Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwNone_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwNone_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     __m256d          dummy_mask,cutoff_mask;
84     __m128           tmpmask0,tmpmask1;
85     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
86     __m256d          one     = _mm256_set1_pd(1.0);
87     __m256d          two     = _mm256_set1_pd(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm256_set1_pd(fr->epsfac);
100     charge           = mdatoms->chargeA;
101
102     /* Setup water-specific parameters */
103     inr              = nlist->iinr[0];
104     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
105     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
106     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
107
108     /* Avoid stupid compiler warnings */
109     jnrA = jnrB = jnrC = jnrD = 0;
110     j_coord_offsetA = 0;
111     j_coord_offsetB = 0;
112     j_coord_offsetC = 0;
113     j_coord_offsetD = 0;
114
115     outeriter        = 0;
116     inneriter        = 0;
117
118     for(iidx=0;iidx<4*DIM;iidx++)
119     {
120         scratch[iidx] = 0.0;
121     }
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
139                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
140
141         fix0             = _mm256_setzero_pd();
142         fiy0             = _mm256_setzero_pd();
143         fiz0             = _mm256_setzero_pd();
144         fix1             = _mm256_setzero_pd();
145         fiy1             = _mm256_setzero_pd();
146         fiz1             = _mm256_setzero_pd();
147         fix2             = _mm256_setzero_pd();
148         fiy2             = _mm256_setzero_pd();
149         fiz2             = _mm256_setzero_pd();
150
151         /* Reset potential sums */
152         velecsum         = _mm256_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             jnrC             = jjnr[jidx+2];
162             jnrD             = jjnr[jidx+3];
163             j_coord_offsetA  = DIM*jnrA;
164             j_coord_offsetB  = DIM*jnrB;
165             j_coord_offsetC  = DIM*jnrC;
166             j_coord_offsetD  = DIM*jnrD;
167
168             /* load j atom coordinates */
169             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170                                                  x+j_coord_offsetC,x+j_coord_offsetD,
171                                                  &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm256_sub_pd(ix0,jx0);
175             dy00             = _mm256_sub_pd(iy0,jy0);
176             dz00             = _mm256_sub_pd(iz0,jz0);
177             dx10             = _mm256_sub_pd(ix1,jx0);
178             dy10             = _mm256_sub_pd(iy1,jy0);
179             dz10             = _mm256_sub_pd(iz1,jz0);
180             dx20             = _mm256_sub_pd(ix2,jx0);
181             dy20             = _mm256_sub_pd(iy2,jy0);
182             dz20             = _mm256_sub_pd(iz2,jz0);
183
184             /* Calculate squared distance and things based on it */
185             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
186             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
187             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
188
189             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
190             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
191             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
192
193             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
194             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
195             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
199                                                                  charge+jnrC+0,charge+jnrD+0);
200
201             fjx0             = _mm256_setzero_pd();
202             fjy0             = _mm256_setzero_pd();
203             fjz0             = _mm256_setzero_pd();
204
205             /**************************
206              * CALCULATE INTERACTIONS *
207              **************************/
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm256_mul_pd(iq0,jq0);
211
212             /* COULOMB ELECTROSTATICS */
213             velec            = _mm256_mul_pd(qq00,rinv00);
214             felec            = _mm256_mul_pd(velec,rinvsq00);
215
216             /* Update potential sum for this i atom from the interaction with this j atom. */
217             velecsum         = _mm256_add_pd(velecsum,velec);
218
219             fscal            = felec;
220
221             /* Calculate temporary vectorial force */
222             tx               = _mm256_mul_pd(fscal,dx00);
223             ty               = _mm256_mul_pd(fscal,dy00);
224             tz               = _mm256_mul_pd(fscal,dz00);
225
226             /* Update vectorial force */
227             fix0             = _mm256_add_pd(fix0,tx);
228             fiy0             = _mm256_add_pd(fiy0,ty);
229             fiz0             = _mm256_add_pd(fiz0,tz);
230
