Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m256d          dummy_mask,cutoff_mask;
78     __m128           tmpmask0,tmpmask1;
79     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
80     __m256d          one     = _mm256_set1_pd(1.0);
81     __m256d          two     = _mm256_set1_pd(2.0);
82     x                = xx[0];
83     f                = ff[0];
84
85     nri              = nlist->nri;
86     iinr             = nlist->iinr;
87     jindex           = nlist->jindex;
88     jjnr             = nlist->jjnr;
89     shiftidx         = nlist->shift;
90     gid              = nlist->gid;
91     shiftvec         = fr->shift_vec[0];
92     fshift           = fr->fshift[0];
93     facel            = _mm256_set1_pd(fr->epsfac);
94     charge           = mdatoms->chargeA;
95
96     /* Avoid stupid compiler warnings */
97     jnrA = jnrB = jnrC = jnrD = 0;
98     j_coord_offsetA = 0;
99     j_coord_offsetB = 0;
100     j_coord_offsetC = 0;
101     j_coord_offsetD = 0;
102
103     outeriter        = 0;
104     inneriter        = 0;
105
106     for(iidx=0;iidx<4*DIM;iidx++)
107     {
108         scratch[iidx] = 0.0;
109     }
110
111     /* Start outer loop over neighborlists */
112     for(iidx=0; iidx<nri; iidx++)
113     {
114         /* Load shift vector for this list */
115         i_shift_offset   = DIM*shiftidx[iidx];
116
117         /* Load limits for loop over neighbors */
118         j_index_start    = jindex[iidx];
119         j_index_end      = jindex[iidx+1];
120
121         /* Get outer coordinate index */
122         inr              = iinr[iidx];
123         i_coord_offset   = DIM*inr;
124
125         /* Load i particle coords and add shift vector */
126         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
127
128         fix0             = _mm256_setzero_pd();
129         fiy0             = _mm256_setzero_pd();
130         fiz0             = _mm256_setzero_pd();
131
132         /* Load parameters for i particles */
133         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
134
135         /* Reset potential sums */
136         velecsum         = _mm256_setzero_pd();
137
138         /* Start inner kernel loop */
139         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
140         {
141
142             /* Get j neighbor index, and coordinate index */
143             jnrA             = jjnr[jidx];
144             jnrB             = jjnr[jidx+1];
145             jnrC             = jjnr[jidx+2];
146             jnrD             = jjnr[jidx+3];
147             j_coord_offsetA  = DIM*jnrA;
148             j_coord_offsetB  = DIM*jnrB;
149             j_coord_offsetC  = DIM*jnrC;
150             j_coord_offsetD  = DIM*jnrD;
151
152             /* load j atom coordinates */
153             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
154                                                  x+j_coord_offsetC,x+j_coord_offsetD,
155                                                  &jx0,&jy0,&jz0);
156
157             /* Calculate displacement vector */
158             dx00             = _mm256_sub_pd(ix0,jx0);
159             dy00             = _mm256_sub_pd(iy0,jy0);
160             dz00             = _mm256_sub_pd(iz0,jz0);
161
162             /* Calculate squared distance and things based on it */
163             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
164
165             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
166
167             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
168
169             /* Load parameters for j particles */
170             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
171                                                                  charge+jnrC+0,charge+jnrD+0);
172
173             /**************************
174              * CALCULATE INTERACTIONS *
175              **************************/
176
177             /* Compute parameters for interactions between i and j atoms */
178             qq00             = _mm256_mul_pd(iq0,jq0);
179
180             /* COULOMB ELECTROSTATICS */
181             velec            = _mm256_mul_pd(qq00,rinv00);
182             felec            = _mm256_mul_pd(velec,rinvsq00);
183
184             /* Update potential sum for this i atom from the interaction with this j atom. */
185             velecsum         = _mm256_add_pd(velecsum,velec);
186
187             fscal            = felec;
188
189             /* Calculate temporary vectorial force */
190             tx               = _mm256_mul_pd(fscal,dx00);
191             ty               = _mm256_mul_pd(fscal,dy00);
192             tz               = _mm256_mul_pd(fscal,dz00);
193
194             /* Update vectorial force */
195             fix0             = _mm256_add_pd(fix0,tx);
196             fiy0             = _mm256_add_pd(fiy0,ty);
197             fiz0             = _mm256_add_pd(fiz0,tz);
198
199             fjptrA             = f+j_coord_offsetA;
200             fjptrB             = f+j_coord_offsetB;
201             fjptrC             = f+j_coord_offsetC;
202             fjptrD             = f+j_coord_offsetD;
203             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
204
205             /* Inner loop uses 27 flops */
206         }
207
208         if(jidx<j_index_end)
209         {
210
211             /* Get j neighbor index, and coordinate index */
212             jnrlistA         = jjnr[jidx];
213             jnrlistB         = jjnr[jidx+1];
214             jnrlistC         = jjnr[jidx+2];
215             jnrlistD         = jjnr[jidx+3];
216             /* Sign of each element will be negative for non-real atoms.
