec);
294
295             fscal            = felec;
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm256_mul_pd(fscal,dx30);
299             ty               = _mm256_mul_pd(fscal,dy30);
300             tz               = _mm256_mul_pd(fscal,dz30);
301
302             /* Update vectorial force */
303             fix3             = _mm256_add_pd(fix3,tx);
304             fiy3             = _mm256_add_pd(fiy3,ty);
305             fiz3             = _mm256_add_pd(fiz3,tz);
306
307             fjx0             = _mm256_add_pd(fjx0,tx);
308             fjy0             = _mm256_add_pd(fjy0,ty);
309             fjz0             = _mm256_add_pd(fjz0,tz);
310
311             fjptrA             = f+j_coord_offsetA;
312             fjptrB             = f+j_coord_offsetB;
313             fjptrC             = f+j_coord_offsetC;
314             fjptrD             = f+j_coord_offsetD;
315
316             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
317
318             /* Inner loop uses 84 flops */
319         }
320
321         if(jidx<j_index_end)
322         {
323
324             /* Get j neighbor index, and coordinate index */
325             jnrlistA         = jjnr[jidx];
326             jnrlistB         = jjnr[jidx+1];
327             jnrlistC         = jjnr[jidx+2];
328             jnrlistD         = jjnr[jidx+3];
329             /* Sign of each element will be negative for non-real atoms.
330              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
331              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
332              */
333             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
334
335             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
336             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
337             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
338
339             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
340             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
341             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
342             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
343             j_coord_offsetA  = DIM*jnrA;
344             j_coord_offsetB  = DIM*jnrB;
345             j_coord_offsetC  = DIM*jnrC;
346             j_coord_offsetD  = DIM*jnrD;
347
348             /* load j atom coordinates */
349             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
350                                                  x+j_coord_offsetC,x+j_coord_offsetD,
351                                                  &jx0,&jy0,&jz0);
352
353             /* Calculate displacement vector */
354             dx10             = _mm256_sub_pd(ix1,jx0);
355             dy10             = _mm256_sub_pd(iy1,jy0);
356             dz10             = _mm256_sub_pd(iz1,jz0);
357             dx20             = _mm256_sub_pd(ix2,jx0);
358             dy20             = _mm256_sub_pd(iy2,jy0);
359             dz20             = _mm256_sub_pd(iz2,jz0);
360             dx30             = _mm256_sub_pd(ix3,jx0);
361             dy30             = _mm256_sub_pd(iy3,jy0);
362             dz30             = _mm256_sub_pd(iz3,jz0);
363
364             /* Calculate squared distance and things based on it */
365             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
366             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
367             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
368
369             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
370             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
371             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
372
373             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
374             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
375             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
376
377             /* Load parameters for j particles */
378             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
379                                                                  charge+jnrC+0,charge+jnrD+0);
380
381             fjx0             = _mm256_setzero_pd();
382             fjy0             = _mm256_setzero_pd();
383             fjz0             = _mm256_setzero_pd();
384
385             /**************************
386              * CALCULATE INTERACTIONS *
387              **************************/
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq10             = _mm256_mul_pd(iq1,jq0);
391
392             /* COULOMB ELECTROSTATICS */
393             velec            = _mm256_mul_pd(qq10,rinv10);
394             felec            = _mm256_mul_pd(velec,rinvsq10);
395
396             /* Update potential sum for this i atom from the interaction with this j atom. */
397             velec            = _mm256_andnot_pd(dummy_mask,velec);
398             velecsum         = _mm256_add_pd(velecsum,velec);
399
400             fscal            = felec;
401
402             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
403
404             /* Calculate temporary vectorial force */
405             tx               = _mm256_mul_pd(fscal,dx10);
406             ty               = _mm256_mul_pd(fscal,dy10);
407             tz               = _mm256_mul_pd(fscal,dz10);
408
409             /* Update vectorial force */
410             fix1             = _mm256_add_pd(fix1,tx);
