Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
79     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
84     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
91     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
92     __m256d          dummy_mask,cutoff_mask;
93     __m128           tmpmask0,tmpmask1;
94     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
95     __m256d          one     = _mm256_set1_pd(1.0);
96     __m256d          two     = _mm256_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm256_set1_pd(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
117     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
118     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
119     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = jnrC = jnrD = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125     j_coord_offsetC = 0;
126     j_coord_offsetD = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     for(iidx=0;iidx<4*DIM;iidx++)
132     {
133         scratch[iidx] = 0.0;
134     }
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
152                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
153
154         fix0             = _mm256_setzero_pd();
155         fiy0             = _mm256_setzero_pd();
156         fiz0             = _mm256_setzero_pd();
157         fix1             = _mm256_setzero_pd();
158         fiy1             = _mm256_setzero_pd();
159         fiz1             = _mm256_setzero_pd();
160         fix2             = _mm256_setzero_pd();
161         fiy2             = _mm256_setzero_pd();
162         fiz2             = _mm256_setzero_pd();
163         fix3             = _mm256_setzero_pd();
164         fiy3             = _mm256_setzero_pd();
165         fiz3             = _mm256_setzero_pd();
166
167         /* Reset potential sums */
168         velecsum         = _mm256_setzero_pd();
169         vvdwsum          = _mm256_setzero_pd();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                                  x+j_coord_offsetC,x+j_coord_offsetD,
188                                                  &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm256_sub_pd(ix0,jx0);
192             dy00             = _mm256_sub_pd(iy0,jy0);
193             dz00             = _mm256_sub_pd(iz0,jz0);
194             dx10             = _mm256_sub_pd(ix1,jx0);
195             dy10             = _mm256_sub_pd(iy1,jy0);
196             dz10             = _mm256_sub_pd(iz1,jz0);
197             dx20             = _mm256_sub_pd(ix2,jx0);
198             dy20             = _mm256_sub_pd(iy2,jy0);
199             dz20             = _mm256_sub_pd(iz2,jz0);
200             dx30             = _mm256_sub_pd(ix3,jx0);
201             dy30             = _mm256_sub_pd(iy3,jy0);
202             dz30             = _mm256_sub_pd(iz3,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
206             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
207             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
208             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
209
210             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
211             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
212             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
213
214             rinvsq00         = gmx_mm256_inv_pd(rsq00);
215             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
216             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
217             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
221                                                                  charge+jnrC+0,charge+jnrD+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224             vdwjidx0C        = 2*vdwtype[jnrC+0];
225             vdwjidx0D        = 2*vdwtype[jnrD+0];
226
227             fjx0             = _mm256_setzero_pd();
228             fjy0             = _mm256_setzero_pd();
229             fjz0             = _mm256_setzero_pd();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             /* Compute parameters for interactions between i and j atoms */
236             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
237                                             vdwioffsetptr0+vdwjidx0B,
238                                             vdwioffsetptr0+vdwjidx0C,
239                                             vdwioffsetptr0+vdwjidx0D,
240                                             &c6_00,&c12_00);
241
242             /* LENNARD-JONES DISPERSION/REPULSION */
243
244             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
245             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
