Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m256d          dummy_mask,cutoff_mask;
94     __m128           tmpmask0,tmpmask1;
95     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
96     __m256d          one     = _mm256_set1_pd(1.0);
97     __m256d          two     = _mm256_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm256_set1_pd(fr->epsfac);
110     charge           = mdatoms->chargeA;
111
112     /* Avoid stupid compiler warnings */
113     jnrA = jnrB = jnrC = jnrD = 0;
114     j_coord_offsetA = 0;
115     j_coord_offsetB = 0;
116     j_coord_offsetC = 0;
117     j_coord_offsetD = 0;
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     for(iidx=0;iidx<4*DIM;iidx++)
123     {
124         scratch[iidx] = 0.0;
125     }
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _mm256_setzero_pd();
145         fiy0             = _mm256_setzero_pd();
146         fiz0             = _mm256_setzero_pd();
147
148         /* Load parameters for i particles */
149         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
150
151         /* Reset potential sums */
152         velecsum         = _mm256_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             jnrC             = jjnr[jidx+2];
162             jnrD             = jjnr[jidx+3];
163             j_coord_offsetA  = DIM*jnrA;
164             j_coord_offsetB  = DIM*jnrB;
165             j_coord_offsetC  = DIM*jnrC;
166             j_coord_offsetD  = DIM*jnrD;
167
168             /* load j atom coordinates */
169             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170                                                  x+j_coord_offsetC,x+j_coord_offsetD,
171                                                  &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm256_sub_pd(ix0,jx0);
175             dy00             = _mm256_sub_pd(iy0,jy0);
176             dz00             = _mm256_sub_pd(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
182
183             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
184
185             /* Load parameters for j particles */
186             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
187                                                                  charge+jnrC+0,charge+jnrD+0);
188
189             /**************************
190              * CALCULATE INTERACTIONS *
191              **************************/
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm256_mul_pd(iq0,jq0);
195
196             /* COULOMB ELECTROSTATICS */
197             velec            = _mm256_mul_pd(qq00,rinv00);
198             felec            = _mm256_mul_pd(velec,rinvsq00);
199
200             /* Update potential sum for this i atom from the interaction with this j atom. */
201             velecsum         = _mm256_add_pd(velecsum,velec);
202
203             fscal            = felec;
204
205             /* Calculate temporary vectorial force */
206             tx               = _mm256_mul_pd(fscal,dx00);
207             ty               = _mm256_mul_pd(fscal,dy00);
208             tz               = _mm256_mul_pd(fscal,dz00);
209
210             /* Update vectorial force */
211             fix0             = _mm256_add_pd(fix0,tx);
212             fiy0             = _mm256_add_pd(fiy0,ty);
213             fiz0             = _mm256_add_pd(fiz0,tz);
214
215             fjptrA             = f+j_coord_offsetA;
216             fjptrB             = f+j_coord_offsetB;
217             fjptrC             = f+j_coord_offsetC;
218             fjptrD             = f+j_coord_offsetD;
219             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
220
221             /* Inner loop uses 27 flops */
222         }
223
224         if(jidx<j_index_end)
225         {
226
227             /* Get j neighbor index, and coordinate index */
228             jnrlistA         = jjnr[jidx];
229             jnrlistB         = jjnr[jidx+1];
230             jnrlistC         = jjnr[jidx+2];
231             jnrlistD         = jjnr[jidx+3];
232             /* Sign of each element will be negative for non-real atoms.