411             fiy1             = _mm256_add_pd(fiy1,ty);
412             fiz1             = _mm256_add_pd(fiz1,tz);
413
414             fjx0             = _mm256_add_pd(fjx0,tx);
415             fjy0             = _mm256_add_pd(fjy0,ty);
416             fjz0             = _mm256_add_pd(fjz0,tz);
417
418             /**************************
419              * CALCULATE INTERACTIONS *
420              **************************/
421
422             /* Compute parameters for interactions between i and j atoms */
423             qq20             = _mm256_mul_pd(iq2,jq0);
424
425             /* COULOMB ELECTROSTATICS */
426             velec            = _mm256_mul_pd(qq20,rinv20);
427             felec            = _mm256_mul_pd(velec,rinvsq20);
428
429             /* Update potential sum for this i atom from the interaction with this j atom. */
430             velec            = _mm256_andnot_pd(dummy_mask,velec);
431             velecsum         = _mm256_add_pd(velecsum,velec);
432
433             fscal            = felec;
434
435             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
436
437             /* Calculate temporary vectorial force */
438             tx               = _mm256_mul_pd(fscal,dx20);
439             ty               = _mm256_mul_pd(fscal,dy20);
440             tz               = _mm256_mul_pd(fscal,dz20);
441
442             /* Update vectorial force */
443             fix2             = _mm256_add_pd(fix2,tx);
444             fiy2             = _mm256_add_pd(fiy2,ty);
445             fiz2             = _mm256_add_pd(fiz2,tz);
446
447             fjx0             = _mm256_add_pd(fjx0,tx);
448             fjy0             = _mm256_add_pd(fjy0,ty);
449             fjz0             = _mm256_add_pd(fjz0,tz);
450
451             /**************************
452              * CALCULATE INTERACTIONS *
453              **************************/
454
455             /* Compute parameters for interactions between i and j atoms */
456             qq30             = _mm256_mul_pd(iq3,jq0);
457
458             /* COULOMB ELECTROSTATICS */
459             velec            = _mm256_mul_pd(qq30,rinv30);
460             felec            = _mm256_mul_pd(velec,rinvsq30);
461
462             /* Update potential sum for this i atom from the interaction with this j atom. */
463             velec            = _mm256_andnot_pd(dummy_mask,velec);
464             velecsum         = _mm256_add_pd(velecsum,velec);
465
466             fscal            = felec;
467
468             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm256_mul_pd(fscal,dx30);
472             ty               = _mm256_mul_pd(fscal,dy30);
473             tz               = _mm256_mul_pd(fscal,dz30);
474
475             /* Update vectorial force */
476             fix3             = _mm256_add_pd(fix3,tx);
477             fiy3             = _mm256_add_pd(fiy3,ty);
478             fiz3             = _mm256_add_pd(fiz3,tz);
479
480             fjx0             = _mm256_add_pd(fjx0,tx);
481             fjy0             = _mm256_add_pd(fjy0,ty);
482             fjz0             = _mm256_add_pd(fjz0,tz);
483
484             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
485             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
486             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
487             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
488
489             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
490
491             /* Inner loop uses 84 flops */
492         }
493
494         /* End of innermost loop */
495
496         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
497                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
498
499         ggid                        = gid[iidx];
500         /* Update potential energies */
501         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
502
503         /* Increment number of inner iterations */
504         inneriter                  += j_index_end - j_index_start;
505
506         /* Outer loop uses 19 flops */
507     }
508
509     /* Increment number of outer iterations */
510     outeriter        += nri;
511
512     /* Update outer/inner flops */
513
514     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*84);
515 }
516 /*
517  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_avx_256_double
518  * Electrostatics interaction: Coulomb
519  * VdW interaction:            None
520  * Geometry:                   Water4-Particle
521  * Calculate force/pot:        Force
522  */
523 void
524 nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_avx_256_double
525                     (t_nblist                    * gmx_restrict       nlist,
526                      rvec                        * gmx_restrict          xx,
527                      rvec                        * gmx_restrict          ff,
528                      t_forcerec                  * gmx_restrict          fr,
529                      t_mdatoms                   * gmx_restrict     mdatoms,
530                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
531                      t_nrnb                      * gmx_restrict        nrnb)
532 {
533     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
534      * just 0 for non-waters.
535      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
536      * jnr indices corresponding to data put in the four positions in the SIMD register.