246             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
247             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
248             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
252
253             fscal            = fvdw;
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm256_mul_pd(fscal,dx00);
257             ty               = _mm256_mul_pd(fscal,dy00);
258             tz               = _mm256_mul_pd(fscal,dz00);
259
260             /* Update vectorial force */
261             fix0             = _mm256_add_pd(fix0,tx);
262             fiy0             = _mm256_add_pd(fiy0,ty);
263             fiz0             = _mm256_add_pd(fiz0,tz);
264
265             fjx0             = _mm256_add_pd(fjx0,tx);
266             fjy0             = _mm256_add_pd(fjy0,ty);
267             fjz0             = _mm256_add_pd(fjz0,tz);
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             /* Compute parameters for interactions between i and j atoms */
274             qq10             = _mm256_mul_pd(iq1,jq0);
275
276             /* COULOMB ELECTROSTATICS */
277             velec            = _mm256_mul_pd(qq10,rinv10);
278             felec            = _mm256_mul_pd(velec,rinvsq10);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm256_add_pd(velecsum,velec);
282
283             fscal            = felec;
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm256_mul_pd(fscal,dx10);
287             ty               = _mm256_mul_pd(fscal,dy10);
288             tz               = _mm256_mul_pd(fscal,dz10);
289
290             /* Update vectorial force */
291             fix1             = _mm256_add_pd(fix1,tx);
292             fiy1             = _mm256_add_pd(fiy1,ty);
293             fiz1             = _mm256_add_pd(fiz1,tz);
294
295             fjx0             = _mm256_add_pd(fjx0,tx);
296             fjy0             = _mm256_add_pd(fjy0,ty);
297             fjz0             = _mm256_add_pd(fjz0,tz);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq20             = _mm256_mul_pd(iq2,jq0);
305
306             /* COULOMB ELECTROSTATICS */
307             velec            = _mm256_mul_pd(qq20,rinv20);
308             felec            = _mm256_mul_pd(velec,rinvsq20);
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velecsum         = _mm256_add_pd(velecsum,velec);
312
313             fscal            = felec;
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm256_mul_pd(fscal,dx20);
317             ty               = _mm256_mul_pd(fscal,dy20);
318             tz               = _mm256_mul_pd(fscal,dz20);
319
320             /* Update vectorial force */
321             fix2             = _mm256_add_pd(fix2,tx);
322             fiy2             = _mm256_add_pd(fiy2,ty);
323             fiz2             = _mm256_add_pd(fiz2,tz);
324
325             fjx0             = _mm256_add_pd(fjx0,tx);
326             fjy0             = _mm256_add_pd(fjy0,ty);
327             fjz0             = _mm256_add_pd(fjz0,tz);
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq30             = _mm256_mul_pd(iq3,jq0);
335
336             /* COULOMB ELECTROSTATICS */
337             velec            = _mm256_mul_pd(qq30,rinv30);
338             felec            = _mm256_mul_pd(velec,rinvsq30);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velecsum         = _mm256_add_pd(velecsum,velec);
342
343             fscal            = felec;
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm256_mul_pd(fscal,dx30);
347             ty               = _mm256_mul_pd(fscal,dy30);
348             tz               = _mm256_mul_pd(fscal,dz30);
349
350             /* Update vectorial force */
351             fix3             = _mm256_add_pd(fix3,tx);
352             fiy3             = _mm256_add_pd(fiy3,ty);
353             fiz3             = _mm256_add_pd(fiz3,tz);
354
355             fjx0             = _mm256_add_pd(fjx0,tx);
356             fjy0             = _mm256_add_pd(fjy0,ty);
357             fjz0             = _mm256_add_pd(fjz0,tz);
358
359             fjptrA             = f+j_coord_offsetA;
360             fjptrB             = f+j_coord_offsetB;
361             fjptrC             = f+j_coord_offsetC;
362             fjptrD             = f+j_coord_offsetD;
363
364             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
365
366             /* Inner loop uses 116 flops */
367         }
368
369         if(jidx<j_index_end)
370         {
371
372             /* Get j neighbor index, and coordinate index */
373             jnrlistA         = jjnr[jidx];
374             jnrlistB         = jjnr[jidx+1];
375             jnrlistC         = jjnr[jidx+2];
376             jnrlistD         = jjnr[jidx+3];
377             /* Sign of each element will be negative for non-real atoms.
