Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m256d          dummy_mask,cutoff_mask;
106     __m128           tmpmask0,tmpmask1;
107     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
108     __m256d          one     = _mm256_set1_pd(1.0);
109     __m256d          two     = _mm256_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm256_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
130     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
131     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
132     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
166
167         fix0             = _mm256_setzero_pd();
168         fiy0             = _mm256_setzero_pd();
169         fiz0             = _mm256_setzero_pd();
170         fix1             = _mm256_setzero_pd();
171         fiy1             = _mm256_setzero_pd();
172         fiz1             = _mm256_setzero_pd();
173         fix2             = _mm256_setzero_pd();
174         fiy2             = _mm256_setzero_pd();
175         fiz2             = _mm256_setzero_pd();
176
177         /* Reset potential sums */
178         velecsum         = _mm256_setzero_pd();
179         vvdwsum          = _mm256_setzero_pd();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192             j_coord_offsetC  = DIM*jnrC;
193             j_coord_offsetD  = DIM*jnrD;
194
195             /* load j atom coordinates */
196             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
198                                                  &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm256_sub_pd(ix0,jx0);
202             dy00             = _mm256_sub_pd(iy0,jy0);
203             dz00             = _mm256_sub_pd(iz0,jz0);
204             dx10             = _mm256_sub_pd(ix1,jx0);
205             dy10             = _mm256_sub_pd(iy1,jy0);
206             dz10             = _mm256_sub_pd(iz1,jz0);
207             dx20             = _mm256_sub_pd(ix2,jx0);
208             dy20             = _mm256_sub_pd(iy2,jy0);
209             dz20             = _mm256_sub_pd(iz2,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
213             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
214             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
215
216             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
217             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
218             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
219
220             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
221             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
222             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
226                                                                  charge+jnrC+0,charge+jnrD+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229             vdwjidx0C        = 2*vdwtype[jnrC+0];
230             vdwjidx0D        = 2*vdwtype[jnrD+0];
231
232             fjx0             = _mm256_setzero_pd();
233             fjy0             = _mm256_setzero_pd();
234             fjz0             = _mm256_setzero_pd();
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm256_mul_pd(iq0,jq0);
242             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
243                                             vdwioffsetptr0+vdwjidx0B,
244                                             vdwioffsetptr0+vdwjidx0C,
245                                             vdwioffsetptr0+vdwjidx0D,
246                                             &c6_00,&c12_00);
247
248             /* COULOMB ELECTROSTATICS */
249             velec            = _mm256_mul_pd(qq00,rinv00);
250             felec            = _mm256_mul_pd(velec,rinvsq00);
251
252             /* LENNARD-JONES DISPERSION/REPULSION */
253
254             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
255             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
256             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
257             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
258             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
259
260             /* Update potential sum for this i atom from the interaction with this j atom. */
261             velecsum         = _mm256_add_pd(velecsum,velec);
262             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
263
264             fscal            = _mm256_add_pd(felec,fvdw);
265
266             /* Calculate temporary vectorial force */
267             tx               = _mm256_mul_pd(fscal,dx00);
268             ty               = _mm256_mul_pd(fscal,dy00);
269             tz               = _mm256_mul_pd(fscal,dz00);
270
271             /* Update vectorial force */
272             fix0             = _mm256_add_pd(fix0,tx);
273             fiy0             = _mm256_add_pd(fiy0,ty);
274             fiz0             = _mm256_add_pd(fiz0,tz);
275
276             fjx0             = _mm256_add_pd(fjx0,tx);
277             fjy0             = _mm256_add_pd(fjy0,ty);
278             fjz0             = _mm256_add_pd(fjz0,tz);
279
280             /**************************
281              * CALCULATE INTERACTIONS *
282              **************************/
283
284             /* Compute parameters for interactions between i and j atoms */
285             qq10             = _mm256_mul_pd(iq1,jq0);
286
287             /* COULOMB ELECTROSTATICS */
288             velec            = _mm256_mul_pd(qq10,rinv10);
289             felec            = _mm256_mul_pd(velec,rinvsq10);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             velecsum         = _mm256_add_pd(velecsum,velec);
293
294             fscal            = felec;
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm256_mul_pd(fscal,dx10);
298             ty               = _mm256_mul_pd(fscal,dy10);
299             tz               = _mm256_mul_pd(fscal,dz10);
300
301             /* Update vectorial force */
302             fix1             = _mm256_add_pd(fix1,tx);
303             fiy1             = _mm256_add_pd(fiy1,ty);
304             fiz1             = _mm256_add_pd(fiz1,tz);
305
306             fjx0             = _mm256_add_pd(fjx0,tx);