233              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
234              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
235              */
236             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
237
238             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
239             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
240             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
241
242             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
243             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
244             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
245             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
246             j_coord_offsetA  = DIM*jnrA;
247             j_coord_offsetB  = DIM*jnrB;
248             j_coord_offsetC  = DIM*jnrC;
249             j_coord_offsetD  = DIM*jnrD;
250
251             /* load j atom coordinates */
252             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
253                                                  x+j_coord_offsetC,x+j_coord_offsetD,
254                                                  &jx0,&jy0,&jz0);
255
256             /* Calculate displacement vector */
257             dx00             = _mm256_sub_pd(ix0,jx0);
258             dy00             = _mm256_sub_pd(iy0,jy0);
259             dz00             = _mm256_sub_pd(iz0,jz0);
260
261             /* Calculate squared distance and things based on it */
262             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
263
264             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
265
266             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
267
268             /* Load parameters for j particles */
269             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
270                                                                  charge+jnrC+0,charge+jnrD+0);
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             /* Compute parameters for interactions between i and j atoms */
277             qq00             = _mm256_mul_pd(iq0,jq0);
278
279             /* COULOMB ELECTROSTATICS */
280             velec            = _mm256_mul_pd(qq00,rinv00);
281             felec            = _mm256_mul_pd(velec,rinvsq00);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velec            = _mm256_andnot_pd(dummy_mask,velec);
285             velecsum         = _mm256_add_pd(velecsum,velec);
286
287             fscal            = felec;
288
289             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm256_mul_pd(fscal,dx00);
293             ty               = _mm256_mul_pd(fscal,dy00);
294             tz               = _mm256_mul_pd(fscal,dz00);
295
296             /* Update vectorial force */
297             fix0             = _mm256_add_pd(fix0,tx);
298             fiy0             = _mm256_add_pd(fiy0,ty);
299             fiz0             = _mm256_add_pd(fiz0,tz);
300
301             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
302             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
303             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
304             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
305             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
306
307             /* Inner loop uses 27 flops */
308         }
309
310         /* End of innermost loop */
311
312         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
313                                                  f+i_coord_offset,fshift+i_shift_offset);
314
315         ggid                        = gid[iidx];
316         /* Update potential energies */
317         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
318
319         /* Increment number of inner iterations */
320         inneriter                  += j_index_end - j_index_start;
321
322         /* Outer loop uses 8 flops */
323     }
324
325     /* Increment number of outer iterations */
326     outeriter        += nri;
327
328     /* Update outer/inner flops */
329
330     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*27);
331 }
332 /*
333  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_256_double
334  * Electrostatics interaction: Coulomb
335  * VdW interaction:            None
336  * Geometry:                   Particle-Particle
337  * Calculate force/pot:        Force
338  */
339 void
340 nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_256_double
341                     (t_nblist                    * gmx_restrict       nlist,
342                      rvec                        * gmx_restrict          xx,
343                      rvec                        * gmx_restrict          ff,
344                      t_forcerec                  * gmx_restrict          fr,
345                      t_mdatoms                   * gmx_restrict     mdatoms,
346                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
347                      t_nrnb                      * gmx_restrict        nrnb)
348 {
349     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
350      * just 0 for non-waters.
351      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
352      * jnr indices corresponding to data put in the four positions in the SIMD register.
353      */
354     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
355     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
356     int              jnrA,jnrB,jnrC,jnrD;
357     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
358     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
359     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
360     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
361     real             rcutoff_scalar;
362     real             *shiftvec,*fshift,*x,*f;
363     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
364     real             scratch[4*DIM];
365     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
366     real *           vdwioffsetptr0;
367     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
368     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
369     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
370     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
371     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
372     real             *charge;
373     __m256d          dummy_mask,cutoff_mask;
374     __m128           tmpmask0,tmpmask1;
375     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
376     __m256d          one     = _mm256_set1_pd(1.0);
377     __m256d          two     = _mm256_set1_pd(2.0);
378     x                = xx[0];
379     f                = ff[0];
380
381     nri              = nlist->nri;
382     iinr             = nlist->iinr;
383     jindex           = nlist->jindex;
384     jjnr             = nlist->jjnr;
385     shiftidx         = nlist->shift;
386     gid              = nlist->gid;
387     shiftvec         = fr->shift_vec[0];
388     fshift           = fr->fshift[0];
389     facel            = _mm256_set1_pd(fr->epsfac);
390     charge           = mdatoms->chargeA;
391
392     /* Avoid stupid compiler warnings */
393     jnrA = jnrB = jnrC = jnrD = 0;
394     j_coord_offsetA = 0;
395     j_coord_offsetB = 0;
396     j_coord_offsetC = 0;
397     j_coord_offsetD = 0;
398
399     outeriter        = 0;
400     inneriter        = 0;
401
402     for(iidx=0;iidx<4*DIM;iidx++)
403     {
404         scratch[iidx] = 0.0;
405     }
406
407     /* Start outer loop over neighborlists */
408     for(iidx=0; iidx<nri; iidx++)
409     {
410         /* Load shift vector for this list */
411         i_shift_offset   = DIM*shiftidx[iidx];