231             fjx0             = _mm256_add_pd(fjx0,tx);
232             fjy0             = _mm256_add_pd(fjy0,ty);
233             fjz0             = _mm256_add_pd(fjz0,tz);
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq10             = _mm256_mul_pd(iq1,jq0);
241
242             /* COULOMB ELECTROSTATICS */
243             velec            = _mm256_mul_pd(qq10,rinv10);
244             felec            = _mm256_mul_pd(velec,rinvsq10);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velecsum         = _mm256_add_pd(velecsum,velec);
248
249             fscal            = felec;
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm256_mul_pd(fscal,dx10);
253             ty               = _mm256_mul_pd(fscal,dy10);
254             tz               = _mm256_mul_pd(fscal,dz10);
255
256             /* Update vectorial force */
257             fix1             = _mm256_add_pd(fix1,tx);
258             fiy1             = _mm256_add_pd(fiy1,ty);
259             fiz1             = _mm256_add_pd(fiz1,tz);
260
261             fjx0             = _mm256_add_pd(fjx0,tx);
262             fjy0             = _mm256_add_pd(fjy0,ty);
263             fjz0             = _mm256_add_pd(fjz0,tz);
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq20             = _mm256_mul_pd(iq2,jq0);
271
272             /* COULOMB ELECTROSTATICS */
273             velec            = _mm256_mul_pd(qq20,rinv20);
274             felec            = _mm256_mul_pd(velec,rinvsq20);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velecsum         = _mm256_add_pd(velecsum,velec);
278
279             fscal            = felec;
280
281             /* Calculate temporary vectorial force */
282             tx               = _mm256_mul_pd(fscal,dx20);
283             ty               = _mm256_mul_pd(fscal,dy20);
284             tz               = _mm256_mul_pd(fscal,dz20);
285
286             /* Update vectorial force */
287             fix2             = _mm256_add_pd(fix2,tx);
288             fiy2             = _mm256_add_pd(fiy2,ty);
289             fiz2             = _mm256_add_pd(fiz2,tz);
290
291             fjx0             = _mm256_add_pd(fjx0,tx);
292             fjy0             = _mm256_add_pd(fjy0,ty);
293             fjz0             = _mm256_add_pd(fjz0,tz);
294
295             fjptrA             = f+j_coord_offsetA;
296             fjptrB             = f+j_coord_offsetB;
297             fjptrC             = f+j_coord_offsetC;
298             fjptrD             = f+j_coord_offsetD;
299
300             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
301
302             /* Inner loop uses 84 flops */
303         }
304
305         if(jidx<j_index_end)
306         {
307
308             /* Get j neighbor index, and coordinate index */
309             jnrlistA         = jjnr[jidx];
310             jnrlistB         = jjnr[jidx+1];
311             jnrlistC         = jjnr[jidx+2];
312             jnrlistD         = jjnr[jidx+3];
313             /* Sign of each element will be negative for non-real atoms.
314              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
315              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
316              */
317             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
318
319             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
320             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
321             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
322
323             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
324             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
325             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
326             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
327             j_coord_offsetA  = DIM*jnrA;
328             j_coord_offsetB  = DIM*jnrB;
329             j_coord_offsetC  = DIM*jnrC;
330             j_coord_offsetD  = DIM*jnrD;
331
332             /* load j atom coordinates */
333             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
334                                                  x+j_coord_offsetC,x+j_coord_offsetD,
335                                                  &jx0,&jy0,&jz0);
336
337             /* Calculate displacement vector */
338             dx00             = _mm256_sub_pd(ix0,jx0);
339             dy00             = _mm256_sub_pd(iy0,jy0);
340             dz00             = _mm256_sub_pd(iz0,jz0);
341             dx10             = _mm256_sub_pd(ix1,jx0);
342             dy10             = _mm256_sub_pd(iy1,jy0);
343             dz10             = _mm256_sub_pd(iz1,jz0);
344             dx20             = _mm256_sub_pd(ix2,jx0);
345             dy20             = _mm256_sub_pd(iy2,jy0);
346             dz20             = _mm256_sub_pd(iz2,jz0);
347
348             /* Calculate squared distance and things based on it */
349             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
350             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
351             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
352