217              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
218              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
219              */
220             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
221
222             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
223             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
224             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
225
226             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
227             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
228             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
229             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
230             j_coord_offsetA  = DIM*jnrA;
231             j_coord_offsetB  = DIM*jnrB;
232             j_coord_offsetC  = DIM*jnrC;
233             j_coord_offsetD  = DIM*jnrD;
234
235             /* load j atom coordinates */
236             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
237                                                  x+j_coord_offsetC,x+j_coord_offsetD,
238                                                  &jx0,&jy0,&jz0);
239
240             /* Calculate displacement vector */
241             dx00             = _mm256_sub_pd(ix0,jx0);
242             dy00             = _mm256_sub_pd(iy0,jy0);
243             dz00             = _mm256_sub_pd(iz0,jz0);
244
245             /* Calculate squared distance and things based on it */
246             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
247
248             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
249
250             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
251
252             /* Load parameters for j particles */
253             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
254                                                                  charge+jnrC+0,charge+jnrD+0);
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             /* Compute parameters for interactions between i and j atoms */
261             qq00             = _mm256_mul_pd(iq0,jq0);
262
263             /* COULOMB ELECTROSTATICS */
264             velec            = _mm256_mul_pd(qq00,rinv00);
265             felec            = _mm256_mul_pd(velec,rinvsq00);
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velec            = _mm256_andnot_pd(dummy_mask,velec);
269             velecsum         = _mm256_add_pd(velecsum,velec);
270
271             fscal            = felec;
272
273             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
274
275             /* Calculate temporary vectorial force */
276             tx               = _mm256_mul_pd(fscal,dx00);
277             ty               = _mm256_mul_pd(fscal,dy00);
278             tz               = _mm256_mul_pd(fscal,dz00);
279
280             /* Update vectorial force */
281             fix0             = _mm256_add_pd(fix0,tx);
282             fiy0             = _mm256_add_pd(fiy0,ty);
283             fiz0             = _mm256_add_pd(fiz0,tz);
284
285             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
286             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
287             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
288             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
289             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
290
291             /* Inner loop uses 27 flops */
292         }
293
294         /* End of innermost loop */
295
296         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
297                                                  f+i_coord_offset,fshift+i_shift_offset);
298
299         ggid                        = gid[iidx];
300         /* Update potential energies */
301         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
302
303         /* Increment number of inner iterations */
304         inneriter                  += j_index_end - j_index_start;
305
306         /* Outer loop uses 8 flops */
307     }
308
309     /* Increment number of outer iterations */
310     outeriter        += nri;
311
312     /* Update outer/inner flops */
313
314     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*27);
315 }
316 /*
317  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_256_double
318  * Electrostatics interaction: Coulomb
319  * VdW interaction:            None
320  * Geometry:                   Particle-Particle
321  * Calculate force/pot:        Force
322  */
323 void
324 nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_256_double
325                     (t_nblist * gmx_restrict                nlist,
326                      rvec * gmx_restrict                    xx,
327                      rvec * gmx_restrict                    ff,
328                      t_forcerec * gmx_restrict              fr,
329                      t_mdatoms * gmx_restrict               mdatoms,
330                      nb_kernel_data_t * gmx_restrict        kernel_data,
331                      t_nrnb * gmx_restrict                  nrnb)
332 {
333     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
334      * just 0 for non-waters.