537      */
538     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
539     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
540     int              jnrA,jnrB,jnrC,jnrD;
541     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
542     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
543     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
544     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
545     real             rcutoff_scalar;
546     real             *shiftvec,*fshift,*x,*f;
547     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
548     real             scratch[4*DIM];
549     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
550     real *           vdwioffsetptr1;
551     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
552     real *           vdwioffsetptr2;
553     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
554     real *           vdwioffsetptr3;
555     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
556     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
557     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
558     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
559     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
560     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
561     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
562     real             *charge;
563     __m256d          dummy_mask,cutoff_mask;
564     __m128           tmpmask0,tmpmask1;
565     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
566     __m256d          one     = _mm256_set1_pd(1.0);
567     __m256d          two     = _mm256_set1_pd(2.0);
568     x                = xx[0];
569     f                = ff[0];
570
571     nri              = nlist->nri;
572     iinr             = nlist->iinr;
573     jindex           = nlist->jindex;
574     jjnr             = nlist->jjnr;
575     shiftidx         = nlist->shift;
576     gid              = nlist->gid;
577     shiftvec         = fr->shift_vec[0];
578     fshift           = fr->fshift[0];
579     facel            = _mm256_set1_pd(fr->epsfac);
580     charge           = mdatoms->chargeA;
581
582     /* Setup water-specific parameters */
583     inr              = nlist->iinr[0];
584     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
585     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
586     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
587
588     /* Avoid stupid compiler warnings */
589     jnrA = jnrB = jnrC = jnrD = 0;
590     j_coord_offsetA = 0;
591     j_coord_offsetB = 0;
592     j_coord_offsetC = 0;
593     j_coord_offsetD = 0;
594
595     outeriter        = 0;
596     inneriter        = 0;
597
598     for(iidx=0;iidx<4*DIM;iidx++)
599     {
600         scratch[iidx] = 0.0;
601     }
602
603     /* Start outer loop over neighborlists */
604     for(iidx=0; iidx<nri; iidx++)
605     {
606         /* Load shift vector for this list */
607         i_shift_offset   = DIM*shiftidx[iidx];
608
609         /* Load limits for loop over neighbors */
610         j_index_start    = jindex[iidx];
611         j_index_end      = jindex[iidx+1];
612
613         /* Get outer coordinate index */
614         inr              = iinr[iidx];
615         i_coord_offset   = DIM*inr;
616
617         /* Load i particle coords and add shift vector */
618         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
619                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
620
621         fix1             = _mm256_setzero_pd();
622         fiy1             = _mm256_setzero_pd();
623         fiz1             = _mm256_setzero_pd();
624         fix2             = _mm256_setzero_pd();
625         fiy2             = _mm256_setzero_pd();
626         fiz2             = _mm256_setzero_pd();
627         fix3             = _mm256_setzero_pd();
628         fiy3             = _mm256_setzero_pd();
629         fiz3             = _mm256_setzero_pd();
630
631         /* Start inner kernel loop */
632         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
633         {
634
635             /* Get j neighbor index, and coordinate index */
636             jnrA             = jjnr[jidx];
637             jnrB             = jjnr[jidx+1];
638             jnrC             = jjnr[jidx+2];
639             jnrD             = jjnr[jidx+3];
640             j_coord_offsetA  = DIM*jnrA;
641             j_coord_offsetB  = DIM*jnrB;
642             j_coord_offsetC  = DIM*jnrC;
643             j_coord_offsetD  = DIM*jnrD;
644
645             /* load j atom coordinates */
646             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
647                                                  x+j_coord_offsetC,x+j_coord_offsetD,
648                                                  &jx0,&jy0,&jz0);
649
650             /* Calculate displacement vector */
651             dx10             = _mm256_sub_pd(ix1,jx0);
652             dy10             = _mm256_sub_pd(iy1,jy0);
653             dz10             = _mm256_sub_pd(iz1,jz0);
654             dx20             = _mm256_sub_pd(ix2,jx0);
655             dy20             = _mm256_sub_pd(iy2,jy0);
656             dz20             = _mm256_sub_pd(iz2,jz0);
657             dx30             = _mm256_sub_pd(ix3,jx0);
658             dy30             = _mm256_sub_pd(iy3,jy0);
