b30168d80acd3be6420ffdce99a36f13ab38cc56
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m256d          dummy_mask,cutoff_mask;
107     __m128           tmpmask0,tmpmask1;
108     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
109     __m256d          one     = _mm256_set1_pd(1.0);
110     __m256d          two     = _mm256_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_pd(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
131     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
132     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
133     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
167
168         fix0             = _mm256_setzero_pd();
169         fiy0             = _mm256_setzero_pd();
170         fiz0             = _mm256_setzero_pd();
171         fix1             = _mm256_setzero_pd();
172         fiy1             = _mm256_setzero_pd();
173         fiz1             = _mm256_setzero_pd();
174         fix2             = _mm256_setzero_pd();
175         fiy2             = _mm256_setzero_pd();
176         fiz2             = _mm256_setzero_pd();
177         fix3             = _mm256_setzero_pd();
178         fiy3             = _mm256_setzero_pd();
179         fiz3             = _mm256_setzero_pd();
180
181         /* Reset potential sums */
182         velecsum         = _mm256_setzero_pd();
183         vvdwsum          = _mm256_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                                  x+j_coord_offsetC,x+j_coord_offsetD,
202                                                  &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm256_sub_pd(ix0,jx0);
206             dy00             = _mm256_sub_pd(iy0,jy0);
207             dz00             = _mm256_sub_pd(iz0,jz0);
208             dx10             = _mm256_sub_pd(ix1,jx0);
209             dy10             = _mm256_sub_pd(iy1,jy0);
210             dz10             = _mm256_sub_pd(iz1,jz0);
211             dx20             = _mm256_sub_pd(ix2,jx0);
212             dy20             = _mm256_sub_pd(iy2,jy0);
213             dz20             = _mm256_sub_pd(iz2,jz0);
214             dx30             = _mm256_sub_pd(ix3,jx0);
215             dy30             = _mm256_sub_pd(iy3,jy0);
216             dz30             = _mm256_sub_pd(iz3,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
220             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
221             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
222             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
223
224             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
225             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
226             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
227
228             rinvsq00         = gmx_mm256_inv_pd(rsq00);
229             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
230             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
231             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
235                                                                  charge+jnrC+0,charge+jnrD+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240
241             fjx0             = _mm256_setzero_pd();
242             fjy0             = _mm256_setzero_pd();
243             fjz0             = _mm256_setzero_pd();
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             /* Compute parameters for interactions between i and j atoms */
250             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
251                                             vdwioffsetptr0+vdwjidx0B,
252                                             vdwioffsetptr0+vdwjidx0C,
253                                             vdwioffsetptr0+vdwjidx0D,
254                                             &c6_00,&c12_00);
255
256             /* LENNARD-JONES DISPERSION/REPULSION */
257
258             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
259             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
260             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
261             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
262             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
266
267             fscal            = fvdw;
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm256_mul_pd(fscal,dx00);
271             ty               = _mm256_mul_pd(fscal,dy00);
272             tz               = _mm256_mul_pd(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm256_add_pd(fix0,tx);
276             fiy0             = _mm256_add_pd(fiy0,ty);
277             fiz0             = _mm256_add_pd(fiz0,tz);
278
279             fjx0             = _mm256_add_pd(fjx0,tx);
280             fjy0             = _mm256_add_pd(fjy0,ty);
281             fjz0             = _mm256_add_pd(fjz0,tz);
282
283             /**************************
284              * CALCULATE INTERACTIONS *
285              **************************/
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq10             = _mm256_mul_pd(iq1,jq0);
289
290             /* COULOMB ELECTROSTATICS */
291             velec            = _mm256_mul_pd(qq10,rinv10);
292             felec            = _mm256_mul_pd(velec,rinvsq10);
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velecsum         = _mm256_add_pd(velecsum,velec);
296
297             fscal            = felec;
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm256_mul_pd(fscal,dx10);
301             ty               = _mm256_mul_pd(fscal,dy10);
302             tz               = _mm256_mul_pd(fscal,dz10);