335      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
336      * jnr indices corresponding to data put in the four positions in the SIMD register.
337      */
338     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
339     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
340     int              jnrA,jnrB,jnrC,jnrD;
341     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
342     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
343     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
344     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
345     real             rcutoff_scalar;
346     real             *shiftvec,*fshift,*x,*f;
347     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
348     real             scratch[4*DIM];
349     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
350     real *           vdwioffsetptr0;
351     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
352     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
353     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
354     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
355     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
356     real             *charge;
357     __m256d          dummy_mask,cutoff_mask;
358     __m128           tmpmask0,tmpmask1;
359     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
360     __m256d          one     = _mm256_set1_pd(1.0);
361     __m256d          two     = _mm256_set1_pd(2.0);
362     x                = xx[0];
363     f                = ff[0];
364
365     nri              = nlist->nri;
366     iinr             = nlist->iinr;
367     jindex           = nlist->jindex;
368     jjnr             = nlist->jjnr;
369     shiftidx         = nlist->shift;
370     gid              = nlist->gid;
371     shiftvec         = fr->shift_vec[0];
372     fshift           = fr->fshift[0];
373     facel            = _mm256_set1_pd(fr->epsfac);
374     charge           = mdatoms->chargeA;
375
376     /* Avoid stupid compiler warnings */
377     jnrA = jnrB = jnrC = jnrD = 0;
378     j_coord_offsetA = 0;
379     j_coord_offsetB = 0;
380     j_coord_offsetC = 0;
381     j_coord_offsetD = 0;
382
383     outeriter        = 0;
384     inneriter        = 0;
385
386     for(iidx=0;iidx<4*DIM;iidx++)
387     {
388         scratch[iidx] = 0.0;
389     }
390
391     /* Start outer loop over neighborlists */
392     for(iidx=0; iidx<nri; iidx++)
393     {
394         /* Load shift vector for this list */
395         i_shift_offset   = DIM*shiftidx[iidx];
396
397         /* Load limits for loop over neighbors */
398         j_index_start    = jindex[iidx];
399         j_index_end      = jindex[iidx+1];
400
401         /* Get outer coordinate index */
402         inr              = iinr[iidx];
403         i_coord_offset   = DIM*inr;
404
405         /* Load i particle coords and add shift vector */
406         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
407
408         fix0             = _mm256_setzero_pd();
409         fiy0             = _mm256_setzero_pd();
410         fiz0             = _mm256_setzero_pd();
411
412         /* Load parameters for i particles */
413         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
414
415         /* Start inner kernel loop */
416         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
417         {
418
419             /* Get j neighbor index, and coordinate index */
420             jnrA             = jjnr[jidx];
421             jnrB             = jjnr[jidx+1];
422             jnrC             = jjnr[jidx+2];
423             jnrD             = jjnr[jidx+3];
424             j_coord_offsetA  = DIM*jnrA;
425             j_coord_offsetB  = DIM*jnrB;
426             j_coord_offsetC  = DIM*jnrC;
427             j_coord_offsetD  = DIM*jnrD;
428
429             /* load j atom coordinates */
430             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
431                                                  x+j_coord_offsetC,x+j_coord_offsetD,
432                                                  &jx0,&jy0,&jz0);
433
434             /* Calculate displacement vector */
435             dx00             = _mm256_sub_pd(ix0,jx0);
436             dy00             = _mm256_sub_pd(iy0,jy0);
437             dz00             = _mm256_sub_pd(iz0,jz0);
438
439             /* Calculate squared distance and things based on it */
440             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
441
442             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
443
444             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
445
446             /* Load parameters for j particles */
447             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
448                                                                  charge+jnrC+0,charge+jnrD+0);
449
450             /**************************
451              * CALCULATE INTERACTIONS *
452              **************************/
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq00             = _mm256_mul_pd(iq0,jq0);
456
457             /* COULOMB ELECTROSTATICS */
458             velec            = _mm256_mul_pd(qq00,rinv00);