378              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
379              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
380              */
381             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
382
383             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
384             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
385             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
386
387             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
388             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
389             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
390             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
391             j_coord_offsetA  = DIM*jnrA;
392             j_coord_offsetB  = DIM*jnrB;
393             j_coord_offsetC  = DIM*jnrC;
394             j_coord_offsetD  = DIM*jnrD;
395
396             /* load j atom coordinates */
397             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
398                                                  x+j_coord_offsetC,x+j_coord_offsetD,
399                                                  &jx0,&jy0,&jz0);
400
401             /* Calculate displacement vector */
402             dx00             = _mm256_sub_pd(ix0,jx0);
403             dy00             = _mm256_sub_pd(iy0,jy0);
404             dz00             = _mm256_sub_pd(iz0,jz0);
405             dx10             = _mm256_sub_pd(ix1,jx0);
406             dy10             = _mm256_sub_pd(iy1,jy0);
407             dz10             = _mm256_sub_pd(iz1,jz0);
408             dx20             = _mm256_sub_pd(ix2,jx0);
409             dy20             = _mm256_sub_pd(iy2,jy0);
410             dz20             = _mm256_sub_pd(iz2,jz0);
411             dx30             = _mm256_sub_pd(ix3,jx0);
412             dy30             = _mm256_sub_pd(iy3,jy0);
413             dz30             = _mm256_sub_pd(iz3,jz0);
414
415             /* Calculate squared distance and things based on it */
416             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
417             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
418             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
419             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
420
421             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
422             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
423             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
424
425             rinvsq00         = gmx_mm256_inv_pd(rsq00);
426             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
427             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
428             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
429
430             /* Load parameters for j particles */
431             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
432                                                                  charge+jnrC+0,charge+jnrD+0);
433             vdwjidx0A        = 2*vdwtype[jnrA+0];
434             vdwjidx0B        = 2*vdwtype[jnrB+0];
435             vdwjidx0C        = 2*vdwtype[jnrC+0];
436             vdwjidx0D        = 2*vdwtype[jnrD+0];
437
438             fjx0             = _mm256_setzero_pd();
439             fjy0             = _mm256_setzero_pd();
440             fjz0             = _mm256_setzero_pd();
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             /* Compute parameters for interactions between i and j atoms */
447             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
448                                             vdwioffsetptr0+vdwjidx0B,
449                                             vdwioffsetptr0+vdwjidx0C,
450                                             vdwioffsetptr0+vdwjidx0D,
451                                             &c6_00,&c12_00);
452
453             /* LENNARD-JONES DISPERSION/REPULSION */
454
455             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
456             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
457             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
458             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
459             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
460
461             /* Update potential sum for this i atom from the interaction with this j atom. */
462             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
463             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
464
465             fscal            = fvdw;
466
467             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
468
469             /* Calculate temporary vectorial force */
470             tx               = _mm256_mul_pd(fscal,dx00);
471             ty               = _mm256_mul_pd(fscal,dy00);
472             tz               = _mm256_mul_pd(fscal,dz00);
473
474             /* Update vectorial force */
475             fix0             = _mm256_add_pd(fix0,tx);
476             fiy0             = _mm256_add_pd(fiy0,ty);
477             fiz0             = _mm256_add_pd(fiz0,tz);
478
479             fjx0             = _mm256_add_pd(fjx0,tx);
480             fjy0             = _mm256_add_pd(fjy0,ty);
481             fjz0             = _mm256_add_pd(fjz0,tz);
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq10             = _mm256_mul_pd(iq1,jq0);
489
490             /* COULOMB ELECTROSTATICS */
491             velec            = _mm256_mul_pd(qq10,rinv10);
492             felec            = _mm256_mul_pd(velec,rinvsq10);
493
494             /* Update potential sum for this i atom from the interaction with this j atom. */