303
304             /* Update vectorial force */
305             fix1             = _mm256_add_pd(fix1,tx);
306             fiy1             = _mm256_add_pd(fiy1,ty);
307             fiz1             = _mm256_add_pd(fiz1,tz);
308
309             fjx0             = _mm256_add_pd(fjx0,tx);
310             fjy0             = _mm256_add_pd(fjy0,ty);
311             fjz0             = _mm256_add_pd(fjz0,tz);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq20             = _mm256_mul_pd(iq2,jq0);
319
320             /* COULOMB ELECTROSTATICS */
321             velec            = _mm256_mul_pd(qq20,rinv20);
322             felec            = _mm256_mul_pd(velec,rinvsq20);
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velecsum         = _mm256_add_pd(velecsum,velec);
326
327             fscal            = felec;
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm256_mul_pd(fscal,dx20);
331             ty               = _mm256_mul_pd(fscal,dy20);
332             tz               = _mm256_mul_pd(fscal,dz20);
333
334             /* Update vectorial force */
335             fix2             = _mm256_add_pd(fix2,tx);
336             fiy2             = _mm256_add_pd(fiy2,ty);
337             fiz2             = _mm256_add_pd(fiz2,tz);
338
339             fjx0             = _mm256_add_pd(fjx0,tx);
340             fjy0             = _mm256_add_pd(fjy0,ty);
341             fjz0             = _mm256_add_pd(fjz0,tz);
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq30             = _mm256_mul_pd(iq3,jq0);
349
350             /* COULOMB ELECTROSTATICS */
351             velec            = _mm256_mul_pd(qq30,rinv30);
352             felec            = _mm256_mul_pd(velec,rinvsq30);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velecsum         = _mm256_add_pd(velecsum,velec);
356
357             fscal            = felec;
358
359             /* Calculate temporary vectorial force */
360             tx               = _mm256_mul_pd(fscal,dx30);
361             ty               = _mm256_mul_pd(fscal,dy30);
362             tz               = _mm256_mul_pd(fscal,dz30);
363
364             /* Update vectorial force */
365             fix3             = _mm256_add_pd(fix3,tx);
366             fiy3             = _mm256_add_pd(fiy3,ty);
367             fiz3             = _mm256_add_pd(fiz3,tz);
368
369             fjx0             = _mm256_add_pd(fjx0,tx);
370             fjy0             = _mm256_add_pd(fjy0,ty);
371             fjz0             = _mm256_add_pd(fjz0,tz);
372
373             fjptrA             = f+j_coord_offsetA;
374             fjptrB             = f+j_coord_offsetB;
375             fjptrC             = f+j_coord_offsetC;
376             fjptrD             = f+j_coord_offsetD;
377
378             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
379
380             /* Inner loop uses 116 flops */
381         }
382
383         if(jidx<j_index_end)
384         {
385
386             /* Get j neighbor index, and coordinate index */
387             jnrlistA         = jjnr[jidx];
388             jnrlistB         = jjnr[jidx+1];
389             jnrlistC         = jjnr[jidx+2];
390             jnrlistD         = jjnr[jidx+3];
391             /* Sign of each element will be negative for non-real atoms.
392              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
393              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
394              */
395             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
396
397             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
398             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
399             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
400
401             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
402             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
403             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
404             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
405             j_coord_offsetA  = DIM*jnrA;
406             j_coord_offsetB  = DIM*jnrB;
407             j_coord_offsetC  = DIM*jnrC;
408             j_coord_offsetD  = DIM*jnrD;
409
410             /* load j atom coordinates */
411             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
412                                                  x+j_coord_offsetC,x+j_coord_offsetD,
413                                                  &jx0,&jy0,&jz0);
414
415             /* Calculate displacement vector */
416             dx00             = _mm256_sub_pd(ix0,jx0);
417             dy00             = _mm256_sub_pd(iy0,jy0);
418             dz00             = _mm256_sub_pd(iz0,jz0);
419             dx10             = _mm256_sub_pd(ix1,jx0);
420             dy10             = _mm256_sub_pd(iy1,jy0);
421             dz10             = _mm256_sub_pd(iz1,jz0);
422             dx20             = _mm256_sub_pd(ix2,jx0);
423             dy20             = _mm256_sub_pd(iy2,jy0);
424             dz20             = _mm256_sub_pd(iz2,jz0);
425             dx30             = _mm256_sub_pd(ix3,jx0);
426             dy30             = _mm256_sub_pd(iy3,jy0);
427             dz30             = _mm256_sub_pd(iz3,jz0);
428
429             /* Calculate squared distance and things based on it */
430             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
431             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
432             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
433             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
