Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_double
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
101     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
102     __m256d          dummy_mask,cutoff_mask;
103     __m128           tmpmask0,tmpmask1;
104     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
105     __m256d          one     = _mm256_set1_pd(1.0);
106     __m256d          two     = _mm256_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm256_set1_pd(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
127     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
128     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
129     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
163
164         fix0             = _mm256_setzero_pd();
165         fiy0             = _mm256_setzero_pd();
166         fiz0             = _mm256_setzero_pd();
167         fix1             = _mm256_setzero_pd();
168         fiy1             = _mm256_setzero_pd();
169         fiz1             = _mm256_setzero_pd();
170         fix2             = _mm256_setzero_pd();
171         fiy2             = _mm256_setzero_pd();
172         fiz2             = _mm256_setzero_pd();
173
174         /* Reset potential sums */
175         velecsum         = _mm256_setzero_pd();
176         vvdwsum          = _mm256_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                                  x+j_coord_offsetC,x+j_coord_offsetD,
195                                                  &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm256_sub_pd(ix0,jx0);
199             dy00             = _mm256_sub_pd(iy0,jy0);
200             dz00             = _mm256_sub_pd(iz0,jz0);
201             dx10             = _mm256_sub_pd(ix1,jx0);
202             dy10             = _mm256_sub_pd(iy1,jy0);
203             dz10             = _mm256_sub_pd(iz1,jz0);
204             dx20             = _mm256_sub_pd(ix2,jx0);
205             dy20             = _mm256_sub_pd(iy2,jy0);
206             dz20             = _mm256_sub_pd(iz2,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
210             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
211             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
212
213             rinv00           = avx256_invsqrt_d(rsq00);
214             rinv10           = avx256_invsqrt_d(rsq10);
215             rinv20           = avx256_invsqrt_d(rsq20);
216
217             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
218             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
219             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
223                                                                  charge+jnrC+0,charge+jnrD+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228
229             fjx0             = _mm256_setzero_pd();
230             fjy0             = _mm256_setzero_pd();
231             fjz0             = _mm256_setzero_pd();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq00             = _mm256_mul_pd(iq0,jq0);
239             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
240                                             vdwioffsetptr0+vdwjidx0B,
241                                             vdwioffsetptr0+vdwjidx0C,
242                                             vdwioffsetptr0+vdwjidx0D,
243                                             &c6_00,&c12_00);
244
245             /* COULOMB ELECTROSTATICS */
246             velec            = _mm256_mul_pd(qq00,rinv00);
247             felec            = _mm256_mul_pd(velec,rinvsq00);
248
249             /* LENNARD-JONES DISPERSION/REPULSION */
250
251             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
252             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
253             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
254             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
255             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velecsum         = _mm256_add_pd(velecsum,velec);
259             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
260
261             fscal            = _mm256_add_pd(felec,fvdw);
262
263             /* Calculate temporary vectorial force */
264             tx               = _mm256_mul_pd(fscal,dx00);
265             ty               = _mm256_mul_pd(fscal,dy00);
266             tz               = _mm256_mul_pd(fscal,dz00);
267
268             /* Update vectorial force */
269             fix0             = _mm256_add_pd(fix0,tx);
270             fiy0             = _mm256_add_pd(fiy0,ty);
271             fiz0             = _mm256_add_pd(fiz0,tz);
272
273             fjx0             = _mm256_add_pd(fjx0,tx);
274             fjy0             = _mm256_add_pd(fjy0,ty);
275             fjz0             = _mm256_add_pd(fjz0,tz);
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq10             = _mm256_mul_pd(iq1,jq0);
283
284             /* COULOMB ELECTROSTATICS */
285             velec            = _mm256_mul_pd(qq10,rinv10);
286             felec            = _mm256_mul_pd(velec,rinvsq10);
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             velecsum         = _mm256_add_pd(velecsum,velec);
290
291             fscal            = felec;
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm256_mul_pd(fscal,dx10);
295             ty               = _mm256_mul_pd(fscal,dy10);
296             tz               = _mm256_mul_pd(fscal,dz10);
297
298             /* Update vectorial force */
299             fix1             = _mm256_add_pd(fix1,tx);
300             fiy1             = _mm256_add_pd(fiy1,ty);
301             fiz1             = _mm256_add_pd(fiz1,tz);
302
303             fjx0             = _mm256_add_pd(fjx0,tx);
304             fjy0             = _mm256_add_pd(fjy0,ty);
305             fjz0             = _mm256_add_pd(fjz0,tz);
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             /* Compute parameters for interactions between i and j atoms */
312             qq20             = _mm256_mul_pd(iq2,jq0);
313
314             /* COULOMB ELECTROSTATICS */
315             velec            = _mm256_mul_pd(qq20,rinv20);
316             felec            = _mm256_mul_pd(velec,rinvsq20);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velecsum         = _mm256_add_pd(velecsum,velec);
320
321             fscal            = felec;
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm256_mul_pd(fscal,dx20);
325             ty               = _mm256_mul_pd(fscal,dy20);
326             tz               = _mm256_mul_pd(fscal,dz20);
327
328             /* Update vectorial force */
329             fix2             = _mm256_add_pd(fix2,tx);
330             fiy2             = _mm256_add_pd(fiy2,ty);
331             fiz2             = _mm256_add_pd(fiz2,tz);
332
333             fjx0             = _mm256_add_pd(fjx0,tx);
334             fjy0             = _mm256_add_pd(fjy0,ty);
335             fjz0             = _mm256_add_pd(fjz0,tz);
336
337             fjptrA             = f+j_coord_offsetA;
338             fjptrB             = f+j_coord_offsetB;
339             fjptrC             = f+j_coord_offsetC;
340             fjptrD             = f+j_coord_offsetD;
341
342             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
343
344             /* Inner loop uses 96 flops */
345         }
346
347         if(jidx<j_index_end)
348         {
349
350             /* Get j neighbor index, and coordinate index */
351             jnrlistA         = jjnr[jidx];
352             jnrlistB         = jjnr[jidx+1];
353             jnrlistC         = jjnr[jidx+2];
354             jnrlistD         = jjnr[jidx+3];
355             /* Sign of each element will be negative for non-real atoms.
