Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m256d          dummy_mask,cutoff_mask;
109     __m128           tmpmask0,tmpmask1;
110     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
111     __m256d          one     = _mm256_set1_pd(1.0);
112     __m256d          two     = _mm256_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm256_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
133     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
134     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
135     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
169
170         fix0             = _mm256_setzero_pd();
171         fiy0             = _mm256_setzero_pd();
172         fiz0             = _mm256_setzero_pd();
173         fix1             = _mm256_setzero_pd();
174         fiy1             = _mm256_setzero_pd();
175         fiz1             = _mm256_setzero_pd();
176         fix2             = _mm256_setzero_pd();
177         fiy2             = _mm256_setzero_pd();
178         fiz2             = _mm256_setzero_pd();
179         fix3             = _mm256_setzero_pd();
180         fiy3             = _mm256_setzero_pd();
181         fiz3             = _mm256_setzero_pd();
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_pd();
185         vvdwsum          = _mm256_setzero_pd();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200
201             /* load j atom coordinates */
202             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
203                                                  x+j_coord_offsetC,x+j_coord_offsetD,
204                                                  &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm256_sub_pd(ix0,jx0);
208             dy00             = _mm256_sub_pd(iy0,jy0);
209             dz00             = _mm256_sub_pd(iz0,jz0);
210             dx10             = _mm256_sub_pd(ix1,jx0);
211             dy10             = _mm256_sub_pd(iy1,jy0);
212             dz10             = _mm256_sub_pd(iz1,jz0);
213             dx20             = _mm256_sub_pd(ix2,jx0);
214             dy20             = _mm256_sub_pd(iy2,jy0);
215             dz20             = _mm256_sub_pd(iz2,jz0);
216             dx30             = _mm256_sub_pd(ix3,jx0);
217             dy30             = _mm256_sub_pd(iy3,jy0);
218             dz30             = _mm256_sub_pd(iz3,jz0);
219
220             /* Calculate squared distance and things based on it */
221             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
222             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
223             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
224             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
225
226             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
227             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
228             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
229
230             rinvsq00         = gmx_mm256_inv_pd(rsq00);
231             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
232             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
233             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
234
235             /* Load parameters for j particles */
236             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
237                                                                  charge+jnrC+0,charge+jnrD+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242
243             fjx0             = _mm256_setzero_pd();
244             fjy0             = _mm256_setzero_pd();
245             fjz0             = _mm256_setzero_pd();
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             /* Compute parameters for interactions between i and j atoms */
252             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
253                                             vdwioffsetptr0+vdwjidx0B,
254                                             vdwioffsetptr0+vdwjidx0C,
255                                             vdwioffsetptr0+vdwjidx0D,
256                                             &c6_00,&c12_00);
257
258             /* LENNARD-JONES DISPERSION/REPULSION */
259
260             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
261             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
262             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
263             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
264             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
268
269             fscal            = fvdw;
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm256_mul_pd(fscal,dx00);
273             ty               = _mm256_mul_pd(fscal,dy00);
274             tz               = _mm256_mul_pd(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm256_add_pd(fix0,tx);
278             fiy0             = _mm256_add_pd(fiy0,ty);
279             fiz0             = _mm256_add_pd(fiz0,tz);
280
281             fjx0             = _mm256_add_pd(fjx0,tx);
282             fjy0             = _mm256_add_pd(fjy0,ty);
283             fjz0             = _mm256_add_pd(fjz0,tz);
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             /* Compute parameters for interactions between i and j atoms */
290             qq10             = _mm256_mul_pd(iq1,jq0);
291
292             /* COULOMB ELECTROSTATICS */
293             velec            = _mm256_mul_pd(qq10,rinv10);
294             felec            = _mm256_mul_pd(velec,rinvsq10);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velecsum         = _mm256_add_pd(velecsum,velec);
298
299             fscal            = felec;