353             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
354             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
355             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
356
357             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
358             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
359             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
360
361             /* Load parameters for j particles */
362             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
363                                                                  charge+jnrC+0,charge+jnrD+0);
364
365             fjx0             = _mm256_setzero_pd();
366             fjy0             = _mm256_setzero_pd();
367             fjz0             = _mm256_setzero_pd();
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq00             = _mm256_mul_pd(iq0,jq0);
375
376             /* COULOMB ELECTROSTATICS */
377             velec            = _mm256_mul_pd(qq00,rinv00);
378             felec            = _mm256_mul_pd(velec,rinvsq00);
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velec            = _mm256_andnot_pd(dummy_mask,velec);
382             velecsum         = _mm256_add_pd(velecsum,velec);
383
384             fscal            = felec;
385
386             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
387
388             /* Calculate temporary vectorial force */
389             tx               = _mm256_mul_pd(fscal,dx00);
390             ty               = _mm256_mul_pd(fscal,dy00);
391             tz               = _mm256_mul_pd(fscal,dz00);
392
393             /* Update vectorial force */
394             fix0             = _mm256_add_pd(fix0,tx);
395             fiy0             = _mm256_add_pd(fiy0,ty);
396             fiz0             = _mm256_add_pd(fiz0,tz);
397
398             fjx0             = _mm256_add_pd(fjx0,tx);
399             fjy0             = _mm256_add_pd(fjy0,ty);
400             fjz0             = _mm256_add_pd(fjz0,tz);
401
402             /**************************
403              * CALCULATE INTERACTIONS *
404              **************************/
405
406             /* Compute parameters for interactions between i and j atoms */
407             qq10             = _mm256_mul_pd(iq1,jq0);
408
409             /* COULOMB ELECTROSTATICS */
410             velec            = _mm256_mul_pd(qq10,rinv10);
411             felec            = _mm256_mul_pd(velec,rinvsq10);
412
413             /* Update potential sum for this i atom from the interaction with this j atom. */
414             velec            = _mm256_andnot_pd(dummy_mask,velec);
415             velecsum         = _mm256_add_pd(velecsum,velec);
416
417             fscal            = felec;
418
419             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
420
421             /* Calculate temporary vectorial force */
422             tx               = _mm256_mul_pd(fscal,dx10);
423             ty               = _mm256_mul_pd(fscal,dy10);
424             tz               = _mm256_mul_pd(fscal,dz10);
425
426             /* Update vectorial force */
427             fix1             = _mm256_add_pd(fix1,tx);
428             fiy1             = _mm256_add_pd(fiy1,ty);
429             fiz1             = _mm256_add_pd(fiz1,tz);
430
431             fjx0             = _mm256_add_pd(fjx0,tx);
432             fjy0             = _mm256_add_pd(fjy0,ty);
433             fjz0             = _mm256_add_pd(fjz0,tz);
434
435             /**************************
436              * CALCULATE INTERACTIONS *
437              **************************/
438
439             /* Compute parameters for interactions between i and j atoms */
440             qq20             = _mm256_mul_pd(iq2,jq0);
441
442             /* COULOMB ELECTROSTATICS */
443             velec            = _mm256_mul_pd(qq20,rinv20);
444             felec            = _mm256_mul_pd(velec,rinvsq20);
445
446             /* Update potential sum for this i atom from the interaction with this j atom. */
447             velec            = _mm256_andnot_pd(dummy_mask,velec);
448             velecsum         = _mm256_add_pd(velecsum,velec);
449
450             fscal            = felec;
451
452             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
453
454             /* Calculate temporary vectorial force */
455             tx               = _mm256_mul_pd(fscal,dx20);
456             ty               = _mm256_mul_pd(fscal,dy20);
457             tz               = _mm256_mul_pd(fscal,dz20);
458
459             /* Update vectorial force */
460             fix2             = _mm256_add_pd(fix2,tx);
461             fiy2             = _mm256_add_pd(fiy2,ty);
462             fiz2             = _mm256_add_pd(fiz2,tz);
463
464             fjx0             = _mm256_add_pd(fjx0,tx);
465             fjy0             = _mm256_add_pd(fjy0,ty);
466             fjz0             = _mm256_add_pd(fjz0,tz);
467
468             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
469             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