459             felec            = _mm256_mul_pd(velec,rinvsq00);
460
461             fscal            = felec;
462
463             /* Calculate temporary vectorial force */
464             tx               = _mm256_mul_pd(fscal,dx00);
465             ty               = _mm256_mul_pd(fscal,dy00);
466             tz               = _mm256_mul_pd(fscal,dz00);
467
468             /* Update vectorial force */
469             fix0             = _mm256_add_pd(fix0,tx);
470             fiy0             = _mm256_add_pd(fiy0,ty);
471             fiz0             = _mm256_add_pd(fiz0,tz);
472
473             fjptrA             = f+j_coord_offsetA;
474             fjptrB             = f+j_coord_offsetB;
475             fjptrC             = f+j_coord_offsetC;
476             fjptrD             = f+j_coord_offsetD;
477             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
478
479             /* Inner loop uses 26 flops */
480         }
481
482         if(jidx<j_index_end)
483         {
484
485             /* Get j neighbor index, and coordinate index */
486             jnrlistA         = jjnr[jidx];
487             jnrlistB         = jjnr[jidx+1];
488             jnrlistC         = jjnr[jidx+2];
489             jnrlistD         = jjnr[jidx+3];
490             /* Sign of each element will be negative for non-real atoms.
491              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
492              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
493              */
494             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
495
496             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
497             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
498             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
499
500             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
501             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
502             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
503             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
504             j_coord_offsetA  = DIM*jnrA;
505             j_coord_offsetB  = DIM*jnrB;
506             j_coord_offsetC  = DIM*jnrC;
507             j_coord_offsetD  = DIM*jnrD;
508
509             /* load j atom coordinates */
510             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
511                                                  x+j_coord_offsetC,x+j_coord_offsetD,
512                                                  &jx0,&jy0,&jz0);
513
514             /* Calculate displacement vector */
515             dx00             = _mm256_sub_pd(ix0,jx0);
516             dy00             = _mm256_sub_pd(iy0,jy0);
517             dz00             = _mm256_sub_pd(iz0,jz0);
518
519             /* Calculate squared distance and things based on it */
520             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
521
522             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
523
524             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
525
526             /* Load parameters for j particles */
527             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
528                                                                  charge+jnrC+0,charge+jnrD+0);
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq00             = _mm256_mul_pd(iq0,jq0);
536
537             /* COULOMB ELECTROSTATICS */
538             velec            = _mm256_mul_pd(qq00,rinv00);
539             felec            = _mm256_mul_pd(velec,rinvsq00);
540
541             fscal            = felec;
542
543             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
544
545             /* Calculate temporary vectorial force */
546             tx               = _mm256_mul_pd(fscal,dx00);
547             ty               = _mm256_mul_pd(fscal,dy00);
548             tz               = _mm256_mul_pd(fscal,dz00);
549
550             /* Update vectorial force */
551             fix0             = _mm256_add_pd(fix0,tx);
552             fiy0             = _mm256_add_pd(fiy0,ty);
553             fiz0             = _mm256_add_pd(fiz0,tz);
554
555             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
556             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
557             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
558             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
559             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
560
561             /* Inner loop uses 26 flops */
562         }
563
564         /* End of innermost loop */
565
566         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
567                                                  f+i_coord_offset,fshift+i_shift_offset);
568
569         /* Increment number of inner iterations */
570         inneriter                  += j_index_end - j_index_start;
571
572         /* Outer loop uses 7 flops */
573     }
574
575     /* Increment number of outer iterations */
576     outeriter        += nri;
577
578     /* Update outer/inner flops */
579
580     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*26);
581 }