495             velec            = _mm256_andnot_pd(dummy_mask,velec);
496             velecsum         = _mm256_add_pd(velecsum,velec);
497
498             fscal            = felec;
499
500             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
501
502             /* Calculate temporary vectorial force */
503             tx               = _mm256_mul_pd(fscal,dx10);
504             ty               = _mm256_mul_pd(fscal,dy10);
505             tz               = _mm256_mul_pd(fscal,dz10);
506
507             /* Update vectorial force */
508             fix1             = _mm256_add_pd(fix1,tx);
509             fiy1             = _mm256_add_pd(fiy1,ty);
510             fiz1             = _mm256_add_pd(fiz1,tz);
511
512             fjx0             = _mm256_add_pd(fjx0,tx);
513             fjy0             = _mm256_add_pd(fjy0,ty);
514             fjz0             = _mm256_add_pd(fjz0,tz);
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             /* Compute parameters for interactions between i and j atoms */
521             qq20             = _mm256_mul_pd(iq2,jq0);
522
523             /* COULOMB ELECTROSTATICS */
524             velec            = _mm256_mul_pd(qq20,rinv20);
525             felec            = _mm256_mul_pd(velec,rinvsq20);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velec            = _mm256_andnot_pd(dummy_mask,velec);
529             velecsum         = _mm256_add_pd(velecsum,velec);
530
531             fscal            = felec;
532
533             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
534
535             /* Calculate temporary vectorial force */
536             tx               = _mm256_mul_pd(fscal,dx20);
537             ty               = _mm256_mul_pd(fscal,dy20);
538             tz               = _mm256_mul_pd(fscal,dz20);
539
540             /* Update vectorial force */
541             fix2             = _mm256_add_pd(fix2,tx);
542             fiy2             = _mm256_add_pd(fiy2,ty);
543             fiz2             = _mm256_add_pd(fiz2,tz);
544
545             fjx0             = _mm256_add_pd(fjx0,tx);
546             fjy0             = _mm256_add_pd(fjy0,ty);
547             fjz0             = _mm256_add_pd(fjz0,tz);
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq30             = _mm256_mul_pd(iq3,jq0);
555
556             /* COULOMB ELECTROSTATICS */
557             velec            = _mm256_mul_pd(qq30,rinv30);
558             felec            = _mm256_mul_pd(velec,rinvsq30);
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm256_andnot_pd(dummy_mask,velec);
562             velecsum         = _mm256_add_pd(velecsum,velec);
563
564             fscal            = felec;
565
566             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm256_mul_pd(fscal,dx30);
570             ty               = _mm256_mul_pd(fscal,dy30);
571             tz               = _mm256_mul_pd(fscal,dz30);
572
573             /* Update vectorial force */
574             fix3             = _mm256_add_pd(fix3,tx);
575             fiy3             = _mm256_add_pd(fiy3,ty);
576             fiz3             = _mm256_add_pd(fiz3,tz);
577
578             fjx0             = _mm256_add_pd(fjx0,tx);
579             fjy0             = _mm256_add_pd(fjy0,ty);
580             fjz0             = _mm256_add_pd(fjz0,tz);
581
582             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
583             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
584             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
585             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
586
587             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
588
589             /* Inner loop uses 116 flops */
590         }
591
592         /* End of innermost loop */
593
594         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
595                                                  f+i_coord_offset,fshift+i_shift_offset);
596
597         ggid                        = gid[iidx];
598         /* Update potential energies */
599         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
600         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
601
602         /* Increment number of inner iterations */
603         inneriter                  += j_index_end - j_index_start;
604
605         /* Outer loop uses 26 flops */
606     }
607
608     /* Increment number of outer iterations */
609     outeriter        += nri;
610
611     /* Update outer/inner flops */
612
613     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*116);
614 }
615 /*
616  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_double
617  * Electrostatics interaction: Coulomb
618  * VdW interaction:            LennardJones
619  * Geometry:                   Water4-Particle
620  * Calculate force/pot:        Force
621  */
622 void
623 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_double
624                     (t_nblist * gmx_restrict                nlist,
625                      rvec * gmx_restrict                    xx,
626                      rvec * gmx_restrict                    ff,
627                      t_forcerec * gmx_restrict              fr,
628                      t_mdatoms * gmx_restrict               mdatoms,
629                      nb_kernel_data_t * gmx_restrict        kernel_data,
630                      t_nrnb * gmx_restrict                  nrnb)
631 {
632     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
633      * just 0 for non-waters.
634      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
635      * jnr indices corresponding to data put in the four positions in the SIMD register.