307             fjy0             = _mm256_add_pd(fjy0,ty);
308             fjz0             = _mm256_add_pd(fjz0,tz);
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq20             = _mm256_mul_pd(iq2,jq0);
316
317             /* COULOMB ELECTROSTATICS */
318             velec            = _mm256_mul_pd(qq20,rinv20);
319             felec            = _mm256_mul_pd(velec,rinvsq20);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velecsum         = _mm256_add_pd(velecsum,velec);
323
324             fscal            = felec;
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm256_mul_pd(fscal,dx20);
328             ty               = _mm256_mul_pd(fscal,dy20);
329             tz               = _mm256_mul_pd(fscal,dz20);
330
331             /* Update vectorial force */
332             fix2             = _mm256_add_pd(fix2,tx);
333             fiy2             = _mm256_add_pd(fiy2,ty);
334             fiz2             = _mm256_add_pd(fiz2,tz);
335
336             fjx0             = _mm256_add_pd(fjx0,tx);
337             fjy0             = _mm256_add_pd(fjy0,ty);
338             fjz0             = _mm256_add_pd(fjz0,tz);
339
340             fjptrA             = f+j_coord_offsetA;
341             fjptrB             = f+j_coord_offsetB;
342             fjptrC             = f+j_coord_offsetC;
343             fjptrD             = f+j_coord_offsetD;
344
345             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
346
347             /* Inner loop uses 96 flops */
348         }
349
350         if(jidx<j_index_end)
351         {
352
353             /* Get j neighbor index, and coordinate index */
354             jnrlistA         = jjnr[jidx];
355             jnrlistB         = jjnr[jidx+1];
356             jnrlistC         = jjnr[jidx+2];
357             jnrlistD         = jjnr[jidx+3];
358             /* Sign of each element will be negative for non-real atoms.
359              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
360              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
361              */
362             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
363
364             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
365             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
366             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
367
368             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
369             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
370             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
371             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
372             j_coord_offsetA  = DIM*jnrA;
373             j_coord_offsetB  = DIM*jnrB;
374             j_coord_offsetC  = DIM*jnrC;
375             j_coord_offsetD  = DIM*jnrD;
376
377             /* load j atom coordinates */
378             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
379                                                  x+j_coord_offsetC,x+j_coord_offsetD,
380                                                  &jx0,&jy0,&jz0);
381
382             /* Calculate displacement vector */
383             dx00             = _mm256_sub_pd(ix0,jx0);
384             dy00             = _mm256_sub_pd(iy0,jy0);
385             dz00             = _mm256_sub_pd(iz0,jz0);
386             dx10             = _mm256_sub_pd(ix1,jx0);
387             dy10             = _mm256_sub_pd(iy1,jy0);
388             dz10             = _mm256_sub_pd(iz1,jz0);
389             dx20             = _mm256_sub_pd(ix2,jx0);
390             dy20             = _mm256_sub_pd(iy2,jy0);
391             dz20             = _mm256_sub_pd(iz2,jz0);
392
393             /* Calculate squared distance and things based on it */
394             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
395             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
396             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
397
398             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
399             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
400             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
401
402             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
403             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
404             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
405
406             /* Load parameters for j particles */
407             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
408                                                                  charge+jnrC+0,charge+jnrD+0);
409             vdwjidx0A        = 2*vdwtype[jnrA+0];
410             vdwjidx0B        = 2*vdwtype[jnrB+0];
411             vdwjidx0C        = 2*vdwtype[jnrC+0];
412             vdwjidx0D        = 2*vdwtype[jnrD+0];
413
414             fjx0             = _mm256_setzero_pd();
415             fjy0             = _mm256_setzero_pd();
416             fjz0             = _mm256_setzero_pd();
417
418             /**************************
419              * CALCULATE INTERACTIONS *
420              **************************/
421
422             /* Compute parameters for interactions between i and j atoms */
423             qq00             = _mm256_mul_pd(iq0,jq0);
424             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
425                                             vdwioffsetptr0+vdwjidx0B,
426                                             vdwioffsetptr0+vdwjidx0C,
427                                             vdwioffsetptr0+vdwjidx0D,
428                                             &c6_00,&c12_00);
429
430             /* COULOMB ELECTROSTATICS */
431             velec            = _mm256_mul_pd(qq00,rinv00);
432             felec            = _mm256_mul_pd(velec,rinvsq00);
433
434             /* LENNARD-JONES DISPERSION/REPULSION */
435
436             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
437             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
438             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
439             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
440             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