470             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
471             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
472
473             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
474
475             /* Inner loop uses 84 flops */
476         }
477
478         /* End of innermost loop */
479
480         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
481                                                  f+i_coord_offset,fshift+i_shift_offset);
482
483         ggid                        = gid[iidx];
484         /* Update potential energies */
485         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
486
487         /* Increment number of inner iterations */
488         inneriter                  += j_index_end - j_index_start;
489
490         /* Outer loop uses 19 flops */
491     }
492
493     /* Increment number of outer iterations */
494     outeriter        += nri;
495
496     /* Update outer/inner flops */
497
498     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*84);
499 }
500 /*
501  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW3P1_F_avx_256_double
502  * Electrostatics interaction: Coulomb
503  * VdW interaction:            None
504  * Geometry:                   Water3-Particle
505  * Calculate force/pot:        Force
506  */
507 void
508 nb_kernel_ElecCoul_VdwNone_GeomW3P1_F_avx_256_double
509                     (t_nblist * gmx_restrict                nlist,
510                      rvec * gmx_restrict                    xx,
511                      rvec * gmx_restrict                    ff,
512                      t_forcerec * gmx_restrict              fr,
513                      t_mdatoms * gmx_restrict               mdatoms,
514                      nb_kernel_data_t * gmx_restrict        kernel_data,
515                      t_nrnb * gmx_restrict                  nrnb)
516 {
517     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
518      * just 0 for non-waters.
519      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
520      * jnr indices corresponding to data put in the four positions in the SIMD register.
521      */
522     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
523     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
524     int              jnrA,jnrB,jnrC,jnrD;
525     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
526     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
527     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
528     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
529     real             rcutoff_scalar;
530     real             *shiftvec,*fshift,*x,*f;
531     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
532     real             scratch[4*DIM];
533     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
534     real *           vdwioffsetptr0;
535     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
536     real *           vdwioffsetptr1;
537     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
538     real *           vdwioffsetptr2;
539     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
540     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
541     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
542     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
543     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
544     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
545     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
546     real             *charge;
547     __m256d          dummy_mask,cutoff_mask;
548     __m128           tmpmask0,tmpmask1;
549     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
550     __m256d          one     = _mm256_set1_pd(1.0);
551     __m256d          two     = _mm256_set1_pd(2.0);
552     x                = xx[0];
553     f                = ff[0];
554
555     nri              = nlist->nri;
556     iinr             = nlist->iinr;
557     jindex           = nlist->jindex;
558     jjnr             = nlist->jjnr;
559     shiftidx         = nlist->shift;
560     gid              = nlist->gid;
561     shiftvec         = fr->shift_vec[0];
562     fshift           = fr->fshift[0];
563     facel            = _mm256_set1_pd(fr->epsfac);
564     charge           = mdatoms->chargeA;
565
566     /* Setup water-specific parameters */
567     inr              = nlist->iinr[0];
568     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
569     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
570     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
571
572     /* Avoid stupid compiler warnings */
573     jnrA = jnrB = jnrC = jnrD = 0;
574     j_coord_offsetA = 0;
575     j_coord_offsetB = 0;
576     j_coord_offsetC = 0;
577     j_coord_offsetD = 0;
578
579     outeriter        = 0;
580     inneriter        = 0;
581
582     for(iidx=0;iidx<4*DIM;iidx++)
583     {
584         scratch[iidx] = 0.0;
585     }
586
587     /* Start outer loop over neighborlists */
588     for(iidx=0; iidx<nri; iidx++)
589     {
590         /* Load shift vector for this list */