636      */
637     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
638     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
639     int              jnrA,jnrB,jnrC,jnrD;
640     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
641     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
642     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
643     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
644     real             rcutoff_scalar;
645     real             *shiftvec,*fshift,*x,*f;
646     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
647     real             scratch[4*DIM];
648     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
649     real *           vdwioffsetptr0;
650     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
651     real *           vdwioffsetptr1;
652     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
653     real *           vdwioffsetptr2;
654     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
655     real *           vdwioffsetptr3;
656     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
657     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
658     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
659     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
660     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
661     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
662     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
663     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
664     real             *charge;
665     int              nvdwtype;
666     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
667     int              *vdwtype;
668     real             *vdwparam;
669     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
670     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
671     __m256d          dummy_mask,cutoff_mask;
672     __m128           tmpmask0,tmpmask1;
673     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
674     __m256d          one     = _mm256_set1_pd(1.0);
675     __m256d          two     = _mm256_set1_pd(2.0);
676     x                = xx[0];
677     f                = ff[0];
678
679     nri              = nlist->nri;
680     iinr             = nlist->iinr;
681     jindex           = nlist->jindex;
682     jjnr             = nlist->jjnr;
683     shiftidx         = nlist->shift;
684     gid              = nlist->gid;
685     shiftvec         = fr->shift_vec[0];
686     fshift           = fr->fshift[0];
687     facel            = _mm256_set1_pd(fr->epsfac);
688     charge           = mdatoms->chargeA;
689     nvdwtype         = fr->ntype;
690     vdwparam         = fr->nbfp;
691     vdwtype          = mdatoms->typeA;
692
693     /* Setup water-specific parameters */
694     inr              = nlist->iinr[0];
695     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
696     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
697     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
698     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
699
700     /* Avoid stupid compiler warnings */
701     jnrA = jnrB = jnrC = jnrD = 0;
702     j_coord_offsetA = 0;
703     j_coord_offsetB = 0;
704     j_coord_offsetC = 0;
705     j_coord_offsetD = 0;
706
707     outeriter        = 0;
708     inneriter        = 0;
709
710     for(iidx=0;iidx<4*DIM;iidx++)
711     {
712         scratch[iidx] = 0.0;
713     }
714
715     /* Start outer loop over neighborlists */
716     for(iidx=0; iidx<nri; iidx++)
717     {
718         /* Load shift vector for this list */
719         i_shift_offset   = DIM*shiftidx[iidx];
720
721         /* Load limits for loop over neighbors */
722         j_index_start    = jindex[iidx];
723         j_index_end      = jindex[iidx+1];
724
725         /* Get outer coordinate index */
726         inr              = iinr[iidx];
727         i_coord_offset   = DIM*inr;
728
729         /* Load i particle coords and add shift vector */
730         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
731                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
732
733         fix0             = _mm256_setzero_pd();
734         fiy0             = _mm256_setzero_pd();
735         fiz0             = _mm256_setzero_pd();
736         fix1             = _mm256_setzero_pd();
737         fiy1             = _mm256_setzero_pd();
738         fiz1             = _mm256_setzero_pd();
739         fix2             = _mm256_setzero_pd();
740         fiy2             = _mm256_setzero_pd();
741         fiz2             = _mm256_setzero_pd();
742         fix3             = _mm256_setzero_pd();
743         fiy3             = _mm256_setzero_pd();
744         fiz3             = _mm256_setzero_pd();
745
746         /* Start inner kernel loop */
747         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
748         {
749
750             /* Get j neighbor index, and coordinate index */
751             jnrA             = jjnr[jidx];
752             jnrB             = jjnr[jidx+1];
753             jnrC             = jjnr[jidx+2];
754             jnrD             = jjnr[jidx+3];
755             j_coord_offsetA  = DIM*jnrA;
756             j_coord_offsetB  = DIM*jnrB;
757             j_coord_offsetC  = DIM*jnrC;
758             j_coord_offsetD  = DIM*jnrD;
759
760             /* load j atom coordinates */
761             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
762                                                  x+j_coord_offsetC,x+j_coord_offsetD,
763                                                  &jx0,&jy0,&jz0);