434
435             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
436             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
437             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
438
439             rinvsq00         = gmx_mm256_inv_pd(rsq00);
440             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
441             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
442             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
443
444             /* Load parameters for j particles */
445             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
446                                                                  charge+jnrC+0,charge+jnrD+0);
447             vdwjidx0A        = 2*vdwtype[jnrA+0];
448             vdwjidx0B        = 2*vdwtype[jnrB+0];
449             vdwjidx0C        = 2*vdwtype[jnrC+0];
450             vdwjidx0D        = 2*vdwtype[jnrD+0];
451
452             fjx0             = _mm256_setzero_pd();
453             fjy0             = _mm256_setzero_pd();
454             fjz0             = _mm256_setzero_pd();
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             /* Compute parameters for interactions between i and j atoms */
461             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
462                                             vdwioffsetptr0+vdwjidx0B,
463                                             vdwioffsetptr0+vdwjidx0C,
464                                             vdwioffsetptr0+vdwjidx0D,
465                                             &c6_00,&c12_00);
466
467             /* LENNARD-JONES DISPERSION/REPULSION */
468
469             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
470             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
471             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
472             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
473             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
477             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
478
479             fscal            = fvdw;
480
481             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
482
483             /* Calculate temporary vectorial force */
484             tx               = _mm256_mul_pd(fscal,dx00);
485             ty               = _mm256_mul_pd(fscal,dy00);
486             tz               = _mm256_mul_pd(fscal,dz00);
487
488             /* Update vectorial force */
489             fix0             = _mm256_add_pd(fix0,tx);
490             fiy0             = _mm256_add_pd(fiy0,ty);
491             fiz0             = _mm256_add_pd(fiz0,tz);
492
493             fjx0             = _mm256_add_pd(fjx0,tx);
494             fjy0             = _mm256_add_pd(fjy0,ty);
495             fjz0             = _mm256_add_pd(fjz0,tz);
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             /* Compute parameters for interactions between i and j atoms */
502             qq10             = _mm256_mul_pd(iq1,jq0);
503
504             /* COULOMB ELECTROSTATICS */
505             velec            = _mm256_mul_pd(qq10,rinv10);
506             felec            = _mm256_mul_pd(velec,rinvsq10);
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             velec            = _mm256_andnot_pd(dummy_mask,velec);
510             velecsum         = _mm256_add_pd(velecsum,velec);
511
512             fscal            = felec;
513
514             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
515
516             /* Calculate temporary vectorial force */
517             tx               = _mm256_mul_pd(fscal,dx10);
518             ty               = _mm256_mul_pd(fscal,dy10);
519             tz               = _mm256_mul_pd(fscal,dz10);
520
521             /* Update vectorial force */
522             fix1             = _mm256_add_pd(fix1,tx);
523             fiy1             = _mm256_add_pd(fiy1,ty);
524             fiz1             = _mm256_add_pd(fiz1,tz);
525
526             fjx0             = _mm256_add_pd(fjx0,tx);
527             fjy0             = _mm256_add_pd(fjy0,ty);
528             fjz0             = _mm256_add_pd(fjz0,tz);
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq20             = _mm256_mul_pd(iq2,jq0);
536
537             /* COULOMB ELECTROSTATICS */
538             velec            = _mm256_mul_pd(qq20,rinv20);
539             felec            = _mm256_mul_pd(velec,rinvsq20);
540
541             /* Update potential sum for this i atom from the interaction with this j atom. */
542             velec            = _mm256_andnot_pd(dummy_mask,velec);
543             velecsum         = _mm256_add_pd(velecsum,velec);
544
545             fscal            = felec;
546
547             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
548
549             /* Calculate temporary vectorial force */
550             tx               = _mm256_mul_pd(fscal,dx20);
551             ty               = _mm256_mul_pd(fscal,dy20);
552             tz               = _mm256_mul_pd(fscal,dz20);
553
554             /* Update vectorial force */
555             fix2             = _mm256_add_pd(fix2,tx);
556             fiy2             = _mm256_add_pd(fiy2,ty);
557             fiz2             = _mm256_add_pd(fiz2,tz);
558
559             fjx0             = _mm256_add_pd(fjx0,tx);
560             fjy0             = _mm256_add_pd(fjy0,ty);
561             fjz0             = _mm256_add_pd(fjz0,tz);
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq30             = _mm256_mul_pd(iq3,jq0);
569
570             /* COULOMB ELECTROSTATICS */