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm256_mul_pd(fscal,dx10);
303             ty               = _mm256_mul_pd(fscal,dy10);
304             tz               = _mm256_mul_pd(fscal,dz10);
305
306             /* Update vectorial force */
307             fix1             = _mm256_add_pd(fix1,tx);
308             fiy1             = _mm256_add_pd(fiy1,ty);
309             fiz1             = _mm256_add_pd(fiz1,tz);
310
311             fjx0             = _mm256_add_pd(fjx0,tx);
312             fjy0             = _mm256_add_pd(fjy0,ty);
313             fjz0             = _mm256_add_pd(fjz0,tz);
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq20             = _mm256_mul_pd(iq2,jq0);
321
322             /* COULOMB ELECTROSTATICS */
323             velec            = _mm256_mul_pd(qq20,rinv20);
324             felec            = _mm256_mul_pd(velec,rinvsq20);
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velecsum         = _mm256_add_pd(velecsum,velec);
328
329             fscal            = felec;
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm256_mul_pd(fscal,dx20);
333             ty               = _mm256_mul_pd(fscal,dy20);
334             tz               = _mm256_mul_pd(fscal,dz20);
335
336             /* Update vectorial force */
337             fix2             = _mm256_add_pd(fix2,tx);
338             fiy2             = _mm256_add_pd(fiy2,ty);
339             fiz2             = _mm256_add_pd(fiz2,tz);
340
341             fjx0             = _mm256_add_pd(fjx0,tx);
342             fjy0             = _mm256_add_pd(fjy0,ty);
343             fjz0             = _mm256_add_pd(fjz0,tz);
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq30             = _mm256_mul_pd(iq3,jq0);
351
352             /* COULOMB ELECTROSTATICS */
353             velec            = _mm256_mul_pd(qq30,rinv30);
354             felec            = _mm256_mul_pd(velec,rinvsq30);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm256_add_pd(velecsum,velec);
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm256_mul_pd(fscal,dx30);
363             ty               = _mm256_mul_pd(fscal,dy30);
364             tz               = _mm256_mul_pd(fscal,dz30);
365
366             /* Update vectorial force */
367             fix3             = _mm256_add_pd(fix3,tx);
368             fiy3             = _mm256_add_pd(fiy3,ty);
369             fiz3             = _mm256_add_pd(fiz3,tz);
370
371             fjx0             = _mm256_add_pd(fjx0,tx);
372             fjy0             = _mm256_add_pd(fjy0,ty);
373             fjz0             = _mm256_add_pd(fjz0,tz);
374
375             fjptrA             = f+j_coord_offsetA;
376             fjptrB             = f+j_coord_offsetB;
377             fjptrC             = f+j_coord_offsetC;
378             fjptrD             = f+j_coord_offsetD;
379
380             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
381
382             /* Inner loop uses 116 flops */
383         }
384
385         if(jidx<j_index_end)
386         {
387
388             /* Get j neighbor index, and coordinate index */
389             jnrlistA         = jjnr[jidx];
390             jnrlistB         = jjnr[jidx+1];
391             jnrlistC         = jjnr[jidx+2];
392             jnrlistD         = jjnr[jidx+3];
393             /* Sign of each element will be negative for non-real atoms.
394              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
395              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
396              */
397             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
398
399             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
400             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
401             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
402
403             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
404             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
405             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
406             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
407             j_coord_offsetA  = DIM*jnrA;
408             j_coord_offsetB  = DIM*jnrB;
409             j_coord_offsetC  = DIM*jnrC;
410             j_coord_offsetD  = DIM*jnrD;
411
412             /* load j atom coordinates */
413             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
414                                                  x+j_coord_offsetC,x+j_coord_offsetD,
415                                                  &jx0,&jy0,&jz0);
416
417             /* Calculate displacement vector */
418             dx00             = _mm256_sub_pd(ix0,jx0);
419             dy00             = _mm256_sub_pd(iy0,jy0);
420             dz00             = _mm256_sub_pd(iz0,jz0);
421             dx10             = _mm256_sub_pd(ix1,jx0);
422             dy10             = _mm256_sub_pd(iy1,jy0);
423             dz10             = _mm256_sub_pd(iz1,jz0);
424             dx20             = _mm256_sub_pd(ix2,jx0);
425             dy20             = _mm256_sub_pd(iy2,jy0);
426             dz20             = _mm256_sub_pd(iz2,jz0);
427             dx30             = _mm256_sub_pd(ix3,jx0);
428             dy30             = _mm256_sub_pd(iy3,jy0);
429             dz30             = _mm256_sub_pd(iz3,jz0);
430
431             /* Calculate squared distance and things based on it */
432             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
433             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
434             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
435             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