591         i_shift_offset   = DIM*shiftidx[iidx];
592
593         /* Load limits for loop over neighbors */
594         j_index_start    = jindex[iidx];
595         j_index_end      = jindex[iidx+1];
596
597         /* Get outer coordinate index */
598         inr              = iinr[iidx];
599         i_coord_offset   = DIM*inr;
600
601         /* Load i particle coords and add shift vector */
602         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
603                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
604
605         fix0             = _mm256_setzero_pd();
606         fiy0             = _mm256_setzero_pd();
607         fiz0             = _mm256_setzero_pd();
608         fix1             = _mm256_setzero_pd();
609         fiy1             = _mm256_setzero_pd();
610         fiz1             = _mm256_setzero_pd();
611         fix2             = _mm256_setzero_pd();
612         fiy2             = _mm256_setzero_pd();
613         fiz2             = _mm256_setzero_pd();
614
615         /* Start inner kernel loop */
616         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
617         {
618
619             /* Get j neighbor index, and coordinate index */
620             jnrA             = jjnr[jidx];
621             jnrB             = jjnr[jidx+1];
622             jnrC             = jjnr[jidx+2];
623             jnrD             = jjnr[jidx+3];
624             j_coord_offsetA  = DIM*jnrA;
625             j_coord_offsetB  = DIM*jnrB;
626             j_coord_offsetC  = DIM*jnrC;
627             j_coord_offsetD  = DIM*jnrD;
628
629             /* load j atom coordinates */
630             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
631                                                  x+j_coord_offsetC,x+j_coord_offsetD,
632                                                  &jx0,&jy0,&jz0);
633
634             /* Calculate displacement vector */
635             dx00             = _mm256_sub_pd(ix0,jx0);
636             dy00             = _mm256_sub_pd(iy0,jy0);
637             dz00             = _mm256_sub_pd(iz0,jz0);
638             dx10             = _mm256_sub_pd(ix1,jx0);
639             dy10             = _mm256_sub_pd(iy1,jy0);
640             dz10             = _mm256_sub_pd(iz1,jz0);
641             dx20             = _mm256_sub_pd(ix2,jx0);
642             dy20             = _mm256_sub_pd(iy2,jy0);
643             dz20             = _mm256_sub_pd(iz2,jz0);
644
645             /* Calculate squared distance and things based on it */
646             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
647             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
648             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
649
650             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
651             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
652             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
653
654             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
655             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
656             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
657
658             /* Load parameters for j particles */
659             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
660                                                                  charge+jnrC+0,charge+jnrD+0);
661
662             fjx0             = _mm256_setzero_pd();
663             fjy0             = _mm256_setzero_pd();
664             fjz0             = _mm256_setzero_pd();
665
666             /**************************
667              * CALCULATE INTERACTIONS *
668              **************************/
669
670             /* Compute parameters for interactions between i and j atoms */
671             qq00             = _mm256_mul_pd(iq0,jq0);
672
673             /* COULOMB ELECTROSTATICS */
674             velec            = _mm256_mul_pd(qq00,rinv00);
675             felec            = _mm256_mul_pd(velec,rinvsq00);
676
677             fscal            = felec;
678
679             /* Calculate temporary vectorial force */
680             tx               = _mm256_mul_pd(fscal,dx00);
681             ty               = _mm256_mul_pd(fscal,dy00);
682             tz               = _mm256_mul_pd(fscal,dz00);
683
684             /* Update vectorial force */
685             fix0             = _mm256_add_pd(fix0,tx);
686             fiy0             = _mm256_add_pd(fiy0,ty);
687             fiz0             = _mm256_add_pd(fiz0,tz);
688
689             fjx0             = _mm256_add_pd(fjx0,tx);
690             fjy0             = _mm256_add_pd(fjy0,ty);
691             fjz0             = _mm256_add_pd(fjz0,tz);
692
693             /**************************
694              * CALCULATE INTERACTIONS *
695              **************************/
696
697             /* Compute parameters for interactions between i and j atoms */
698             qq10             = _mm256_mul_pd(iq1,jq0);
699
700             /* COULOMB ELECTROSTATICS */
701             velec            = _mm256_mul_pd(qq10,rinv10);