571             velec            = _mm256_mul_pd(qq30,rinv30);
572             felec            = _mm256_mul_pd(velec,rinvsq30);
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             velec            = _mm256_andnot_pd(dummy_mask,velec);
576             velecsum         = _mm256_add_pd(velecsum,velec);
577
578             fscal            = felec;
579
580             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm256_mul_pd(fscal,dx30);
584             ty               = _mm256_mul_pd(fscal,dy30);
585             tz               = _mm256_mul_pd(fscal,dz30);
586
587             /* Update vectorial force */
588             fix3             = _mm256_add_pd(fix3,tx);
589             fiy3             = _mm256_add_pd(fiy3,ty);
590             fiz3             = _mm256_add_pd(fiz3,tz);
591
592             fjx0             = _mm256_add_pd(fjx0,tx);
593             fjy0             = _mm256_add_pd(fjy0,ty);
594             fjz0             = _mm256_add_pd(fjz0,tz);
595
596             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
597             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
598             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
599             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
600
601             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
602
603             /* Inner loop uses 116 flops */
604         }
605
606         /* End of innermost loop */
607
608         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
609                                                  f+i_coord_offset,fshift+i_shift_offset);
610
611         ggid                        = gid[iidx];
612         /* Update potential energies */
613         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
614         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
615
616         /* Increment number of inner iterations */
617         inneriter                  += j_index_end - j_index_start;
618
619         /* Outer loop uses 26 flops */
620     }
621
622     /* Increment number of outer iterations */
623     outeriter        += nri;
624
625     /* Update outer/inner flops */
626
627     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*116);
628 }
629 /*
630  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_double
631  * Electrostatics interaction: Coulomb
632  * VdW interaction:            LennardJones
633  * Geometry:                   Water4-Particle
634  * Calculate force/pot:        Force
635  */
636 void
637 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_double
638                     (t_nblist                    * gmx_restrict       nlist,
639                      rvec                        * gmx_restrict          xx,
640                      rvec                        * gmx_restrict          ff,
641                      t_forcerec                  * gmx_restrict          fr,
642                      t_mdatoms                   * gmx_restrict     mdatoms,
643                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
644                      t_nrnb                      * gmx_restrict        nrnb)
645 {
646     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
647      * just 0 for non-waters.
648      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
649      * jnr indices corresponding to data put in the four positions in the SIMD register.
650      */
651     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
652     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
653     int              jnrA,jnrB,jnrC,jnrD;
654     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
655     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
656     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
657     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
658     real             rcutoff_scalar;
659     real             *shiftvec,*fshift,*x,*f;
660     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
661     real             scratch[4*DIM];
662     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
663     real *           vdwioffsetptr0;
664     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
665     real *           vdwioffsetptr1;
666     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
667     real *           vdwioffsetptr2;
668     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
669     real *           vdwioffsetptr3;
670     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
671     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
672     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
673     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
674     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
675     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
676     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
677     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
678     real             *charge;
679     int              nvdwtype;
680     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
681     int              *vdwtype;
682     real             *vdwparam;
683     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
684     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
685     __m256d          dummy_mask,cutoff_mask;
686     __m128           tmpmask0,tmpmask1;
687     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
688     __m256d          one     = _mm256_set1_pd(1.0);
689     __m256d          two     = _mm256_set1_pd(2.0);
690     x                = xx[0];
691     f                = ff[0];
692