436
437             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
438             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
439             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
440
441             rinvsq00         = gmx_mm256_inv_pd(rsq00);
442             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
443             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
444             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
445
446             /* Load parameters for j particles */
447             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
448                                                                  charge+jnrC+0,charge+jnrD+0);
449             vdwjidx0A        = 2*vdwtype[jnrA+0];
450             vdwjidx0B        = 2*vdwtype[jnrB+0];
451             vdwjidx0C        = 2*vdwtype[jnrC+0];
452             vdwjidx0D        = 2*vdwtype[jnrD+0];
453
454             fjx0             = _mm256_setzero_pd();
455             fjy0             = _mm256_setzero_pd();
456             fjz0             = _mm256_setzero_pd();
457
458             /**************************
459              * CALCULATE INTERACTIONS *
460              **************************/
461
462             /* Compute parameters for interactions between i and j atoms */
463             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
464                                             vdwioffsetptr0+vdwjidx0B,
465                                             vdwioffsetptr0+vdwjidx0C,
466                                             vdwioffsetptr0+vdwjidx0D,
467                                             &c6_00,&c12_00);
468
469             /* LENNARD-JONES DISPERSION/REPULSION */
470
471             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
472             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
473             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
474             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
475             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
476
477             /* Update potential sum for this i atom from the interaction with this j atom. */
478             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
479             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
480
481             fscal            = fvdw;
482
483             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
484
485             /* Calculate temporary vectorial force */
486             tx               = _mm256_mul_pd(fscal,dx00);
487             ty               = _mm256_mul_pd(fscal,dy00);
488             tz               = _mm256_mul_pd(fscal,dz00);
489
490             /* Update vectorial force */
491             fix0             = _mm256_add_pd(fix0,tx);
492             fiy0             = _mm256_add_pd(fiy0,ty);
493             fiz0             = _mm256_add_pd(fiz0,tz);
494
495             fjx0             = _mm256_add_pd(fjx0,tx);
496             fjy0             = _mm256_add_pd(fjy0,ty);
497             fjz0             = _mm256_add_pd(fjz0,tz);
498
499             /**************************
500              * CALCULATE INTERACTIONS *
501              **************************/
502
503             /* Compute parameters for interactions between i and j atoms */
504             qq10             = _mm256_mul_pd(iq1,jq0);
505
506             /* COULOMB ELECTROSTATICS */
507             velec            = _mm256_mul_pd(qq10,rinv10);
508             felec            = _mm256_mul_pd(velec,rinvsq10);
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             velec            = _mm256_andnot_pd(dummy_mask,velec);
512             velecsum         = _mm256_add_pd(velecsum,velec);
513
514             fscal            = felec;
515
516             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm256_mul_pd(fscal,dx10);
520             ty               = _mm256_mul_pd(fscal,dy10);
521             tz               = _mm256_mul_pd(fscal,dz10);
522
523             /* Update vectorial force */
524             fix1             = _mm256_add_pd(fix1,tx);
525             fiy1             = _mm256_add_pd(fiy1,ty);
526             fiz1             = _mm256_add_pd(fiz1,tz);
527
528             fjx0             = _mm256_add_pd(fjx0,tx);
529             fjy0             = _mm256_add_pd(fjy0,ty);
530             fjz0             = _mm256_add_pd(fjz0,tz);
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq20             = _mm256_mul_pd(iq2,jq0);
538
539             /* COULOMB ELECTROSTATICS */
540             velec            = _mm256_mul_pd(qq20,rinv20);
541             felec            = _mm256_mul_pd(velec,rinvsq20);
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             velec            = _mm256_andnot_pd(dummy_mask,velec);
545             velecsum         = _mm256_add_pd(velecsum,velec);
546
547             fscal            = felec;
548
549             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
550
551             /* Calculate temporary vectorial force */
552             tx               = _mm256_mul_pd(fscal,dx20);
553             ty               = _mm256_mul_pd(fscal,dy20);
554             tz               = _mm256_mul_pd(fscal,dz20);
555
556             /* Update vectorial force */
557             fix2             = _mm256_add_pd(fix2,tx);
558             fiy2             = _mm256_add_pd(fiy2,ty);
559             fiz2             = _mm256_add_pd(fiz2,tz);
560
561             fjx0             = _mm256_add_pd(fjx0,tx);
562             fjy0             = _mm256_add_pd(fjy0,ty);
563             fjz0             = _mm256_add_pd(fjz0,tz);
