Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     __m256d          dummy_mask,cutoff_mask;
92     __m128           tmpmask0,tmpmask1;
93     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
94     __m256d          one     = _mm256_set1_pd(1.0);
95     __m256d          two     = _mm256_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm256_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = jnrC = jnrD = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114     j_coord_offsetC = 0;
115     j_coord_offsetD = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     for(iidx=0;iidx<4*DIM;iidx++)
121     {
122         scratch[iidx] = 0.0;
123     }
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm256_setzero_pd();
143         fiy0             = _mm256_setzero_pd();
144         fiz0             = _mm256_setzero_pd();
145
146         /* Load parameters for i particles */
147         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
148
149         /* Reset potential sums */
150         velecsum         = _mm256_setzero_pd();
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
154         {
155
156             /* Get j neighbor index, and coordinate index */
157             jnrA             = jjnr[jidx];
158             jnrB             = jjnr[jidx+1];
159             jnrC             = jjnr[jidx+2];
160             jnrD             = jjnr[jidx+3];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163             j_coord_offsetC  = DIM*jnrC;
164             j_coord_offsetD  = DIM*jnrD;
165
166             /* load j atom coordinates */
167             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
168                                                  x+j_coord_offsetC,x+j_coord_offsetD,
169                                                  &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm256_sub_pd(ix0,jx0);
173             dy00             = _mm256_sub_pd(iy0,jy0);
174             dz00             = _mm256_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
180
181             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
185                                                                  charge+jnrC+0,charge+jnrD+0);
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _mm256_mul_pd(iq0,jq0);
193
194             /* COULOMB ELECTROSTATICS */
195             velec            = _mm256_mul_pd(qq00,rinv00);
196             felec            = _mm256_mul_pd(velec,rinvsq00);
197
198             /* Update potential sum for this i atom from the interaction with this j atom. */
199             velecsum         = _mm256_add_pd(velecsum,velec);
200
201             fscal            = felec;
202
203             /* Calculate temporary vectorial force */
204             tx               = _mm256_mul_pd(fscal,dx00);
205             ty               = _mm256_mul_pd(fscal,dy00);
206             tz               = _mm256_mul_pd(fscal,dz00);
207
208             /* Update vectorial force */
209             fix0             = _mm256_add_pd(fix0,tx);
210             fiy0             = _mm256_add_pd(fiy0,ty);
211             fiz0             = _mm256_add_pd(fiz0,tz);
212
213             fjptrA             = f+j_coord_offsetA;
214             fjptrB             = f+j_coord_offsetB;
215             fjptrC             = f+j_coord_offsetC;
216             fjptrD             = f+j_coord_offsetD;
217             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
218
219             /* Inner loop uses 27 flops */
220         }
221
222         if(jidx<j_index_end)
223         {
224
225             /* Get j neighbor index, and coordinate index */
226             jnrlistA         = jjnr[jidx];
227             jnrlistB         = jjnr[jidx+1];
228             jnrlistC         = jjnr[jidx+2];
229             jnrlistD         = jjnr[jidx+3];
230             /* Sign of each element will be negative for non-real atoms.
231              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
232              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
233              */
234             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
235
236             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
237             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
238             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
239
240             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
241             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
242             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
243             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
244             j_coord_offsetA  = DIM*jnrA;
245             j_coord_offsetB  = DIM*jnrB;
246             j_coord_offsetC  = DIM*jnrC;
247             j_coord_offsetD  = DIM*jnrD;
248
249             /* load j atom coordinates */
250             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
251                                                  x+j_coord_offsetC,x+j_coord_offsetD,
252                                                  &jx0,&jy0,&jz0);
253
254             /* Calculate displacement vector */
255             dx00             = _mm256_sub_pd(ix0,jx0);
256             dy00             = _mm256_sub_pd(iy0,jy0);
257             dz00             = _mm256_sub_pd(iz0,jz0);
258
259             /* Calculate squared distance and things based on it */
260             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
261
262             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
263
264             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
265
266             /* Load parameters for j particles */
267             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
268                                                                  charge+jnrC+0,charge+jnrD+0);
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             /* Compute parameters for interactions between i and j atoms */
275             qq00             = _mm256_mul_pd(iq0,jq0);
276
277             /* COULOMB ELECTROSTATICS */
278             velec            = _mm256_mul_pd(qq00,rinv00);
279             felec            = _mm256_mul_pd(velec,rinvsq00);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velec            = _mm256_andnot_pd(dummy_mask,velec);
283             velecsum         = _mm256_add_pd(velecsum,velec);
284
285             fscal            = felec;