702             felec            = _mm256_mul_pd(velec,rinvsq10);
703
704             fscal            = felec;
705
706             /* Calculate temporary vectorial force */
707             tx               = _mm256_mul_pd(fscal,dx10);
708             ty               = _mm256_mul_pd(fscal,dy10);
709             tz               = _mm256_mul_pd(fscal,dz10);
710
711             /* Update vectorial force */
712             fix1             = _mm256_add_pd(fix1,tx);
713             fiy1             = _mm256_add_pd(fiy1,ty);
714             fiz1             = _mm256_add_pd(fiz1,tz);
715
716             fjx0             = _mm256_add_pd(fjx0,tx);
717             fjy0             = _mm256_add_pd(fjy0,ty);
718             fjz0             = _mm256_add_pd(fjz0,tz);
719
720             /**************************
721              * CALCULATE INTERACTIONS *
722              **************************/
723
724             /* Compute parameters for interactions between i and j atoms */
725             qq20             = _mm256_mul_pd(iq2,jq0);
726
727             /* COULOMB ELECTROSTATICS */
728             velec            = _mm256_mul_pd(qq20,rinv20);
729             felec            = _mm256_mul_pd(velec,rinvsq20);
730
731             fscal            = felec;
732
733             /* Calculate temporary vectorial force */
734             tx               = _mm256_mul_pd(fscal,dx20);
735             ty               = _mm256_mul_pd(fscal,dy20);
736             tz               = _mm256_mul_pd(fscal,dz20);
737
738             /* Update vectorial force */
739             fix2             = _mm256_add_pd(fix2,tx);
740             fiy2             = _mm256_add_pd(fiy2,ty);
741             fiz2             = _mm256_add_pd(fiz2,tz);
742
743             fjx0             = _mm256_add_pd(fjx0,tx);
744             fjy0             = _mm256_add_pd(fjy0,ty);
745             fjz0             = _mm256_add_pd(fjz0,tz);
746
747             fjptrA             = f+j_coord_offsetA;
748             fjptrB             = f+j_coord_offsetB;
749             fjptrC             = f+j_coord_offsetC;
750             fjptrD             = f+j_coord_offsetD;
751
752             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
753
754             /* Inner loop uses 81 flops */
755         }
756
757         if(jidx<j_index_end)
758         {
759
760             /* Get j neighbor index, and coordinate index */
761             jnrlistA         = jjnr[jidx];
762             jnrlistB         = jjnr[jidx+1];
763             jnrlistC         = jjnr[jidx+2];
764             jnrlistD         = jjnr[jidx+3];
765             /* Sign of each element will be negative for non-real atoms.
766              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
767              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
768              */
769             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
770
771             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
772             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
773             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
774
775             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
776             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
777             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
778             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
779             j_coord_offsetA  = DIM*jnrA;
780             j_coord_offsetB  = DIM*jnrB;
781             j_coord_offsetC  = DIM*jnrC;
782             j_coord_offsetD  = DIM*jnrD;
783
784             /* load j atom coordinates */
785             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
786                                                  x+j_coord_offsetC,x+j_coord_offsetD,
787                                                  &jx0,&jy0,&jz0);
788
789             /* Calculate displacement vector */
790             dx00             = _mm256_sub_pd(ix0,jx0);
791             dy00             = _mm256_sub_pd(iy0,jy0);
792             dz00             = _mm256_sub_pd(iz0,jz0);
793             dx10             = _mm256_sub_pd(ix1,jx0);
794             dy10             = _mm256_sub_pd(iy1,jy0);
795             dz10             = _mm256_sub_pd(iz1,jz0);
796             dx20             = _mm256_sub_pd(ix2,jx0);
797             dy20             = _mm256_sub_pd(iy2,jy0);
798             dz20             = _mm256_sub_pd(iz2,jz0);
799
800             /* Calculate squared distance and things based on it */
801             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
802             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
803             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
804
805             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
806             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
807             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
808
809             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
810             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