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq30             = _mm256_mul_pd(iq3,jq0);
571
572             /* COULOMB ELECTROSTATICS */
573             velec            = _mm256_mul_pd(qq30,rinv30);
574             felec            = _mm256_mul_pd(velec,rinvsq30);
575
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             velec            = _mm256_andnot_pd(dummy_mask,velec);
578             velecsum         = _mm256_add_pd(velecsum,velec);
579
580             fscal            = felec;
581
582             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm256_mul_pd(fscal,dx30);
586             ty               = _mm256_mul_pd(fscal,dy30);
587             tz               = _mm256_mul_pd(fscal,dz30);
588
589             /* Update vectorial force */
590             fix3             = _mm256_add_pd(fix3,tx);
591             fiy3             = _mm256_add_pd(fiy3,ty);
592             fiz3             = _mm256_add_pd(fiz3,tz);
593
594             fjx0             = _mm256_add_pd(fjx0,tx);
595             fjy0             = _mm256_add_pd(fjy0,ty);
596             fjz0             = _mm256_add_pd(fjz0,tz);
597
598             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
599             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
600             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
601             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
602
603             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
604
605             /* Inner loop uses 116 flops */
606         }
607
608         /* End of innermost loop */
609
610         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
611                                                  f+i_coord_offset,fshift+i_shift_offset);
612
613         ggid                        = gid[iidx];
614         /* Update potential energies */
615         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
616         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
617
618         /* Increment number of inner iterations */
619         inneriter                  += j_index_end - j_index_start;
620
621         /* Outer loop uses 26 flops */
622     }
623
624     /* Increment number of outer iterations */
625     outeriter        += nri;
626
627     /* Update outer/inner flops */
628
629     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*116);
630 }
631 /*
632  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_double
633  * Electrostatics interaction: Coulomb
634  * VdW interaction:            LennardJones
635  * Geometry:                   Water4-Particle
636  * Calculate force/pot:        Force
637  */
638 void
639 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_double
640                     (t_nblist                    * gmx_restrict       nlist,
641                      rvec                        * gmx_restrict          xx,
642                      rvec                        * gmx_restrict          ff,
643                      t_forcerec                  * gmx_restrict          fr,
644                      t_mdatoms                   * gmx_restrict     mdatoms,
645                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
646                      t_nrnb                      * gmx_restrict        nrnb)
647 {
648     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
649      * just 0 for non-waters.
650      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
651      * jnr indices corresponding to data put in the four positions in the SIMD register.
652      */
653     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
654     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
655     int              jnrA,jnrB,jnrC,jnrD;
656     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
657     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
658     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
659     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
660     real             rcutoff_scalar;
661     real             *shiftvec,*fshift,*x,*f;
662     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
663     real             scratch[4*DIM];
664     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
665     real *           vdwioffsetptr0;
666     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
667     real *           vdwioffsetptr1;
668     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
669     real *           vdwioffsetptr2;
670     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
671     real *           vdwioffsetptr3;
672     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
673     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
674     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
675     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
676     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
677     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
678     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
679     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
680     real             *charge;
681     int              nvdwtype;
682     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
683     int              *vdwtype;
684     real             *vdwparam;
685     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
686     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
687     __m256d          dummy_mask,cutoff_mask;
688     __m128           tmpmask0,tmpmask1;
689     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
690     __m256d          one     = _mm256_set1_pd(1.0);
691     __m256d          two     = _mm256_set1_pd(2.0);