693     nri              = nlist->nri;
694     iinr             = nlist->iinr;
695     jindex           = nlist->jindex;
696     jjnr             = nlist->jjnr;
697     shiftidx         = nlist->shift;
698     gid              = nlist->gid;
699     shiftvec         = fr->shift_vec[0];
700     fshift           = fr->fshift[0];
701     facel            = _mm256_set1_pd(fr->epsfac);
702     charge           = mdatoms->chargeA;
703     nvdwtype         = fr->ntype;
704     vdwparam         = fr->nbfp;
705     vdwtype          = mdatoms->typeA;
706
707     /* Setup water-specific parameters */
708     inr              = nlist->iinr[0];
709     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
710     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
711     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
712     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
713
714     /* Avoid stupid compiler warnings */
715     jnrA = jnrB = jnrC = jnrD = 0;
716     j_coord_offsetA = 0;
717     j_coord_offsetB = 0;
718     j_coord_offsetC = 0;
719     j_coord_offsetD = 0;
720
721     outeriter        = 0;
722     inneriter        = 0;
723
724     for(iidx=0;iidx<4*DIM;iidx++)
725     {
726         scratch[iidx] = 0.0;
727     }
728
729     /* Start outer loop over neighborlists */
730     for(iidx=0; iidx<nri; iidx++)
731     {
732         /* Load shift vector for this list */
733         i_shift_offset   = DIM*shiftidx[iidx];
734
735         /* Load limits for loop over neighbors */
736         j_index_start    = jindex[iidx];
737         j_index_end      = jindex[iidx+1];
738
739         /* Get outer coordinate index */
740         inr              = iinr[iidx];
741         i_coord_offset   = DIM*inr;
742
743         /* Load i particle coords and add shift vector */
744         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
745                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
746
747         fix0             = _mm256_setzero_pd();
748         fiy0             = _mm256_setzero_pd();
749         fiz0             = _mm256_setzero_pd();
750         fix1             = _mm256_setzero_pd();
751         fiy1             = _mm256_setzero_pd();
752         fiz1             = _mm256_setzero_pd();
753         fix2             = _mm256_setzero_pd();
754         fiy2             = _mm256_setzero_pd();
755         fiz2             = _mm256_setzero_pd();
756         fix3             = _mm256_setzero_pd();
757         fiy3             = _mm256_setzero_pd();
758         fiz3             = _mm256_setzero_pd();
759
760         /* Start inner kernel loop */
761         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
762         {
763
764             /* Get j neighbor index, and coordinate index */
765             jnrA             = jjnr[jidx];
766             jnrB             = jjnr[jidx+1];
767             jnrC             = jjnr[jidx+2];
768             jnrD             = jjnr[jidx+3];
769             j_coord_offsetA  = DIM*jnrA;
770             j_coord_offsetB  = DIM*jnrB;
771             j_coord_offsetC  = DIM*jnrC;
772             j_coord_offsetD  = DIM*jnrD;
773
774             /* load j atom coordinates */
775             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
776                                                  x+j_coord_offsetC,x+j_coord_offsetD,
777                                                  &jx0,&jy0,&jz0);
778
779             /* Calculate displacement vector */
780             dx00             = _mm256_sub_pd(ix0,jx0);
781             dy00             = _mm256_sub_pd(iy0,jy0);
782             dz00             = _mm256_sub_pd(iz0,jz0);
783             dx10             = _mm256_sub_pd(ix1,jx0);
784             dy10             = _mm256_sub_pd(iy1,jy0);
785             dz10             = _mm256_sub_pd(iz1,jz0);
786             dx20             = _mm256_sub_pd(ix2,jx0);
787             dy20             = _mm256_sub_pd(iy2,jy0);
788             dz20             = _mm256_sub_pd(iz2,jz0);
789             dx30             = _mm256_sub_pd(ix3,jx0);
790             dy30             = _mm256_sub_pd(iy3,jy0);
791             dz30             = _mm256_sub_pd(iz3,jz0);
792
793             /* Calculate squared distance and things based on it */
794             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
795             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
796             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
797             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
798
799             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
800             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
801             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
802
803             rinvsq00         = gmx_mm256_inv_pd(rsq00);
804             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
805             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
806             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
807
808             /* Load parameters for j particles */
809             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
810                                                                  charge+jnrC+0,charge+jnrD+0);
811             vdwjidx0A        = 2*vdwtype[jnrA+0];
812             vdwjidx0B        = 2*vdwtype[jnrB+0];
813             vdwjidx0C        = 2*vdwtype[jnrC+0];
814             vdwjidx0D        = 2*vdwtype[jnrD+0];
815
816             fjx0             = _mm256_setzero_pd();
817             fjy0             = _mm256_setzero_pd();
818             fjz0             = _mm256_setzero_pd();