764
765             /* Calculate displacement vector */
766             dx00             = _mm256_sub_pd(ix0,jx0);
767             dy00             = _mm256_sub_pd(iy0,jy0);
768             dz00             = _mm256_sub_pd(iz0,jz0);
769             dx10             = _mm256_sub_pd(ix1,jx0);
770             dy10             = _mm256_sub_pd(iy1,jy0);
771             dz10             = _mm256_sub_pd(iz1,jz0);
772             dx20             = _mm256_sub_pd(ix2,jx0);
773             dy20             = _mm256_sub_pd(iy2,jy0);
774             dz20             = _mm256_sub_pd(iz2,jz0);
775             dx30             = _mm256_sub_pd(ix3,jx0);
776             dy30             = _mm256_sub_pd(iy3,jy0);
777             dz30             = _mm256_sub_pd(iz3,jz0);
778
779             /* Calculate squared distance and things based on it */
780             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
781             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
782             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
783             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
784
785             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
786             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
787             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
788
789             rinvsq00         = gmx_mm256_inv_pd(rsq00);
790             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
791             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
792             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
793
794             /* Load parameters for j particles */
795             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
796                                                                  charge+jnrC+0,charge+jnrD+0);
797             vdwjidx0A        = 2*vdwtype[jnrA+0];
798             vdwjidx0B        = 2*vdwtype[jnrB+0];
799             vdwjidx0C        = 2*vdwtype[jnrC+0];
800             vdwjidx0D        = 2*vdwtype[jnrD+0];
801
802             fjx0             = _mm256_setzero_pd();
803             fjy0             = _mm256_setzero_pd();
804             fjz0             = _mm256_setzero_pd();
805
806             /**************************
807              * CALCULATE INTERACTIONS *
808              **************************/
809
810             /* Compute parameters for interactions between i and j atoms */
811             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
812                                             vdwioffsetptr0+vdwjidx0B,
813                                             vdwioffsetptr0+vdwjidx0C,
814                                             vdwioffsetptr0+vdwjidx0D,
815                                             &c6_00,&c12_00);
816
817             /* LENNARD-JONES DISPERSION/REPULSION */
818
819             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
820             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
821
822             fscal            = fvdw;
823
824             /* Calculate temporary vectorial force */
825             tx               = _mm256_mul_pd(fscal,dx00);
826             ty               = _mm256_mul_pd(fscal,dy00);
827             tz               = _mm256_mul_pd(fscal,dz00);
828
829             /* Update vectorial force */
830             fix0             = _mm256_add_pd(fix0,tx);
831             fiy0             = _mm256_add_pd(fiy0,ty);
832             fiz0             = _mm256_add_pd(fiz0,tz);
833
834             fjx0             = _mm256_add_pd(fjx0,tx);
835             fjy0             = _mm256_add_pd(fjy0,ty);
836             fjz0             = _mm256_add_pd(fjz0,tz);
837
838             /**************************
839              * CALCULATE INTERACTIONS *
840              **************************/
841
842             /* Compute parameters for interactions between i and j atoms */
843             qq10             = _mm256_mul_pd(iq1,jq0);
844
845             /* COULOMB ELECTROSTATICS */
846             velec            = _mm256_mul_pd(qq10,rinv10);
847             felec            = _mm256_mul_pd(velec,rinvsq10);
848
849             fscal            = felec;
850
851             /* Calculate temporary vectorial force */
852             tx               = _mm256_mul_pd(fscal,dx10);
853             ty               = _mm256_mul_pd(fscal,dy10);
854             tz               = _mm256_mul_pd(fscal,dz10);
855
856             /* Update vectorial force */
857             fix1             = _mm256_add_pd(fix1,tx);
858             fiy1             = _mm256_add_pd(fiy1,ty);
859             fiz1             = _mm256_add_pd(fiz1,tz);
860
861             fjx0             = _mm256_add_pd(fjx0,tx);
862             fjy0             = _mm256_add_pd(fjy0,ty);
863             fjz0             = _mm256_add_pd(fjz0,tz);
864
865             /**************************
866              * CALCULATE INTERACTIONS *
867              **************************/
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq20             = _mm256_mul_pd(iq2,jq0);
871
872             /* COULOMB ELECTROSTATICS */
873             velec            = _mm256_mul_pd(qq20,rinv20);
874             felec            = _mm256_mul_pd(velec,rinvsq20);
875
876             fscal            = felec;
877
878             /* Calculate temporary vectorial force */
879             tx               = _mm256_mul_pd(fscal,dx20);
880             ty               = _mm256_mul_pd(fscal,dy20);
881             tz               = _mm256_mul_pd(fscal,dz20);
882