659             dz30             = _mm256_sub_pd(iz3,jz0);
660
661             /* Calculate squared distance and things based on it */
662             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
663             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
664             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
665
666             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
667             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
668             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
669
670             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
671             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
672             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
673
674             /* Load parameters for j particles */
675             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
676                                                                  charge+jnrC+0,charge+jnrD+0);
677
678             fjx0             = _mm256_setzero_pd();
679             fjy0             = _mm256_setzero_pd();
680             fjz0             = _mm256_setzero_pd();
681
682             /**************************
683              * CALCULATE INTERACTIONS *
684              **************************/
685
686             /* Compute parameters for interactions between i and j atoms */
687             qq10             = _mm256_mul_pd(iq1,jq0);
688
689             /* COULOMB ELECTROSTATICS */
690             velec            = _mm256_mul_pd(qq10,rinv10);
691             felec            = _mm256_mul_pd(velec,rinvsq10);
692
693             fscal            = felec;
694
695             /* Calculate temporary vectorial force */
696             tx               = _mm256_mul_pd(fscal,dx10);
697             ty               = _mm256_mul_pd(fscal,dy10);
698             tz               = _mm256_mul_pd(fscal,dz10);
699
700             /* Update vectorial force */
701             fix1             = _mm256_add_pd(fix1,tx);
702             fiy1             = _mm256_add_pd(fiy1,ty);
703             fiz1             = _mm256_add_pd(fiz1,tz);
704
705             fjx0             = _mm256_add_pd(fjx0,tx);
706             fjy0             = _mm256_add_pd(fjy0,ty);
707             fjz0             = _mm256_add_pd(fjz0,tz);
708
709             /**************************
710              * CALCULATE INTERACTIONS *
711              **************************/
712
713             /* Compute parameters for interactions between i and j atoms */
714             qq20             = _mm256_mul_pd(iq2,jq0);
715
716             /* COULOMB ELECTROSTATICS */
717             velec            = _mm256_mul_pd(qq20,rinv20);
718             felec            = _mm256_mul_pd(velec,rinvsq20);
719
720             fscal            = felec;
721
722             /* Calculate temporary vectorial force */
723             tx               = _mm256_mul_pd(fscal,dx20);
724             ty               = _mm256_mul_pd(fscal,dy20);
725             tz               = _mm256_mul_pd(fscal,dz20);
726
727             /* Update vectorial force */
728             fix2             = _mm256_add_pd(fix2,tx);
729             fiy2             = _mm256_add_pd(fiy2,ty);
730             fiz2             = _mm256_add_pd(fiz2,tz);
731
732             fjx0             = _mm256_add_pd(fjx0,tx);
733             fjy0             = _mm256_add_pd(fjy0,ty);
734             fjz0             = _mm256_add_pd(fjz0,tz);
735
736             /**************************
737              * CALCULATE INTERACTIONS *
738              **************************/
739
740             /* Compute parameters for interactions between i and j atoms */
741             qq30             = _mm256_mul_pd(iq3,jq0);
742
743             /* COULOMB ELECTROSTATICS */
744             velec            = _mm256_mul_pd(qq30,rinv30);
745             felec            = _mm256_mul_pd(velec,rinvsq30);
746
747             fscal            = felec;
748
749             /* Calculate temporary vectorial force */
750             tx               = _mm256_mul_pd(fscal,dx30);
751             ty               = _mm256_mul_pd(fscal,dy30);
752             tz               = _mm256_mul_pd(fscal,dz30);
753
754             /* Update vectorial force */
755             fix3             = _mm256_add_pd(fix3,tx);
756             fiy3             = _mm256_add_pd(fiy3,ty);
757             fiz3             = _mm256_add_pd(fiz3,tz);
758
759             fjx0             = _mm256_add_pd(fjx0,tx);
760             fjy0             = _mm256_add_pd(fjy0,ty);
761             fjz0             = _mm256_add_pd(fjz0,tz);
762
763             fjptrA             = f+j_coord_offsetA;
764             fjptrB             = f+j_coord_offsetB;
765             fjptrC             = f+j_coord_offsetC;
766             fjptrD             = f+j_coord_offsetD;
767
768             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
769
770             /* Inner loop uses 81 flops */
771         }
772
773         if(jidx<j_index_end)
774         {
775
776             /* Get j neighbor index, and coordinate index */
777             jnrlistA         = jjnr[jidx];
778             jnrlistB         = jjnr[jidx+1];
779             jnrlistC         = jjnr[jidx+2];
780             jnrlistD         = jjnr[jidx+3];
781             /* Sign of each element will be negative for non-real atoms.