692     x                = xx[0];
693     f                = ff[0];
694
695     nri              = nlist->nri;
696     iinr             = nlist->iinr;
697     jindex           = nlist->jindex;
698     jjnr             = nlist->jjnr;
699     shiftidx         = nlist->shift;
700     gid              = nlist->gid;
701     shiftvec         = fr->shift_vec[0];
702     fshift           = fr->fshift[0];
703     facel            = _mm256_set1_pd(fr->epsfac);
704     charge           = mdatoms->chargeA;
705     nvdwtype         = fr->ntype;
706     vdwparam         = fr->nbfp;
707     vdwtype          = mdatoms->typeA;
708
709     /* Setup water-specific parameters */
710     inr              = nlist->iinr[0];
711     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
712     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
713     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
714     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
715
716     /* Avoid stupid compiler warnings */
717     jnrA = jnrB = jnrC = jnrD = 0;
718     j_coord_offsetA = 0;
719     j_coord_offsetB = 0;
720     j_coord_offsetC = 0;
721     j_coord_offsetD = 0;
722
723     outeriter        = 0;
724     inneriter        = 0;
725
726     for(iidx=0;iidx<4*DIM;iidx++)
727     {
728         scratch[iidx] = 0.0;
729     }
730
731     /* Start outer loop over neighborlists */
732     for(iidx=0; iidx<nri; iidx++)
733     {
734         /* Load shift vector for this list */
735         i_shift_offset   = DIM*shiftidx[iidx];
736
737         /* Load limits for loop over neighbors */
738         j_index_start    = jindex[iidx];
739         j_index_end      = jindex[iidx+1];
740
741         /* Get outer coordinate index */
742         inr              = iinr[iidx];
743         i_coord_offset   = DIM*inr;
744
745         /* Load i particle coords and add shift vector */
746         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
747                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
748
749         fix0             = _mm256_setzero_pd();
750         fiy0             = _mm256_setzero_pd();
751         fiz0             = _mm256_setzero_pd();
752         fix1             = _mm256_setzero_pd();
753         fiy1             = _mm256_setzero_pd();
754         fiz1             = _mm256_setzero_pd();
755         fix2             = _mm256_setzero_pd();
756         fiy2             = _mm256_setzero_pd();
757         fiz2             = _mm256_setzero_pd();
758         fix3             = _mm256_setzero_pd();
759         fiy3             = _mm256_setzero_pd();
760         fiz3             = _mm256_setzero_pd();
761
762         /* Start inner kernel loop */
763         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
764         {
765
766             /* Get j neighbor index, and coordinate index */
767             jnrA             = jjnr[jidx];
768             jnrB             = jjnr[jidx+1];
769             jnrC             = jjnr[jidx+2];
770             jnrD             = jjnr[jidx+3];
771             j_coord_offsetA  = DIM*jnrA;
772             j_coord_offsetB  = DIM*jnrB;
773             j_coord_offsetC  = DIM*jnrC;
774             j_coord_offsetD  = DIM*jnrD;
775
776             /* load j atom coordinates */
777             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
778                                                  x+j_coord_offsetC,x+j_coord_offsetD,
779                                                  &jx0,&jy0,&jz0);
780
781             /* Calculate displacement vector */
782             dx00             = _mm256_sub_pd(ix0,jx0);
783             dy00             = _mm256_sub_pd(iy0,jy0);
784             dz00             = _mm256_sub_pd(iz0,jz0);
785             dx10             = _mm256_sub_pd(ix1,jx0);
786             dy10             = _mm256_sub_pd(iy1,jy0);
787             dz10             = _mm256_sub_pd(iz1,jz0);
788             dx20             = _mm256_sub_pd(ix2,jx0);
789             dy20             = _mm256_sub_pd(iy2,jy0);
790             dz20             = _mm256_sub_pd(iz2,jz0);
791             dx30             = _mm256_sub_pd(ix3,jx0);
792             dy30             = _mm256_sub_pd(iy3,jy0);
793             dz30             = _mm256_sub_pd(iz3,jz0);
794
795             /* Calculate squared distance and things based on it */
796             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
797             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
798             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
799             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
800
801             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
802             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
803             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
804
805             rinvsq00         = gmx_mm256_inv_pd(rsq00);
806             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
807             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
808             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
809
810             /* Load parameters for j particles */
811             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
812                                                                  charge+jnrC+0,charge+jnrD+0);
813             vdwjidx0A        = 2*vdwtype[jnrA+0];
814             vdwjidx0B        = 2*vdwtype[jnrB+0];
815             vdwjidx0C        = 2*vdwtype[jnrC+0];
816             vdwjidx0D        = 2*vdwtype[jnrD+0];
817
818             fjx0             = _mm256_setzero_pd();
819             fjy0             = _mm256_setzero_pd();