819
820             /**************************
821              * CALCULATE INTERACTIONS *
822              **************************/
823
824             /* Compute parameters for interactions between i and j atoms */
825             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
826                                             vdwioffsetptr0+vdwjidx0B,
827                                             vdwioffsetptr0+vdwjidx0C,
828                                             vdwioffsetptr0+vdwjidx0D,
829                                             &c6_00,&c12_00);
830
831             /* LENNARD-JONES DISPERSION/REPULSION */
832
833             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
834             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
835
836             fscal            = fvdw;
837
838             /* Calculate temporary vectorial force */
839             tx               = _mm256_mul_pd(fscal,dx00);
840             ty               = _mm256_mul_pd(fscal,dy00);
841             tz               = _mm256_mul_pd(fscal,dz00);
842
843             /* Update vectorial force */
844             fix0             = _mm256_add_pd(fix0,tx);
845             fiy0             = _mm256_add_pd(fiy0,ty);
846             fiz0             = _mm256_add_pd(fiz0,tz);
847
848             fjx0             = _mm256_add_pd(fjx0,tx);
849             fjy0             = _mm256_add_pd(fjy0,ty);
850             fjz0             = _mm256_add_pd(fjz0,tz);
851
852             /**************************
853              * CALCULATE INTERACTIONS *
854              **************************/
855
856             /* Compute parameters for interactions between i and j atoms */
857             qq10             = _mm256_mul_pd(iq1,jq0);
858
859             /* COULOMB ELECTROSTATICS */
860             velec            = _mm256_mul_pd(qq10,rinv10);
861             felec            = _mm256_mul_pd(velec,rinvsq10);
862
863             fscal            = felec;
864
865             /* Calculate temporary vectorial force */
866             tx               = _mm256_mul_pd(fscal,dx10);
867             ty               = _mm256_mul_pd(fscal,dy10);
868             tz               = _mm256_mul_pd(fscal,dz10);
869
870             /* Update vectorial force */
871             fix1             = _mm256_add_pd(fix1,tx);
872             fiy1             = _mm256_add_pd(fiy1,ty);
873             fiz1             = _mm256_add_pd(fiz1,tz);
874
875             fjx0             = _mm256_add_pd(fjx0,tx);
876             fjy0             = _mm256_add_pd(fjy0,ty);
877             fjz0             = _mm256_add_pd(fjz0,tz);
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             /* Compute parameters for interactions between i and j atoms */
884             qq20             = _mm256_mul_pd(iq2,jq0);
885
886             /* COULOMB ELECTROSTATICS */
887             velec            = _mm256_mul_pd(qq20,rinv20);
888             felec            = _mm256_mul_pd(velec,rinvsq20);
889
890             fscal            = felec;
891
892             /* Calculate temporary vectorial force */
893             tx               = _mm256_mul_pd(fscal,dx20);
894             ty               = _mm256_mul_pd(fscal,dy20);
895             tz               = _mm256_mul_pd(fscal,dz20);
896
897             /* Update vectorial force */
898             fix2             = _mm256_add_pd(fix2,tx);
899             fiy2             = _mm256_add_pd(fiy2,ty);
900             fiz2             = _mm256_add_pd(fiz2,tz);
901
902             fjx0             = _mm256_add_pd(fjx0,tx);
903             fjy0             = _mm256_add_pd(fjy0,ty);
904             fjz0             = _mm256_add_pd(fjz0,tz);
905
906             /**************************
907              * CALCULATE INTERACTIONS *
908              **************************/
909
910             /* Compute parameters for interactions between i and j atoms */
911             qq30             = _mm256_mul_pd(iq3,jq0);
912
913             /* COULOMB ELECTROSTATICS */
914             velec            = _mm256_mul_pd(qq30,rinv30);
915             felec            = _mm256_mul_pd(velec,rinvsq30);
916
917             fscal            = felec;
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm256_mul_pd(fscal,dx30);
921             ty               = _mm256_mul_pd(fscal,dy30);
922             tz               = _mm256_mul_pd(fscal,dz30);
923
924             /* Update vectorial force */
925             fix3             = _mm256_add_pd(fix3,tx);
926             fiy3             = _mm256_add_pd(fiy3,ty);
927             fiz3             = _mm256_add_pd(fiz3,tz);
928
929             fjx0             = _mm256_add_pd(fjx0,tx);
930             fjy0             = _mm256_add_pd(fjy0,ty);
931             fjz0             = _mm256_add_pd(fjz0,tz);
932
933             fjptrA             = f+j_coord_offsetA;
934             fjptrB             = f+j_coord_offsetB;
935             fjptrC             = f+j_coord_offsetC;
936             fjptrD             = f+j_coord_offsetD;
937
938             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
939
940             /* Inner loop uses 108 flops */
941         }
942
943         if(jidx<j_index_end)
944         {
945
946             /* Get j neighbor index, and coordinate index */
947             jnrlistA         = jjnr[jidx];
948             jnrlistB         = jjnr[jidx+1];
949             jnrlistC         = jjnr[jidx+2];
950             jnrlistD         = jjnr[jidx+3];
951             /* Sign of each element will be negative for non-real atoms.