811             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
812
813             /* Load parameters for j particles */
814             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
815                                                                  charge+jnrC+0,charge+jnrD+0);
816
817             fjx0             = _mm256_setzero_pd();
818             fjy0             = _mm256_setzero_pd();
819             fjz0             = _mm256_setzero_pd();
820
821             /**************************
822              * CALCULATE INTERACTIONS *
823              **************************/
824
825             /* Compute parameters for interactions between i and j atoms */
826             qq00             = _mm256_mul_pd(iq0,jq0);
827
828             /* COULOMB ELECTROSTATICS */
829             velec            = _mm256_mul_pd(qq00,rinv00);
830             felec            = _mm256_mul_pd(velec,rinvsq00);
831
832             fscal            = felec;
833
834             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
835
836             /* Calculate temporary vectorial force */
837             tx               = _mm256_mul_pd(fscal,dx00);
838             ty               = _mm256_mul_pd(fscal,dy00);
839             tz               = _mm256_mul_pd(fscal,dz00);
840
841             /* Update vectorial force */
842             fix0             = _mm256_add_pd(fix0,tx);
843             fiy0             = _mm256_add_pd(fiy0,ty);
844             fiz0             = _mm256_add_pd(fiz0,tz);
845
846             fjx0             = _mm256_add_pd(fjx0,tx);
847             fjy0             = _mm256_add_pd(fjy0,ty);
848             fjz0             = _mm256_add_pd(fjz0,tz);
849
850             /**************************
851              * CALCULATE INTERACTIONS *
852              **************************/
853
854             /* Compute parameters for interactions between i and j atoms */
855             qq10             = _mm256_mul_pd(iq1,jq0);
856
857             /* COULOMB ELECTROSTATICS */
858             velec            = _mm256_mul_pd(qq10,rinv10);
859             felec            = _mm256_mul_pd(velec,rinvsq10);
860
861             fscal            = felec;
862
863             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
864
865             /* Calculate temporary vectorial force */
866             tx               = _mm256_mul_pd(fscal,dx10);
867             ty               = _mm256_mul_pd(fscal,dy10);
868             tz               = _mm256_mul_pd(fscal,dz10);
869
870             /* Update vectorial force */
871             fix1             = _mm256_add_pd(fix1,tx);
872             fiy1             = _mm256_add_pd(fiy1,ty);
873             fiz1             = _mm256_add_pd(fiz1,tz);
874
875             fjx0             = _mm256_add_pd(fjx0,tx);
876             fjy0             = _mm256_add_pd(fjy0,ty);
877             fjz0             = _mm256_add_pd(fjz0,tz);
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             /* Compute parameters for interactions between i and j atoms */
884             qq20             = _mm256_mul_pd(iq2,jq0);
885
886             /* COULOMB ELECTROSTATICS */
887             velec            = _mm256_mul_pd(qq20,rinv20);
888             felec            = _mm256_mul_pd(velec,rinvsq20);
889
890             fscal            = felec;
891
892             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
893
894             /* Calculate temporary vectorial force */
895             tx               = _mm256_mul_pd(fscal,dx20);
896             ty               = _mm256_mul_pd(fscal,dy20);
897             tz               = _mm256_mul_pd(fscal,dz20);
898
899             /* Update vectorial force */
900             fix2             = _mm256_add_pd(fix2,tx);
901             fiy2             = _mm256_add_pd(fiy2,ty);
902             fiz2             = _mm256_add_pd(fiz2,tz);
903
904             fjx0             = _mm256_add_pd(fjx0,tx);
905             fjy0             = _mm256_add_pd(fjy0,ty);
906             fjz0             = _mm256_add_pd(fjz0,tz);
907
908             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
909             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
910             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
911             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
912
913             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
914
915             /* Inner loop uses 81 flops */
916         }
917
918         /* End of innermost loop */
919
920         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
921                                                  f+i_coord_offset,fshift+i_shift_offset);
922
923         /* Increment number of inner iterations */
924         inneriter                  += j_index_end - j_index_start;
925
926         /* Outer loop uses 18 flops */
927     }
928
929     /* Increment number of outer iterations */
930     outeriter        += nri;
931
932     /* Update outer/inner flops */
933
934     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*81);
935 }