820             fjz0             = _mm256_setzero_pd();
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             /* Compute parameters for interactions between i and j atoms */
827             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
828                                             vdwioffsetptr0+vdwjidx0B,
829                                             vdwioffsetptr0+vdwjidx0C,
830                                             vdwioffsetptr0+vdwjidx0D,
831                                             &c6_00,&c12_00);
832
833             /* LENNARD-JONES DISPERSION/REPULSION */
834
835             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
836             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
837
838             fscal            = fvdw;
839
840             /* Calculate temporary vectorial force */
841             tx               = _mm256_mul_pd(fscal,dx00);
842             ty               = _mm256_mul_pd(fscal,dy00);
843             tz               = _mm256_mul_pd(fscal,dz00);
844
845             /* Update vectorial force */
846             fix0             = _mm256_add_pd(fix0,tx);
847             fiy0             = _mm256_add_pd(fiy0,ty);
848             fiz0             = _mm256_add_pd(fiz0,tz);
849
850             fjx0             = _mm256_add_pd(fjx0,tx);
851             fjy0             = _mm256_add_pd(fjy0,ty);
852             fjz0             = _mm256_add_pd(fjz0,tz);
853
854             /**************************
855              * CALCULATE INTERACTIONS *
856              **************************/
857
858             /* Compute parameters for interactions between i and j atoms */
859             qq10             = _mm256_mul_pd(iq1,jq0);
860
861             /* COULOMB ELECTROSTATICS */
862             velec            = _mm256_mul_pd(qq10,rinv10);
863             felec            = _mm256_mul_pd(velec,rinvsq10);
864
865             fscal            = felec;
866
867             /* Calculate temporary vectorial force */
868             tx               = _mm256_mul_pd(fscal,dx10);
869             ty               = _mm256_mul_pd(fscal,dy10);
870             tz               = _mm256_mul_pd(fscal,dz10);
871
872             /* Update vectorial force */
873             fix1             = _mm256_add_pd(fix1,tx);
874             fiy1             = _mm256_add_pd(fiy1,ty);
875             fiz1             = _mm256_add_pd(fiz1,tz);
876
877             fjx0             = _mm256_add_pd(fjx0,tx);
878             fjy0             = _mm256_add_pd(fjy0,ty);
879             fjz0             = _mm256_add_pd(fjz0,tz);
880
881             /**************************
882              * CALCULATE INTERACTIONS *
883              **************************/
884
885             /* Compute parameters for interactions between i and j atoms */
886             qq20             = _mm256_mul_pd(iq2,jq0);
887
888             /* COULOMB ELECTROSTATICS */
889             velec            = _mm256_mul_pd(qq20,rinv20);
890             felec            = _mm256_mul_pd(velec,rinvsq20);
891
892             fscal            = felec;
893
894             /* Calculate temporary vectorial force */
895             tx               = _mm256_mul_pd(fscal,dx20);
896             ty               = _mm256_mul_pd(fscal,dy20);
897             tz               = _mm256_mul_pd(fscal,dz20);
898
899             /* Update vectorial force */
900             fix2             = _mm256_add_pd(fix2,tx);
901             fiy2             = _mm256_add_pd(fiy2,ty);
902             fiz2             = _mm256_add_pd(fiz2,tz);
903
904             fjx0             = _mm256_add_pd(fjx0,tx);
905             fjy0             = _mm256_add_pd(fjy0,ty);
906             fjz0             = _mm256_add_pd(fjz0,tz);
907
908             /**************************
909              * CALCULATE INTERACTIONS *
910              **************************/
911
912             /* Compute parameters for interactions between i and j atoms */
913             qq30             = _mm256_mul_pd(iq3,jq0);
914
915             /* COULOMB ELECTROSTATICS */
916             velec            = _mm256_mul_pd(qq30,rinv30);
917             felec            = _mm256_mul_pd(velec,rinvsq30);
918
919             fscal            = felec;
920
921             /* Calculate temporary vectorial force */
922             tx               = _mm256_mul_pd(fscal,dx30);
923             ty               = _mm256_mul_pd(fscal,dy30);
924             tz               = _mm256_mul_pd(fscal,dz30);
925
926             /* Update vectorial force */
927             fix3             = _mm256_add_pd(fix3,tx);
928             fiy3             = _mm256_add_pd(fiy3,ty);
929             fiz3             = _mm256_add_pd(fiz3,tz);
930
931             fjx0             = _mm256_add_pd(fjx0,tx);
932             fjy0             = _mm256_add_pd(fjy0,ty);
933             fjz0             = _mm256_add_pd(fjz0,tz);
934
935             fjptrA             = f+j_coord_offsetA;
936             fjptrB             = f+j_coord_offsetB;
937             fjptrC             = f+j_coord_offsetC;
938             fjptrD             = f+j_coord_offsetD;
939
940             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
941
942             /* Inner loop uses 108 flops */
943         }
944
945         if(jidx<j_index_end)
946         {
947
948             /* Get j neighbor index, and coordinate index */
949             jnrlistA         = jjnr[jidx];
950             jnrlistB         = jjnr[jidx+1];
951             jnrlistC         = jjnr[jidx+2];
952             jnrlistD         = jjnr[jidx+3];
953             /* Sign of each element will be negative for non-real atoms.