952              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
953              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
954              */
955             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
956
957             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
958             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
959             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
960
961             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
962             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
963             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
964             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
965             j_coord_offsetA  = DIM*jnrA;
966             j_coord_offsetB  = DIM*jnrB;
967             j_coord_offsetC  = DIM*jnrC;
968             j_coord_offsetD  = DIM*jnrD;
969
970             /* load j atom coordinates */
971             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
972                                                  x+j_coord_offsetC,x+j_coord_offsetD,
973                                                  &jx0,&jy0,&jz0);
974
975             /* Calculate displacement vector */
976             dx00             = _mm256_sub_pd(ix0,jx0);
977             dy00             = _mm256_sub_pd(iy0,jy0);
978             dz00             = _mm256_sub_pd(iz0,jz0);
979             dx10             = _mm256_sub_pd(ix1,jx0);
980             dy10             = _mm256_sub_pd(iy1,jy0);
981             dz10             = _mm256_sub_pd(iz1,jz0);
982             dx20             = _mm256_sub_pd(ix2,jx0);
983             dy20             = _mm256_sub_pd(iy2,jy0);
984             dz20             = _mm256_sub_pd(iz2,jz0);
985             dx30             = _mm256_sub_pd(ix3,jx0);
986             dy30             = _mm256_sub_pd(iy3,jy0);
987             dz30             = _mm256_sub_pd(iz3,jz0);
988
989             /* Calculate squared distance and things based on it */
990             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
991             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
992             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
993             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
994
995             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
996             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
997             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
998
999             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1000             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1001             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1002             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1003
1004             /* Load parameters for j particles */
1005             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1006                                                                  charge+jnrC+0,charge+jnrD+0);
1007             vdwjidx0A        = 2*vdwtype[jnrA+0];
1008             vdwjidx0B        = 2*vdwtype[jnrB+0];
1009             vdwjidx0C        = 2*vdwtype[jnrC+0];
1010             vdwjidx0D        = 2*vdwtype[jnrD+0];
1011
1012             fjx0             = _mm256_setzero_pd();
1013             fjy0             = _mm256_setzero_pd();
1014             fjz0             = _mm256_setzero_pd();
1015
1016             /**************************
1017              * CALCULATE INTERACTIONS *
1018              **************************/
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1022                                             vdwioffsetptr0+vdwjidx0B,
1023                                             vdwioffsetptr0+vdwjidx0C,
1024                                             vdwioffsetptr0+vdwjidx0D,
1025                                             &c6_00,&c12_00);
1026
1027             /* LENNARD-JONES DISPERSION/REPULSION */
1028
1029             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1030             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1031
1032             fscal            = fvdw;
1033
1034             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1035
1036             /* Calculate temporary vectorial force */
1037             tx               = _mm256_mul_pd(fscal,dx00);
1038             ty               = _mm256_mul_pd(fscal,dy00);
1039             tz               = _mm256_mul_pd(fscal,dz00);
1040
1041             /* Update vectorial force */
1042             fix0             = _mm256_add_pd(fix0,tx);
1043             fiy0             = _mm256_add_pd(fiy0,ty);
1044             fiz0             = _mm256_add_pd(fiz0,tz);
1045