782              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
783              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
784              */
785             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
786
787             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
788             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
789             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
790
791             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
792             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
793             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
794             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
795             j_coord_offsetA  = DIM*jnrA;
796             j_coord_offsetB  = DIM*jnrB;
797             j_coord_offsetC  = DIM*jnrC;
798             j_coord_offsetD  = DIM*jnrD;
799
800             /* load j atom coordinates */
801             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
802                                                  x+j_coord_offsetC,x+j_coord_offsetD,
803                                                  &jx0,&jy0,&jz0);
804
805             /* Calculate displacement vector */
806             dx10             = _mm256_sub_pd(ix1,jx0);
807             dy10             = _mm256_sub_pd(iy1,jy0);
808             dz10             = _mm256_sub_pd(iz1,jz0);
809             dx20             = _mm256_sub_pd(ix2,jx0);
810             dy20             = _mm256_sub_pd(iy2,jy0);
811             dz20             = _mm256_sub_pd(iz2,jz0);
812             dx30             = _mm256_sub_pd(ix3,jx0);
813             dy30             = _mm256_sub_pd(iy3,jy0);
814             dz30             = _mm256_sub_pd(iz3,jz0);
815
816             /* Calculate squared distance and things based on it */
817             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
818             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
819             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
820
821             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
822             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
823             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
824
825             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
826             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
827             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
828
829             /* Load parameters for j particles */
830             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
831                                                                  charge+jnrC+0,charge+jnrD+0);
832
833             fjx0             = _mm256_setzero_pd();
834             fjy0             = _mm256_setzero_pd();
835             fjz0             = _mm256_setzero_pd();
836
837             /**************************
838              * CALCULATE INTERACTIONS *
839              **************************/
840
841             /* Compute parameters for interactions between i and j atoms */
842             qq10             = _mm256_mul_pd(iq1,jq0);
843
844             /* COULOMB ELECTROSTATICS */
845             velec            = _mm256_mul_pd(qq10,rinv10);
846             felec            = _mm256_mul_pd(velec,rinvsq10);
847
848             fscal            = felec;
849
850             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
851
852             /* Calculate temporary vectorial force */
853             tx               = _mm256_mul_pd(fscal,dx10);
854             ty               = _mm256_mul_pd(fscal,dy10);
855             tz               = _mm256_mul_pd(fscal,dz10);
856
857             /* Update vectorial force */
858             fix1             = _mm256_add_pd(fix1,tx);
859             fiy1             = _mm256_add_pd(fiy1,ty);
860             fiz1             = _mm256_add_pd(fiz1,tz);
861
862             fjx0             = _mm256_add_pd(fjx0,tx);
863             fjy0             = _mm256_add_pd(fjy0,ty);
864             fjz0             = _mm256_add_pd(fjz0,tz);
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq20             = _mm256_mul_pd(iq2,jq0);
872
873             /* COULOMB ELECTROSTATICS */
874             velec            = _mm256_mul_pd(qq20,rinv20);
875             felec            = _mm256_mul_pd(velec,rinvsq20);
876
877             fscal            = felec;
878
879             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
880
881             /* Calculate temporary vectorial force */
882             tx               = _mm256_mul_pd(fscal,dx20);
883             ty               = _mm256_mul_pd(fscal,dy20);
884             tz               = _mm256_mul_pd(fscal,dz20);
885
886             /* Update vectorial force */
887             fix2             = _mm256_add_pd(fix2,tx);
888             fiy2             = _mm256_add_pd(fiy2,ty);
889             fiz2             = _mm256_add_pd(fiz2,tz);
890
891             fjx0             = _mm256_add_pd(fjx0,tx);
892             fjy0             = _mm256_add_pd(fjy0,ty);
893             fjz0             = _mm256_add_pd(fjz0,tz);
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             /* Compute parameters for interactions between i and j atoms */
900             qq30             = _mm256_mul_pd(iq3,jq0);
901
902             /* COULOMB ELECTROSTATICS */
903             velec            = _mm256_mul_pd(qq30,rinv30);
904             felec            = _mm256_mul_pd(velec,rinvsq30);
905
906             fscal            = felec;
907
908             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
909
910             /* Calculate temporary vectorial force */
911             tx               = _mm256_mul_pd(fscal,dx30);
912             ty               = _mm256_mul_pd(fscal,dy30);
913             tz               = _mm256_mul_pd(fscal,dz30);
914
915             /* Update vectorial force */
916             fix3             = _mm256_add_pd(fix3,tx);
917             fiy3             = _mm256_add_pd(fiy3,ty);
918             fiz3             = _mm256_add_pd(fiz3,tz);
919
920             fjx0             = _mm256_add_pd(fjx0,tx);
921             fjy0             = _mm256_add_pd(fjy0,ty);
922             fjz0             = _mm256_add_pd(fjz0,tz);
923
924             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
925             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
926             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
927             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
928
929             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
930
931             /* Inner loop uses 81 flops */
932         }
933
934         /* End of innermost loop */
935
936         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
937                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
938
939         /* Increment number of inner iterations */
940         inneriter                  += j_index_end - j_index_start;
941
942         /* Outer loop uses 18 flops */
943     }
944
945     /* Increment number of outer iterations */
946     outeriter        += nri;
947
948     /* Update outer/inner flops */
949
950     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*81);
951 }