441
442             /* Update potential sum for this i atom from the interaction with this j atom. */
443             velec            = _mm256_andnot_pd(dummy_mask,velec);
444             velecsum         = _mm256_add_pd(velecsum,velec);
445             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
446             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
447
448             fscal            = _mm256_add_pd(felec,fvdw);
449
450             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
451
452             /* Calculate temporary vectorial force */
453             tx               = _mm256_mul_pd(fscal,dx00);
454             ty               = _mm256_mul_pd(fscal,dy00);
455             tz               = _mm256_mul_pd(fscal,dz00);
456
457             /* Update vectorial force */
458             fix0             = _mm256_add_pd(fix0,tx);
459             fiy0             = _mm256_add_pd(fiy0,ty);
460             fiz0             = _mm256_add_pd(fiz0,tz);
461
462             fjx0             = _mm256_add_pd(fjx0,tx);
463             fjy0             = _mm256_add_pd(fjy0,ty);
464             fjz0             = _mm256_add_pd(fjz0,tz);
465
466             /**************************
467              * CALCULATE INTERACTIONS *
468              **************************/
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq10             = _mm256_mul_pd(iq1,jq0);
472
473             /* COULOMB ELECTROSTATICS */
474             velec            = _mm256_mul_pd(qq10,rinv10);
475             felec            = _mm256_mul_pd(velec,rinvsq10);
476
477             /* Update potential sum for this i atom from the interaction with this j atom. */
478             velec            = _mm256_andnot_pd(dummy_mask,velec);
479             velecsum         = _mm256_add_pd(velecsum,velec);
480
481             fscal            = felec;
482
483             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
484
485             /* Calculate temporary vectorial force */
486             tx               = _mm256_mul_pd(fscal,dx10);
487             ty               = _mm256_mul_pd(fscal,dy10);
488             tz               = _mm256_mul_pd(fscal,dz10);
489
490             /* Update vectorial force */
491             fix1             = _mm256_add_pd(fix1,tx);
492             fiy1             = _mm256_add_pd(fiy1,ty);
493             fiz1             = _mm256_add_pd(fiz1,tz);
494
495             fjx0             = _mm256_add_pd(fjx0,tx);
496             fjy0             = _mm256_add_pd(fjy0,ty);
497             fjz0             = _mm256_add_pd(fjz0,tz);
498
499             /**************************
500              * CALCULATE INTERACTIONS *
501              **************************/
502
503             /* Compute parameters for interactions between i and j atoms */
504             qq20             = _mm256_mul_pd(iq2,jq0);
505
506             /* COULOMB ELECTROSTATICS */
507             velec            = _mm256_mul_pd(qq20,rinv20);
508             felec            = _mm256_mul_pd(velec,rinvsq20);
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             velec            = _mm256_andnot_pd(dummy_mask,velec);
512             velecsum         = _mm256_add_pd(velecsum,velec);
513
514             fscal            = felec;
515
516             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm256_mul_pd(fscal,dx20);
520             ty               = _mm256_mul_pd(fscal,dy20);
521             tz               = _mm256_mul_pd(fscal,dz20);
522
523             /* Update vectorial force */
524             fix2             = _mm256_add_pd(fix2,tx);
525             fiy2             = _mm256_add_pd(fiy2,ty);
526             fiz2             = _mm256_add_pd(fiz2,tz);
527
528             fjx0             = _mm256_add_pd(fjx0,tx);
529             fjy0             = _mm256_add_pd(fjy0,ty);
530             fjz0             = _mm256_add_pd(fjz0,tz);
531
532             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
533             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
534             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
535             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
536
537             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
538
539             /* Inner loop uses 96 flops */
540         }
541
542         /* End of innermost loop */
543
544         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
545                                                  f+i_coord_offset,fshift+i_shift_offset);
546
547         ggid                        = gid[iidx];
548         /* Update potential energies */
549         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
550         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
551
552         /* Increment number of inner iterations */
553         inneriter                  += j_index_end - j_index_start;
554
555         /* Outer loop uses 20 flops */
556     }
557
558     /* Increment number of outer iterations */
559     outeriter        += nri;
560
561     /* Update outer/inner flops */
562
563     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*96);
564 }
565 /*
566  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_double
567  * Electrostatics interaction: Coulomb
568  * VdW interaction:            LennardJones
569  * Geometry:                   Water3-Particle
570  * Calculate force/pot:        Force
571  */
572 void
573 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_double
574                     (t_nblist                    * gmx_restrict       nlist,
575                      rvec                        * gmx_restrict          xx,
576                      rvec                        * gmx_restrict          ff,
577                      t_forcerec                  * gmx_restrict          fr,
578                      t_mdatoms                   * gmx_restrict     mdatoms,
579                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
580                      t_nrnb                      * gmx_restrict        nrnb)
581 {
582     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
583      * just 0 for non-waters.