286
287             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm256_mul_pd(fscal,dx00);
291             ty               = _mm256_mul_pd(fscal,dy00);
292             tz               = _mm256_mul_pd(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm256_add_pd(fix0,tx);
296             fiy0             = _mm256_add_pd(fiy0,ty);
297             fiz0             = _mm256_add_pd(fiz0,tz);
298
299             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
300             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
301             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
302             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
303             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
304
305             /* Inner loop uses 27 flops */
306         }
307
308         /* End of innermost loop */
309
310         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
311                                                  f+i_coord_offset,fshift+i_shift_offset);
312
313         ggid                        = gid[iidx];
314         /* Update potential energies */
315         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
316
317         /* Increment number of inner iterations */
318         inneriter                  += j_index_end - j_index_start;
319
320         /* Outer loop uses 8 flops */
321     }
322
323     /* Increment number of outer iterations */
324     outeriter        += nri;
325
326     /* Update outer/inner flops */
327
328     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*27);
329 }
330 /*
331  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_256_double
332  * Electrostatics interaction: Coulomb
333  * VdW interaction:            None
334  * Geometry:                   Particle-Particle
335  * Calculate force/pot:        Force
336  */
337 void
338 nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_256_double
339                     (t_nblist                    * gmx_restrict       nlist,
340                      rvec                        * gmx_restrict          xx,
341                      rvec                        * gmx_restrict          ff,
342                      t_forcerec                  * gmx_restrict          fr,
343                      t_mdatoms                   * gmx_restrict     mdatoms,
344                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
345                      t_nrnb                      * gmx_restrict        nrnb)
346 {
347     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
348      * just 0 for non-waters.
349      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
350      * jnr indices corresponding to data put in the four positions in the SIMD register.
351      */
352     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
353     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
354     int              jnrA,jnrB,jnrC,jnrD;
355     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
356     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
357     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
358     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
359     real             rcutoff_scalar;
360     real             *shiftvec,*fshift,*x,*f;
361     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
362     real             scratch[4*DIM];
363     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
364     real *           vdwioffsetptr0;
365     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
366     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
367     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
368     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
369     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
370     real             *charge;
371     __m256d          dummy_mask,cutoff_mask;
372     __m128           tmpmask0,tmpmask1;
373     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
374     __m256d          one     = _mm256_set1_pd(1.0);
375     __m256d          two     = _mm256_set1_pd(2.0);
376     x                = xx[0];
377     f                = ff[0];
378
379     nri              = nlist->nri;
380     iinr             = nlist->iinr;
381     jindex           = nlist->jindex;
382     jjnr             = nlist->jjnr;
383     shiftidx         = nlist->shift;
384     gid              = nlist->gid;
385     shiftvec         = fr->shift_vec[0];
386     fshift           = fr->fshift[0];
387     facel            = _mm256_set1_pd(fr->epsfac);
388     charge           = mdatoms->chargeA;
389
390     /* Avoid stupid compiler warnings */
391     jnrA = jnrB = jnrC = jnrD = 0;
392     j_coord_offsetA = 0;
393     j_coord_offsetB = 0;
394     j_coord_offsetC = 0;
395     j_coord_offsetD = 0;
396
397     outeriter        = 0;
398     inneriter        = 0;
399
400     for(iidx=0;iidx<4*DIM;iidx++)
401     {
402         scratch[iidx] = 0.0;
403     }
404
405     /* Start outer loop over neighborlists */
406     for(iidx=0; iidx<nri; iidx++)
407     {
408         /* Load shift vector for this list */
409         i_shift_offset   = DIM*shiftidx[iidx];
410
411         /* Load limits for loop over neighbors */
412         j_index_start    = jindex[iidx];
413         j_index_end      = jindex[iidx+1];
414
415         /* Get outer coordinate index */
416         inr              = iinr[iidx];
417         i_coord_offset   = DIM*inr;
418
419         /* Load i particle coords and add shift vector */
420         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
421
422         fix0             = _mm256_setzero_pd();
423         fiy0             = _mm256_setzero_pd();
424         fiz0             = _mm256_setzero_pd();
425
426         /* Load parameters for i particles */
427         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
428
429         /* Start inner kernel loop */
430         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
431         {
432
433             /* Get j neighbor index, and coordinate index */
434             jnrA             = jjnr[jidx];
435             jnrB             = jjnr[jidx+1];
436             jnrC             = jjnr[jidx+2];
437             jnrD             = jjnr[jidx+3];
438             j_coord_offsetA  = DIM*jnrA;
439             j_coord_offsetB  = DIM*jnrB;
440             j_coord_offsetC  = DIM*jnrC;
441             j_coord_offsetD  = DIM*jnrD;