412
413         /* Load limits for loop over neighbors */
414         j_index_start    = jindex[iidx];
415         j_index_end      = jindex[iidx+1];
416
417         /* Get outer coordinate index */
418         inr              = iinr[iidx];
419         i_coord_offset   = DIM*inr;
420
421         /* Load i particle coords and add shift vector */
422         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
423
424         fix0             = _mm256_setzero_pd();
425         fiy0             = _mm256_setzero_pd();
426         fiz0             = _mm256_setzero_pd();
427
428         /* Load parameters for i particles */
429         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
430
431         /* Start inner kernel loop */
432         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
433         {
434
435             /* Get j neighbor index, and coordinate index */
436             jnrA             = jjnr[jidx];
437             jnrB             = jjnr[jidx+1];
438             jnrC             = jjnr[jidx+2];
439             jnrD             = jjnr[jidx+3];
440             j_coord_offsetA  = DIM*jnrA;
441             j_coord_offsetB  = DIM*jnrB;
442             j_coord_offsetC  = DIM*jnrC;
443             j_coord_offsetD  = DIM*jnrD;
444
445             /* load j atom coordinates */
446             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
447                                                  x+j_coord_offsetC,x+j_coord_offsetD,
448                                                  &jx0,&jy0,&jz0);
449
450             /* Calculate displacement vector */
451             dx00             = _mm256_sub_pd(ix0,jx0);
452             dy00             = _mm256_sub_pd(iy0,jy0);
453             dz00             = _mm256_sub_pd(iz0,jz0);
454
455             /* Calculate squared distance and things based on it */
456             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
457
458             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
459
460             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
461
462             /* Load parameters for j particles */
463             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
464                                                                  charge+jnrC+0,charge+jnrD+0);
465
466             /**************************
467              * CALCULATE INTERACTIONS *
468              **************************/
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq00             = _mm256_mul_pd(iq0,jq0);
472
473             /* COULOMB ELECTROSTATICS */
474             velec            = _mm256_mul_pd(qq00,rinv00);
475             felec            = _mm256_mul_pd(velec,rinvsq00);
476
477             fscal            = felec;
478
479             /* Calculate temporary vectorial force */
480             tx               = _mm256_mul_pd(fscal,dx00);
481             ty               = _mm256_mul_pd(fscal,dy00);
482             tz               = _mm256_mul_pd(fscal,dz00);
483
484             /* Update vectorial force */
485             fix0             = _mm256_add_pd(fix0,tx);
486             fiy0             = _mm256_add_pd(fiy0,ty);
487             fiz0             = _mm256_add_pd(fiz0,tz);
488
489             fjptrA             = f+j_coord_offsetA;
490             fjptrB             = f+j_coord_offsetB;
491             fjptrC             = f+j_coord_offsetC;
492             fjptrD             = f+j_coord_offsetD;
493             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
494
495             /* Inner loop uses 26 flops */
496         }
497
498         if(jidx<j_index_end)
499         {
500
501             /* Get j neighbor index, and coordinate index */
502             jnrlistA         = jjnr[jidx];
503             jnrlistB         = jjnr[jidx+1];
504             jnrlistC         = jjnr[jidx+2];
505             jnrlistD         = jjnr[jidx+3];
506             /* Sign of each element will be negative for non-real atoms.
507              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
508              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
509              */
510             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
511
512             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
513             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
514             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
515
516             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
517             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
518             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
519             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
520             j_coord_offsetA  = DIM*jnrA;
521             j_coord_offsetB  = DIM*jnrB;
522             j_coord_offsetC  = DIM*jnrC;
523             j_coord_offsetD  = DIM*jnrD;
524
525             /* load j atom coordinates */
526             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
527                                                  x+j_coord_offsetC,x+j_coord_offsetD,
528                                                  &jx0,&jy0,&jz0);
529
530             /* Calculate displacement vector */
531             dx00             = _mm256_sub_pd(ix0,jx0);
532             dy00             = _mm256_sub_pd(iy0,jy0);
533             dz00             = _mm256_sub_pd(iz0,jz0);
534
535             /* Calculate squared distance and things based on it */
536             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
537
538             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
539
540             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
541
542             /* Load parameters for j particles */
543             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
544                                                                  charge+jnrC+0,charge+jnrD+0);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq00             = _mm256_mul_pd(iq0,jq0);
552
553             /* COULOMB ELECTROSTATICS */
554             velec            = _mm256_mul_pd(qq00,rinv00);
555             felec            = _mm256_mul_pd(velec,rinvsq00);
556
557             fscal            = felec;
558
559             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm256_mul_pd(fscal,dx00);
563             ty               = _mm256_mul_pd(fscal,dy00);
564             tz               = _mm256_mul_pd(fscal,dz00);
565
566             /* Update vectorial force */
567             fix0             = _mm256_add_pd(fix0,tx);
568             fiy0             = _mm256_add_pd(fiy0,ty);
569             fiz0             = _mm256_add_pd(fiz0,tz);
570
571             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
572             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
573             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
574             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
575             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
576
577             /* Inner loop uses 26 flops */
578         }
579
580         /* End of innermost loop */
581
582         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
583                                                  f+i_coord_offset,fshift+i_shift_offset);
584
585         /* Increment number of inner iterations */
586         inneriter                  += j_index_end - j_index_start;
587
588         /* Outer loop uses 7 flops */
589     }
590
591     /* Increment number of outer iterations */
592     outeriter        += nri;
593
594     /* Update outer/inner flops */
595
596     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*26);
597 }