584      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
585      * jnr indices corresponding to data put in the four positions in the SIMD register.
586      */
587     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
588     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
589     int              jnrA,jnrB,jnrC,jnrD;
590     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
591     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
592     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
593     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
594     real             rcutoff_scalar;
595     real             *shiftvec,*fshift,*x,*f;
596     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
597     real             scratch[4*DIM];
598     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
599     real *           vdwioffsetptr0;
600     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
601     real *           vdwioffsetptr1;
602     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
603     real *           vdwioffsetptr2;
604     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
605     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
606     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
607     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
608     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
609     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
610     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
611     real             *charge;
612     int              nvdwtype;
613     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
614     int              *vdwtype;
615     real             *vdwparam;
616     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
617     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
618     __m256d          dummy_mask,cutoff_mask;
619     __m128           tmpmask0,tmpmask1;
620     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
621     __m256d          one     = _mm256_set1_pd(1.0);
622     __m256d          two     = _mm256_set1_pd(2.0);
623     x                = xx[0];
624     f                = ff[0];
625
626     nri              = nlist->nri;
627     iinr             = nlist->iinr;
628     jindex           = nlist->jindex;
629     jjnr             = nlist->jjnr;
630     shiftidx         = nlist->shift;
631     gid              = nlist->gid;
632     shiftvec         = fr->shift_vec[0];
633     fshift           = fr->fshift[0];
634     facel            = _mm256_set1_pd(fr->epsfac);
635     charge           = mdatoms->chargeA;
636     nvdwtype         = fr->ntype;
637     vdwparam         = fr->nbfp;
638     vdwtype          = mdatoms->typeA;
639
640     /* Setup water-specific parameters */
641     inr              = nlist->iinr[0];
642     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
643     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
644     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
645     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
646
647     /* Avoid stupid compiler warnings */
648     jnrA = jnrB = jnrC = jnrD = 0;
649     j_coord_offsetA = 0;
650     j_coord_offsetB = 0;
651     j_coord_offsetC = 0;
652     j_coord_offsetD = 0;
653
654     outeriter        = 0;
655     inneriter        = 0;
656
657     for(iidx=0;iidx<4*DIM;iidx++)
658     {
659         scratch[iidx] = 0.0;
660     }
661
662     /* Start outer loop over neighborlists */
663     for(iidx=0; iidx<nri; iidx++)
664     {
665         /* Load shift vector for this list */
666         i_shift_offset   = DIM*shiftidx[iidx];
667
668         /* Load limits for loop over neighbors */
669         j_index_start    = jindex[iidx];
670         j_index_end      = jindex[iidx+1];
671
672         /* Get outer coordinate index */
673         inr              = iinr[iidx];
674         i_coord_offset   = DIM*inr;
675
676         /* Load i particle coords and add shift vector */
677         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
678                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
679
680         fix0             = _mm256_setzero_pd();
681         fiy0             = _mm256_setzero_pd();
682         fiz0             = _mm256_setzero_pd();
683         fix1             = _mm256_setzero_pd();
684         fiy1             = _mm256_setzero_pd();
685         fiz1             = _mm256_setzero_pd();
686         fix2             = _mm256_setzero_pd();
687         fiy2             = _mm256_setzero_pd();
688         fiz2             = _mm256_setzero_pd();
689
690         /* Start inner kernel loop */
691         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
692         {
693
694             /* Get j neighbor index, and coordinate index */
695             jnrA             = jjnr[jidx];
696             jnrB             = jjnr[jidx+1];
697             jnrC             = jjnr[jidx+2];
698             jnrD             = jjnr[jidx+3];
699             j_coord_offsetA  = DIM*jnrA;
700             j_coord_offsetB  = DIM*jnrB;
701             j_coord_offsetC  = DIM*jnrC;