883             /* Update vectorial force */
884             fix2             = _mm256_add_pd(fix2,tx);
885             fiy2             = _mm256_add_pd(fiy2,ty);
886             fiz2             = _mm256_add_pd(fiz2,tz);
887
888             fjx0             = _mm256_add_pd(fjx0,tx);
889             fjy0             = _mm256_add_pd(fjy0,ty);
890             fjz0             = _mm256_add_pd(fjz0,tz);
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             /* Compute parameters for interactions between i and j atoms */
897             qq30             = _mm256_mul_pd(iq3,jq0);
898
899             /* COULOMB ELECTROSTATICS */
900             velec            = _mm256_mul_pd(qq30,rinv30);
901             felec            = _mm256_mul_pd(velec,rinvsq30);
902
903             fscal            = felec;
904
905             /* Calculate temporary vectorial force */
906             tx               = _mm256_mul_pd(fscal,dx30);
907             ty               = _mm256_mul_pd(fscal,dy30);
908             tz               = _mm256_mul_pd(fscal,dz30);
909
910             /* Update vectorial force */
911             fix3             = _mm256_add_pd(fix3,tx);
912             fiy3             = _mm256_add_pd(fiy3,ty);
913             fiz3             = _mm256_add_pd(fiz3,tz);
914
915             fjx0             = _mm256_add_pd(fjx0,tx);
916             fjy0             = _mm256_add_pd(fjy0,ty);
917             fjz0             = _mm256_add_pd(fjz0,tz);
918
919             fjptrA             = f+j_coord_offsetA;
920             fjptrB             = f+j_coord_offsetB;
921             fjptrC             = f+j_coord_offsetC;
922             fjptrD             = f+j_coord_offsetD;
923
924             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
925
926             /* Inner loop uses 108 flops */
927         }
928
929         if(jidx<j_index_end)
930         {
931
932             /* Get j neighbor index, and coordinate index */
933             jnrlistA         = jjnr[jidx];
934             jnrlistB         = jjnr[jidx+1];
935             jnrlistC         = jjnr[jidx+2];
936             jnrlistD         = jjnr[jidx+3];
937             /* Sign of each element will be negative for non-real atoms.
938              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
939              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
940              */
941             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
942
943             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
944             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
945             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
946
947             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
948             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
949             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
950             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
951             j_coord_offsetA  = DIM*jnrA;
952             j_coord_offsetB  = DIM*jnrB;
953             j_coord_offsetC  = DIM*jnrC;
954             j_coord_offsetD  = DIM*jnrD;
955
956             /* load j atom coordinates */
957             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
958                                                  x+j_coord_offsetC,x+j_coord_offsetD,
959                                                  &jx0,&jy0,&jz0);
960
961             /* Calculate displacement vector */
962             dx00             = _mm256_sub_pd(ix0,jx0);
963             dy00             = _mm256_sub_pd(iy0,jy0);
964             dz00             = _mm256_sub_pd(iz0,jz0);
965             dx10             = _mm256_sub_pd(ix1,jx0);
966             dy10             = _mm256_sub_pd(iy1,jy0);
967             dz10             = _mm256_sub_pd(iz1,jz0);
968             dx20             = _mm256_sub_pd(ix2,jx0);
969             dy20             = _mm256_sub_pd(iy2,jy0);
970             dz20             = _mm256_sub_pd(iz2,jz0);
971             dx30             = _mm256_sub_pd(ix3,jx0);
972             dy30             = _mm256_sub_pd(iy3,jy0);
973             dz30             = _mm256_sub_pd(iz3,jz0);
974
975             /* Calculate squared distance and things based on it */
976             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
977             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
978             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
979             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
980
981             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
982             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
983             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
984
985             rinvsq00         = gmx_mm256_inv_pd(rsq00);
986             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
987             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
988             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
989
990             /* Load parameters for j particles */
991             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
992                                                                  charge+jnrC+0,charge+jnrD+0);
993             vdwjidx0A        = 2*vdwtype[jnrA+0];
994             vdwjidx0B        = 2*vdwtype[jnrB+0];
995             vdwjidx0C        = 2*vdwtype[jnrC+0];
996             vdwjidx0D        = 2*vdwtype[jnrD+0];
997
998             fjx0             = _mm256_setzero_pd();
999             fjy0             = _mm256_setzero_pd();