954              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
955              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
956              */
957             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
958
959             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
960             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
961             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
962
963             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
964             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
965             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
966             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
967             j_coord_offsetA  = DIM*jnrA;
968             j_coord_offsetB  = DIM*jnrB;
969             j_coord_offsetC  = DIM*jnrC;
970             j_coord_offsetD  = DIM*jnrD;
971
972             /* load j atom coordinates */
973             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
974                                                  x+j_coord_offsetC,x+j_coord_offsetD,
975                                                  &jx0,&jy0,&jz0);
976
977             /* Calculate displacement vector */
978             dx00             = _mm256_sub_pd(ix0,jx0);
979             dy00             = _mm256_sub_pd(iy0,jy0);
980             dz00             = _mm256_sub_pd(iz0,jz0);
981             dx10             = _mm256_sub_pd(ix1,jx0);
982             dy10             = _mm256_sub_pd(iy1,jy0);
983             dz10             = _mm256_sub_pd(iz1,jz0);
984             dx20             = _mm256_sub_pd(ix2,jx0);
985             dy20             = _mm256_sub_pd(iy2,jy0);
986             dz20             = _mm256_sub_pd(iz2,jz0);
987             dx30             = _mm256_sub_pd(ix3,jx0);
988             dy30             = _mm256_sub_pd(iy3,jy0);
989             dz30             = _mm256_sub_pd(iz3,jz0);
990
991             /* Calculate squared distance and things based on it */
992             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
993             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
994             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
995             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
996
997             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
998             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
999             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1000
1001             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1002             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1003             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1004             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1005
1006             /* Load parameters for j particles */
1007             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1008                                                                  charge+jnrC+0,charge+jnrD+0);
1009             vdwjidx0A        = 2*vdwtype[jnrA+0];
1010             vdwjidx0B        = 2*vdwtype[jnrB+0];
1011             vdwjidx0C        = 2*vdwtype[jnrC+0];
1012             vdwjidx0D        = 2*vdwtype[jnrD+0];
1013
1014             fjx0             = _mm256_setzero_pd();
1015             fjy0             = _mm256_setzero_pd();
1016             fjz0             = _mm256_setzero_pd();
1017
1018             /**************************
1019              * CALCULATE INTERACTIONS *
1020              **************************/
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1024                                             vdwioffsetptr0+vdwjidx0B,
1025                                             vdwioffsetptr0+vdwjidx0C,
1026                                             vdwioffsetptr0+vdwjidx0D,
1027                                             &c6_00,&c12_00);
1028
1029             /* LENNARD-JONES DISPERSION/REPULSION */
1030
1031             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1032             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1033
1034             fscal            = fvdw;
1035
1036             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1037
1038             /* Calculate temporary vectorial force */
1039             tx               = _mm256_mul_pd(fscal,dx00);
1040             ty               = _mm256_mul_pd(fscal,dy00);
1041             tz               = _mm256_mul_pd(fscal,dz00);
1042
1043             /* Update vectorial force */
1044             fix0             = _mm256_add_pd(fix0,tx);