702             j_coord_offsetD  = DIM*jnrD;
703
704             /* load j atom coordinates */
705             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
706                                                  x+j_coord_offsetC,x+j_coord_offsetD,
707                                                  &jx0,&jy0,&jz0);
708
709             /* Calculate displacement vector */
710             dx00             = _mm256_sub_pd(ix0,jx0);
711             dy00             = _mm256_sub_pd(iy0,jy0);
712             dz00             = _mm256_sub_pd(iz0,jz0);
713             dx10             = _mm256_sub_pd(ix1,jx0);
714             dy10             = _mm256_sub_pd(iy1,jy0);
715             dz10             = _mm256_sub_pd(iz1,jz0);
716             dx20             = _mm256_sub_pd(ix2,jx0);
717             dy20             = _mm256_sub_pd(iy2,jy0);
718             dz20             = _mm256_sub_pd(iz2,jz0);
719
720             /* Calculate squared distance and things based on it */
721             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
722             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
723             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
724
725             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
726             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
727             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
728
729             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
730             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
731             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
732
733             /* Load parameters for j particles */
734             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
735                                                                  charge+jnrC+0,charge+jnrD+0);
736             vdwjidx0A        = 2*vdwtype[jnrA+0];
737             vdwjidx0B        = 2*vdwtype[jnrB+0];
738             vdwjidx0C        = 2*vdwtype[jnrC+0];
739             vdwjidx0D        = 2*vdwtype[jnrD+0];
740
741             fjx0             = _mm256_setzero_pd();
742             fjy0             = _mm256_setzero_pd();
743             fjz0             = _mm256_setzero_pd();
744
745             /**************************
746              * CALCULATE INTERACTIONS *
747              **************************/
748
749             /* Compute parameters for interactions between i and j atoms */
750             qq00             = _mm256_mul_pd(iq0,jq0);
751             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
752                                             vdwioffsetptr0+vdwjidx0B,
753                                             vdwioffsetptr0+vdwjidx0C,
754                                             vdwioffsetptr0+vdwjidx0D,
755                                             &c6_00,&c12_00);
756
757             /* COULOMB ELECTROSTATICS */
758             velec            = _mm256_mul_pd(qq00,rinv00);
759             felec            = _mm256_mul_pd(velec,rinvsq00);
760
761             /* LENNARD-JONES DISPERSION/REPULSION */
762
763             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
764             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
765
766             fscal            = _mm256_add_pd(felec,fvdw);
767
768             /* Calculate temporary vectorial force */
769             tx               = _mm256_mul_pd(fscal,dx00);
770             ty               = _mm256_mul_pd(fscal,dy00);
771             tz               = _mm256_mul_pd(fscal,dz00);
772
773             /* Update vectorial force */
774             fix0             = _mm256_add_pd(fix0,tx);
775             fiy0             = _mm256_add_pd(fiy0,ty);
776             fiz0             = _mm256_add_pd(fiz0,tz);
777
778             fjx0             = _mm256_add_pd(fjx0,tx);
779             fjy0             = _mm256_add_pd(fjy0,ty);
780             fjz0             = _mm256_add_pd(fjz0,tz);
781
782             /**************************
783              * CALCULATE INTERACTIONS *
784              **************************/
785
786             /* Compute parameters for interactions between i and j atoms */
787             qq10             = _mm256_mul_pd(iq1,jq0);
788
789             /* COULOMB ELECTROSTATICS */
790             velec            = _mm256_mul_pd(qq10,rinv10);
791             felec            = _mm256_mul_pd(velec,rinvsq10);
792
793             fscal            = felec;
794
795             /* Calculate temporary vectorial force */
796             tx               = _mm256_mul_pd(fscal,dx10);
797             ty               = _mm256_mul_pd(fscal,dy10);
798             tz               = _mm256_mul_pd(fscal,dz10);
799
800             /* Update vectorial force */
801             fix1             = _mm256_add_pd(fix1,tx);
802             fiy1             = _mm256_add_pd(fiy1,ty);
803             fiz1             = _mm256_add_pd(fiz1,tz);
804
805             fjx0             = _mm256_add_pd(fjx0,tx);
806             fjy0             = _mm256_add_pd(fjy0,ty);
807             fjz0             = _mm256_add_pd(fjz0,tz);