442
443             /* load j atom coordinates */
444             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
445                                                  x+j_coord_offsetC,x+j_coord_offsetD,
446                                                  &jx0,&jy0,&jz0);
447
448             /* Calculate displacement vector */
449             dx00             = _mm256_sub_pd(ix0,jx0);
450             dy00             = _mm256_sub_pd(iy0,jy0);
451             dz00             = _mm256_sub_pd(iz0,jz0);
452
453             /* Calculate squared distance and things based on it */
454             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
455
456             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
457
458             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
459
460             /* Load parameters for j particles */
461             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
462                                                                  charge+jnrC+0,charge+jnrD+0);
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             /* Compute parameters for interactions between i and j atoms */
469             qq00             = _mm256_mul_pd(iq0,jq0);
470
471             /* COULOMB ELECTROSTATICS */
472             velec            = _mm256_mul_pd(qq00,rinv00);
473             felec            = _mm256_mul_pd(velec,rinvsq00);
474
475             fscal            = felec;
476
477             /* Calculate temporary vectorial force */
478             tx               = _mm256_mul_pd(fscal,dx00);
479             ty               = _mm256_mul_pd(fscal,dy00);
480             tz               = _mm256_mul_pd(fscal,dz00);
481
482             /* Update vectorial force */
483             fix0             = _mm256_add_pd(fix0,tx);
484             fiy0             = _mm256_add_pd(fiy0,ty);
485             fiz0             = _mm256_add_pd(fiz0,tz);
486
487             fjptrA             = f+j_coord_offsetA;
488             fjptrB             = f+j_coord_offsetB;
489             fjptrC             = f+j_coord_offsetC;
490             fjptrD             = f+j_coord_offsetD;
491             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
492
493             /* Inner loop uses 26 flops */
494         }
495
496         if(jidx<j_index_end)
497         {
498
499             /* Get j neighbor index, and coordinate index */
500             jnrlistA         = jjnr[jidx];
501             jnrlistB         = jjnr[jidx+1];
502             jnrlistC         = jjnr[jidx+2];
503             jnrlistD         = jjnr[jidx+3];
504             /* Sign of each element will be negative for non-real atoms.
505              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
506              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
507              */
508             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
509
510             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
511             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
512             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
513
514             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
515             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
516             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
517             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
518             j_coord_offsetA  = DIM*jnrA;
519             j_coord_offsetB  = DIM*jnrB;
520             j_coord_offsetC  = DIM*jnrC;
521             j_coord_offsetD  = DIM*jnrD;
522
523             /* load j atom coordinates */
524             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
525                                                  x+j_coord_offsetC,x+j_coord_offsetD,
526                                                  &jx0,&jy0,&jz0);
527
528             /* Calculate displacement vector */
529             dx00             = _mm256_sub_pd(ix0,jx0);
530             dy00             = _mm256_sub_pd(iy0,jy0);
531             dz00             = _mm256_sub_pd(iz0,jz0);
532
533             /* Calculate squared distance and things based on it */
534             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
535
536             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
537
538             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
539
540             /* Load parameters for j particles */
541             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
542                                                                  charge+jnrC+0,charge+jnrD+0);
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq00             = _mm256_mul_pd(iq0,jq0);
550
551             /* COULOMB ELECTROSTATICS */
552             velec            = _mm256_mul_pd(qq00,rinv00);
553             felec            = _mm256_mul_pd(velec,rinvsq00);
554
555             fscal            = felec;
556
557             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm256_mul_pd(fscal,dx00);
561             ty               = _mm256_mul_pd(fscal,dy00);
562             tz               = _mm256_mul_pd(fscal,dz00);
563
564             /* Update vectorial force */
565             fix0             = _mm256_add_pd(fix0,tx);
566             fiy0             = _mm256_add_pd(fiy0,ty);
567             fiz0             = _mm256_add_pd(fiz0,tz);
568
569             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
570             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
571             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
572             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
573             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
574
575             /* Inner loop uses 26 flops */
576         }
577
578         /* End of innermost loop */
579
580         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
581                                                  f+i_coord_offset,fshift+i_shift_offset);
582
583         /* Increment number of inner iterations */
584         inneriter                  += j_index_end - j_index_start;
585
586         /* Outer loop uses 7 flops */
587     }
588
589     /* Increment number of outer iterations */
590     outeriter        += nri;
591
592     /* Update outer/inner flops */
593
594     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*26);
595 }