1046             fjx0             = _mm256_add_pd(fjx0,tx);
1047             fjy0             = _mm256_add_pd(fjy0,ty);
1048             fjz0             = _mm256_add_pd(fjz0,tz);
1049
1050             /**************************
1051              * CALCULATE INTERACTIONS *
1052              **************************/
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq10             = _mm256_mul_pd(iq1,jq0);
1056
1057             /* COULOMB ELECTROSTATICS */
1058             velec            = _mm256_mul_pd(qq10,rinv10);
1059             felec            = _mm256_mul_pd(velec,rinvsq10);
1060
1061             fscal            = felec;
1062
1063             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1064
1065             /* Calculate temporary vectorial force */
1066             tx               = _mm256_mul_pd(fscal,dx10);
1067             ty               = _mm256_mul_pd(fscal,dy10);
1068             tz               = _mm256_mul_pd(fscal,dz10);
1069
1070             /* Update vectorial force */
1071             fix1             = _mm256_add_pd(fix1,tx);
1072             fiy1             = _mm256_add_pd(fiy1,ty);
1073             fiz1             = _mm256_add_pd(fiz1,tz);
1074
1075             fjx0             = _mm256_add_pd(fjx0,tx);
1076             fjy0             = _mm256_add_pd(fjy0,ty);
1077             fjz0             = _mm256_add_pd(fjz0,tz);
1078
1079             /**************************
1080              * CALCULATE INTERACTIONS *
1081              **************************/
1082
1083             /* Compute parameters for interactions between i and j atoms */
1084             qq20             = _mm256_mul_pd(iq2,jq0);
1085
1086             /* COULOMB ELECTROSTATICS */
1087             velec            = _mm256_mul_pd(qq20,rinv20);
1088             felec            = _mm256_mul_pd(velec,rinvsq20);
1089
1090             fscal            = felec;
1091
1092             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm256_mul_pd(fscal,dx20);
1096             ty               = _mm256_mul_pd(fscal,dy20);
1097             tz               = _mm256_mul_pd(fscal,dz20);
1098
1099             /* Update vectorial force */
1100             fix2             = _mm256_add_pd(fix2,tx);
1101             fiy2             = _mm256_add_pd(fiy2,ty);
1102             fiz2             = _mm256_add_pd(fiz2,tz);
1103
1104             fjx0             = _mm256_add_pd(fjx0,tx);
1105             fjy0             = _mm256_add_pd(fjy0,ty);
1106             fjz0             = _mm256_add_pd(fjz0,tz);
1107
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             /* Compute parameters for interactions between i and j atoms */
1113             qq30             = _mm256_mul_pd(iq3,jq0);
1114
1115             /* COULOMB ELECTROSTATICS */
1116             velec            = _mm256_mul_pd(qq30,rinv30);
1117             felec            = _mm256_mul_pd(velec,rinvsq30);
1118
1119             fscal            = felec;
1120
1121             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1122
1123             /* Calculate temporary vectorial force */
1124             tx               = _mm256_mul_pd(fscal,dx30);
1125             ty               = _mm256_mul_pd(fscal,dy30);
1126             tz               = _mm256_mul_pd(fscal,dz30);
1127
1128             /* Update vectorial force */
1129             fix3             = _mm256_add_pd(fix3,tx);
1130             fiy3             = _mm256_add_pd(fiy3,ty);
1131             fiz3             = _mm256_add_pd(fiz3,tz);
1132
1133             fjx0             = _mm256_add_pd(fjx0,tx);
1134             fjy0             = _mm256_add_pd(fjy0,ty);
1135             fjz0             = _mm256_add_pd(fjz0,tz);
1136
1137             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1138             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1139             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1140             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1141
1142             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1143
1144             /* Inner loop uses 108 flops */
1145         }
1146
1147         /* End of innermost loop */
1148
1149         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1150                                                  f+i_coord_offset,fshift+i_shift_offset);
1151
1152         /* Increment number of inner iterations */
1153         inneriter                  += j_index_end - j_index_start;
1154
1155         /* Outer loop uses 24 flops */
1156     }
1157
1158     /* Increment number of outer iterations */
1159     outeriter        += nri;
1160
1161     /* Update outer/inner flops */
1162
1163     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108);
1164 }