808
809             /**************************
810              * CALCULATE INTERACTIONS *
811              **************************/
812
813             /* Compute parameters for interactions between i and j atoms */
814             qq20             = _mm256_mul_pd(iq2,jq0);
815
816             /* COULOMB ELECTROSTATICS */
817             velec            = _mm256_mul_pd(qq20,rinv20);
818             felec            = _mm256_mul_pd(velec,rinvsq20);
819
820             fscal            = felec;
821
822             /* Calculate temporary vectorial force */
823             tx               = _mm256_mul_pd(fscal,dx20);
824             ty               = _mm256_mul_pd(fscal,dy20);
825             tz               = _mm256_mul_pd(fscal,dz20);
826
827             /* Update vectorial force */
828             fix2             = _mm256_add_pd(fix2,tx);
829             fiy2             = _mm256_add_pd(fiy2,ty);
830             fiz2             = _mm256_add_pd(fiz2,tz);
831
832             fjx0             = _mm256_add_pd(fjx0,tx);
833             fjy0             = _mm256_add_pd(fjy0,ty);
834             fjz0             = _mm256_add_pd(fjz0,tz);
835
836             fjptrA             = f+j_coord_offsetA;
837             fjptrB             = f+j_coord_offsetB;
838             fjptrC             = f+j_coord_offsetC;
839             fjptrD             = f+j_coord_offsetD;
840
841             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
842
843             /* Inner loop uses 88 flops */
844         }
845
846         if(jidx<j_index_end)
847         {
848
849             /* Get j neighbor index, and coordinate index */
850             jnrlistA         = jjnr[jidx];
851             jnrlistB         = jjnr[jidx+1];
852             jnrlistC         = jjnr[jidx+2];
853             jnrlistD         = jjnr[jidx+3];
854             /* Sign of each element will be negative for non-real atoms.
855              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
856              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
857              */
858             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
859
860             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
861             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
862             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
863
864             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
865             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
866             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
867             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
868             j_coord_offsetA  = DIM*jnrA;
869             j_coord_offsetB  = DIM*jnrB;
870             j_coord_offsetC  = DIM*jnrC;
871             j_coord_offsetD  = DIM*jnrD;
872
873             /* load j atom coordinates */
874             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
875                                                  x+j_coord_offsetC,x+j_coord_offsetD,
876                                                  &jx0,&jy0,&jz0);
877
878             /* Calculate displacement vector */
879             dx00             = _mm256_sub_pd(ix0,jx0);
880             dy00             = _mm256_sub_pd(iy0,jy0);
881             dz00             = _mm256_sub_pd(iz0,jz0);
882             dx10             = _mm256_sub_pd(ix1,jx0);
883             dy10             = _mm256_sub_pd(iy1,jy0);
884             dz10             = _mm256_sub_pd(iz1,jz0);
885             dx20             = _mm256_sub_pd(ix2,jx0);
886             dy20             = _mm256_sub_pd(iy2,jy0);
887             dz20             = _mm256_sub_pd(iz2,jz0);
888
889             /* Calculate squared distance and things based on it */
890             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
891             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
892             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
893
894             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
895             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
896             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
897
898             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
899             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
900             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
901
902             /* Load parameters for j particles */
903             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
904                                                                  charge+jnrC+0,charge+jnrD+0);
905             vdwjidx0A        = 2*vdwtype[jnrA+0];
906             vdwjidx0B        = 2*vdwtype[jnrB+0];
907             vdwjidx0C        = 2*vdwtype[jnrC+0];
908             vdwjidx0D        = 2*vdwtype[jnrD+0];
909
910             fjx0             = _mm256_setzero_pd();
911             fjy0             = _mm256_setzero_pd();
912             fjz0             = _mm256_setzero_pd();
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             /* Compute parameters for interactions between i and j atoms */