1045             fiy0             = _mm256_add_pd(fiy0,ty);
1046             fiz0             = _mm256_add_pd(fiz0,tz);
1047
1048             fjx0             = _mm256_add_pd(fjx0,tx);
1049             fjy0             = _mm256_add_pd(fjy0,ty);
1050             fjz0             = _mm256_add_pd(fjz0,tz);
1051
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq10             = _mm256_mul_pd(iq1,jq0);
1058
1059             /* COULOMB ELECTROSTATICS */
1060             velec            = _mm256_mul_pd(qq10,rinv10);
1061             felec            = _mm256_mul_pd(velec,rinvsq10);
1062
1063             fscal            = felec;
1064
1065             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1066
1067             /* Calculate temporary vectorial force */
1068             tx               = _mm256_mul_pd(fscal,dx10);
1069             ty               = _mm256_mul_pd(fscal,dy10);
1070             tz               = _mm256_mul_pd(fscal,dz10);
1071
1072             /* Update vectorial force */
1073             fix1             = _mm256_add_pd(fix1,tx);
1074             fiy1             = _mm256_add_pd(fiy1,ty);
1075             fiz1             = _mm256_add_pd(fiz1,tz);
1076
1077             fjx0             = _mm256_add_pd(fjx0,tx);
1078             fjy0             = _mm256_add_pd(fjy0,ty);
1079             fjz0             = _mm256_add_pd(fjz0,tz);
1080
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             qq20             = _mm256_mul_pd(iq2,jq0);
1087
1088             /* COULOMB ELECTROSTATICS */
1089             velec            = _mm256_mul_pd(qq20,rinv20);
1090             felec            = _mm256_mul_pd(velec,rinvsq20);
1091
1092             fscal            = felec;
1093
1094             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1095
1096             /* Calculate temporary vectorial force */
1097             tx               = _mm256_mul_pd(fscal,dx20);
1098             ty               = _mm256_mul_pd(fscal,dy20);
1099             tz               = _mm256_mul_pd(fscal,dz20);
1100
1101             /* Update vectorial force */
1102             fix2             = _mm256_add_pd(fix2,tx);
1103             fiy2             = _mm256_add_pd(fiy2,ty);
1104             fiz2             = _mm256_add_pd(fiz2,tz);
1105
1106             fjx0             = _mm256_add_pd(fjx0,tx);
1107             fjy0             = _mm256_add_pd(fjy0,ty);
1108             fjz0             = _mm256_add_pd(fjz0,tz);
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             /* Compute parameters for interactions between i and j atoms */
1115             qq30             = _mm256_mul_pd(iq3,jq0);
1116
1117             /* COULOMB ELECTROSTATICS */
1118             velec            = _mm256_mul_pd(qq30,rinv30);
1119             felec            = _mm256_mul_pd(velec,rinvsq30);
1120
1121             fscal            = felec;
1122
1123             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = _mm256_mul_pd(fscal,dx30);
1127             ty               = _mm256_mul_pd(fscal,dy30);
1128             tz               = _mm256_mul_pd(fscal,dz30);
1129
1130             /* Update vectorial force */
1131             fix3             = _mm256_add_pd(fix3,tx);
1132             fiy3             = _mm256_add_pd(fiy3,ty);
1133             fiz3             = _mm256_add_pd(fiz3,tz);
1134
1135             fjx0             = _mm256_add_pd(fjx0,tx);
1136             fjy0             = _mm256_add_pd(fjy0,ty);
1137             fjz0             = _mm256_add_pd(fjz0,tz);
1138
1139             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1140             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1141             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1142             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1143
1144             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1145
1146             /* Inner loop uses 108 flops */
1147         }
1148
1149         /* End of innermost loop */
1150
1151         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1152                                                  f+i_coord_offset,fshift+i_shift_offset);
1153
1154         /* Increment number of inner iterations */
1155         inneriter                  += j_index_end - j_index_start;
1156
1157         /* Outer loop uses 24 flops */
1158     }
1159
1160     /* Increment number of outer iterations */
1161     outeriter        += nri;
1162
1163     /* Update outer/inner flops */
1164
1165     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108);
1166 }