356              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
357              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
358              */
359             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
360
361             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
362             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
363             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
364
365             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
366             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
367             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
368             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
369             j_coord_offsetA  = DIM*jnrA;
370             j_coord_offsetB  = DIM*jnrB;
371             j_coord_offsetC  = DIM*jnrC;
372             j_coord_offsetD  = DIM*jnrD;
373
374             /* load j atom coordinates */
375             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
376                                                  x+j_coord_offsetC,x+j_coord_offsetD,
377                                                  &jx0,&jy0,&jz0);
378
379             /* Calculate displacement vector */
380             dx00             = _mm256_sub_pd(ix0,jx0);
381             dy00             = _mm256_sub_pd(iy0,jy0);
382             dz00             = _mm256_sub_pd(iz0,jz0);
383             dx10             = _mm256_sub_pd(ix1,jx0);
384             dy10             = _mm256_sub_pd(iy1,jy0);
385             dz10             = _mm256_sub_pd(iz1,jz0);
386             dx20             = _mm256_sub_pd(ix2,jx0);
387             dy20             = _mm256_sub_pd(iy2,jy0);
388             dz20             = _mm256_sub_pd(iz2,jz0);
389
390             /* Calculate squared distance and things based on it */
391             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
392             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
393             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
394
395             rinv00           = avx256_invsqrt_d(rsq00);
396             rinv10           = avx256_invsqrt_d(rsq10);
397             rinv20           = avx256_invsqrt_d(rsq20);
398
399             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
400             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
401             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
402
403             /* Load parameters for j particles */
404             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
405                                                                  charge+jnrC+0,charge+jnrD+0);
406             vdwjidx0A        = 2*vdwtype[jnrA+0];
407             vdwjidx0B        = 2*vdwtype[jnrB+0];
408             vdwjidx0C        = 2*vdwtype[jnrC+0];
409             vdwjidx0D        = 2*vdwtype[jnrD+0];
410
411             fjx0             = _mm256_setzero_pd();
412             fjy0             = _mm256_setzero_pd();
413             fjz0             = _mm256_setzero_pd();
414
415             /**************************
416              * CALCULATE INTERACTIONS *
417              **************************/
418
419             /* Compute parameters for interactions between i and j atoms */
420             qq00             = _mm256_mul_pd(iq0,jq0);
421             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
422                                             vdwioffsetptr0+vdwjidx0B,
423                                             vdwioffsetptr0+vdwjidx0C,
424                                             vdwioffsetptr0+vdwjidx0D,
425                                             &c6_00,&c12_00);
426
427             /* COULOMB ELECTROSTATICS */
428             velec            = _mm256_mul_pd(qq00,rinv00);
429             felec            = _mm256_mul_pd(velec,rinvsq00);
430
431             /* LENNARD-JONES DISPERSION/REPULSION */
432
433             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
434             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
435             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
436             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
437             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
438
439             /* Update potential sum for this i atom from the interaction with this j atom. */
440             velec            = _mm256_andnot_pd(dummy_mask,velec);
441             velecsum         = _mm256_add_pd(velecsum,velec);
442             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
443             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
444
445             fscal            = _mm256_add_pd(felec,fvdw);
446
447             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
448
449             /* Calculate temporary vectorial force */
450             tx               = _mm256_mul_pd(fscal,dx00);
451             ty               = _mm256_mul_pd(fscal,dy00);
452             tz               = _mm256_mul_pd(fscal,dz00);
453
454             /* Update vectorial force */
455             fix0             = _mm256_add_pd(fix0,tx);
456             fiy0             = _mm256_add_pd(fiy0,ty);
457             fiz0             = _mm256_add_pd(fiz0,tz);
458
459             fjx0             = _mm256_add_pd(fjx0,tx);
460             fjy0             = _mm256_add_pd(fjy0,ty);
461             fjz0             = _mm256_add_pd(fjz0,tz);
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             /* Compute parameters for interactions between i and j atoms */
468             qq10             = _mm256_mul_pd(iq1,jq0);
469
470             /* COULOMB ELECTROSTATICS */
471             velec            = _mm256_mul_pd(qq10,rinv10);
472             felec            = _mm256_mul_pd(velec,rinvsq10);
473
474             /* Update potential sum for this i atom from the interaction with this j atom. */
475             velec            = _mm256_andnot_pd(dummy_mask,velec);
476             velecsum         = _mm256_add_pd(velecsum,velec);
477
478             fscal            = felec;
479