919             qq00             = _mm256_mul_pd(iq0,jq0);
920             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
921                                             vdwioffsetptr0+vdwjidx0B,
922                                             vdwioffsetptr0+vdwjidx0C,
923                                             vdwioffsetptr0+vdwjidx0D,
924                                             &c6_00,&c12_00);
925
926             /* COULOMB ELECTROSTATICS */
927             velec            = _mm256_mul_pd(qq00,rinv00);
928             felec            = _mm256_mul_pd(velec,rinvsq00);
929
930             /* LENNARD-JONES DISPERSION/REPULSION */
931
932             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
933             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
934
935             fscal            = _mm256_add_pd(felec,fvdw);
936
937             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
938
939             /* Calculate temporary vectorial force */
940             tx               = _mm256_mul_pd(fscal,dx00);
941             ty               = _mm256_mul_pd(fscal,dy00);
942             tz               = _mm256_mul_pd(fscal,dz00);
943
944             /* Update vectorial force */
945             fix0             = _mm256_add_pd(fix0,tx);
946             fiy0             = _mm256_add_pd(fiy0,ty);
947             fiz0             = _mm256_add_pd(fiz0,tz);
948
949             fjx0             = _mm256_add_pd(fjx0,tx);
950             fjy0             = _mm256_add_pd(fjy0,ty);
951             fjz0             = _mm256_add_pd(fjz0,tz);
952
953             /**************************
954              * CALCULATE INTERACTIONS *
955              **************************/
956
957             /* Compute parameters for interactions between i and j atoms */
958             qq10             = _mm256_mul_pd(iq1,jq0);
959
960             /* COULOMB ELECTROSTATICS */
961             velec            = _mm256_mul_pd(qq10,rinv10);
962             felec            = _mm256_mul_pd(velec,rinvsq10);
963
964             fscal            = felec;
965
966             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
967
968             /* Calculate temporary vectorial force */
969             tx               = _mm256_mul_pd(fscal,dx10);
970             ty               = _mm256_mul_pd(fscal,dy10);
971             tz               = _mm256_mul_pd(fscal,dz10);
972
973             /* Update vectorial force */
974             fix1             = _mm256_add_pd(fix1,tx);
975             fiy1             = _mm256_add_pd(fiy1,ty);
976             fiz1             = _mm256_add_pd(fiz1,tz);
977
978             fjx0             = _mm256_add_pd(fjx0,tx);
979             fjy0             = _mm256_add_pd(fjy0,ty);
980             fjz0             = _mm256_add_pd(fjz0,tz);
981
982             /**************************
983              * CALCULATE INTERACTIONS *
984              **************************/
985
986             /* Compute parameters for interactions between i and j atoms */
987             qq20             = _mm256_mul_pd(iq2,jq0);
988
989             /* COULOMB ELECTROSTATICS */
990             velec            = _mm256_mul_pd(qq20,rinv20);
991             felec            = _mm256_mul_pd(velec,rinvsq20);
992
993             fscal            = felec;
994
995             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
996
997             /* Calculate temporary vectorial force */
998             tx               = _mm256_mul_pd(fscal,dx20);
999             ty               = _mm256_mul_pd(fscal,dy20);
1000             tz               = _mm256_mul_pd(fscal,dz20);
1001
1002             /* Update vectorial force */
1003             fix2             = _mm256_add_pd(fix2,tx);
1004             fiy2             = _mm256_add_pd(fiy2,ty);
1005             fiz2             = _mm256_add_pd(fiz2,tz);
1006
1007             fjx0             = _mm256_add_pd(fjx0,tx);
1008             fjy0             = _mm256_add_pd(fjy0,ty);
1009             fjz0             = _mm256_add_pd(fjz0,tz);
1010
1011             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1012             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1013             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1014             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1015
1016             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1017
1018             /* Inner loop uses 88 flops */
1019         }
1020
1021         /* End of innermost loop */
1022
1023         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1024                                                  f+i_coord_offset,fshift+i_shift_offset);
1025
1026         /* Increment number of inner iterations */
1027         inneriter                  += j_index_end - j_index_start;
1028
1029         /* Outer loop uses 18 flops */
1030     }
1031
1032     /* Increment number of outer iterations */
1033     outeriter        += nri;
1034
1035     /* Update outer/inner flops */
1036
1037     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1038 }