1000             fjz0             = _mm256_setzero_pd();
1001
1002             /**************************
1003              * CALCULATE INTERACTIONS *
1004              **************************/
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1008                                             vdwioffsetptr0+vdwjidx0B,
1009                                             vdwioffsetptr0+vdwjidx0C,
1010                                             vdwioffsetptr0+vdwjidx0D,
1011                                             &c6_00,&c12_00);
1012
1013             /* LENNARD-JONES DISPERSION/REPULSION */
1014
1015             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1016             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1017
1018             fscal            = fvdw;
1019
1020             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1021
1022             /* Calculate temporary vectorial force */
1023             tx               = _mm256_mul_pd(fscal,dx00);
1024             ty               = _mm256_mul_pd(fscal,dy00);
1025             tz               = _mm256_mul_pd(fscal,dz00);
1026
1027             /* Update vectorial force */
1028             fix0             = _mm256_add_pd(fix0,tx);
1029             fiy0             = _mm256_add_pd(fiy0,ty);
1030             fiz0             = _mm256_add_pd(fiz0,tz);
1031
1032             fjx0             = _mm256_add_pd(fjx0,tx);
1033             fjy0             = _mm256_add_pd(fjy0,ty);
1034             fjz0             = _mm256_add_pd(fjz0,tz);
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             /* Compute parameters for interactions between i and j atoms */
1041             qq10             = _mm256_mul_pd(iq1,jq0);
1042
1043             /* COULOMB ELECTROSTATICS */
1044             velec            = _mm256_mul_pd(qq10,rinv10);
1045             felec            = _mm256_mul_pd(velec,rinvsq10);
1046
1047             fscal            = felec;
1048
1049             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1050
1051             /* Calculate temporary vectorial force */
1052             tx               = _mm256_mul_pd(fscal,dx10);
1053             ty               = _mm256_mul_pd(fscal,dy10);
1054             tz               = _mm256_mul_pd(fscal,dz10);
1055
1056             /* Update vectorial force */
1057             fix1             = _mm256_add_pd(fix1,tx);
1058             fiy1             = _mm256_add_pd(fiy1,ty);
1059             fiz1             = _mm256_add_pd(fiz1,tz);
1060
1061             fjx0             = _mm256_add_pd(fjx0,tx);
1062             fjy0             = _mm256_add_pd(fjy0,ty);
1063             fjz0             = _mm256_add_pd(fjz0,tz);
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq20             = _mm256_mul_pd(iq2,jq0);
1071
1072             /* COULOMB ELECTROSTATICS */
1073             velec            = _mm256_mul_pd(qq20,rinv20);
1074             felec            = _mm256_mul_pd(velec,rinvsq20);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = _mm256_mul_pd(fscal,dx20);
1082             ty               = _mm256_mul_pd(fscal,dy20);
1083             tz               = _mm256_mul_pd(fscal,dz20);
1084
1085             /* Update vectorial force */
1086             fix2             = _mm256_add_pd(fix2,tx);
1087             fiy2             = _mm256_add_pd(fiy2,ty);
1088             fiz2             = _mm256_add_pd(fiz2,tz);
1089
1090             fjx0             = _mm256_add_pd(fjx0,tx);
1091             fjy0             = _mm256_add_pd(fjy0,ty);
1092             fjz0             = _mm256_add_pd(fjz0,tz);
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq30             = _mm256_mul_pd(iq3,jq0);
1100
1101             /* COULOMB ELECTROSTATICS */
1102             velec            = _mm256_mul_pd(qq30,rinv30);
1103             felec            = _mm256_mul_pd(velec,rinvsq30);
1104
1105             fscal            = felec;
1106
1107             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm256_mul_pd(fscal,dx30);
1111             ty               = _mm256_mul_pd(fscal,dy30);
1112             tz               = _mm256_mul_pd(fscal,dz30);
1113
1114             /* Update vectorial force */
1115             fix3             = _mm256_add_pd(fix3,tx);
1116             fiy3             = _mm256_add_pd(fiy3,ty);
1117             fiz3             = _mm256_add_pd(fiz3,tz);
1118
1119             fjx0             = _mm256_add_pd(fjx0,tx);
1120             fjy0             = _mm256_add_pd(fjy0,ty);
1121             fjz0             = _mm256_add_pd(fjz0,tz);
1122
1123             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1124             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1125             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1126             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1127
1128             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1129
1130             /* Inner loop uses 108 flops */
1131         }
1132
1133         /* End of innermost loop */
1134
1135         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1136                                                  f+i_coord_offset,fshift+i_shift_offset);
1137
1138         /* Increment number of inner iterations */
1139         inneriter                  += j_index_end - j_index_start;
1140
1141         /* Outer loop uses 24 flops */
1142     }
1143
1144     /* Increment number of outer iterations */
1145     outeriter        += nri;
1146
1147     /* Update outer/inner flops */
1148
1149     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108);
1150 }