480             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
481
482             /* Calculate temporary vectorial force */
483             tx               = _mm256_mul_pd(fscal,dx10);
484             ty               = _mm256_mul_pd(fscal,dy10);
485             tz               = _mm256_mul_pd(fscal,dz10);
486
487             /* Update vectorial force */
488             fix1             = _mm256_add_pd(fix1,tx);
489             fiy1             = _mm256_add_pd(fiy1,ty);
490             fiz1             = _mm256_add_pd(fiz1,tz);
491
492             fjx0             = _mm256_add_pd(fjx0,tx);
493             fjy0             = _mm256_add_pd(fjy0,ty);
494             fjz0             = _mm256_add_pd(fjz0,tz);
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq20             = _mm256_mul_pd(iq2,jq0);
502
503             /* COULOMB ELECTROSTATICS */
504             velec            = _mm256_mul_pd(qq20,rinv20);
505             felec            = _mm256_mul_pd(velec,rinvsq20);
506
507             /* Update potential sum for this i atom from the interaction with this j atom. */
508             velec            = _mm256_andnot_pd(dummy_mask,velec);
509             velecsum         = _mm256_add_pd(velecsum,velec);
510
511             fscal            = felec;
512
513             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
514
515             /* Calculate temporary vectorial force */
516             tx               = _mm256_mul_pd(fscal,dx20);
517             ty               = _mm256_mul_pd(fscal,dy20);
518             tz               = _mm256_mul_pd(fscal,dz20);
519
520             /* Update vectorial force */
521             fix2             = _mm256_add_pd(fix2,tx);
522             fiy2             = _mm256_add_pd(fiy2,ty);
523             fiz2             = _mm256_add_pd(fiz2,tz);
524
525             fjx0             = _mm256_add_pd(fjx0,tx);
526             fjy0             = _mm256_add_pd(fjy0,ty);
527             fjz0             = _mm256_add_pd(fjz0,tz);
528
529             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
530             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
531             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
532             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
533
534             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
535
536             /* Inner loop uses 96 flops */
537         }
538
539         /* End of innermost loop */
540
541         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
542                                                  f+i_coord_offset,fshift+i_shift_offset);
543
544         ggid                        = gid[iidx];
545         /* Update potential energies */
546         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
547         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
548
549         /* Increment number of inner iterations */
550         inneriter                  += j_index_end - j_index_start;
551
552         /* Outer loop uses 20 flops */
553     }
554
555     /* Increment number of outer iterations */
556     outeriter        += nri;
557
558     /* Update outer/inner flops */
559
560     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*96);
561 }
562 /*
563  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_double
564  * Electrostatics interaction: Coulomb
565  * VdW interaction:            LennardJones
566  * Geometry:                   Water3-Particle
567  * Calculate force/pot:        Force
568  */
569 void
570 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_double
571                     (t_nblist                    * gmx_restrict       nlist,
572                      rvec                        * gmx_restrict          xx,
573                      rvec                        * gmx_restrict          ff,
574                      struct t_forcerec           * gmx_restrict          fr,
575                      t_mdatoms                   * gmx_restrict     mdatoms,
576                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
577                      t_nrnb                      * gmx_restrict        nrnb)
578 {
579     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
580      * just 0 for non-waters.
581      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
582      * jnr indices corresponding to data put in the four positions in the SIMD register.
583      */
584     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
585     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
586     int              jnrA,jnrB,jnrC,jnrD;
587     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
588     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
589     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
590     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
591     real             rcutoff_scalar;
592     real             *shiftvec,*fshift,*x,*f;
593     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
594     real             scratch[4*DIM];
595     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
596     real *           vdwioffsetptr0;
597     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
598     real *           vdwioffsetptr1;
599     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
600     real *           vdwioffsetptr2;
601     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
602     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
603     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
604     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
605     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
606     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
607     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
608     real             *charge;
609     int              nvdwtype;
610     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
611     int              *vdwtype;
612     real             *vdwparam;
613     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
614     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
615     __m256d          dummy_mask,cutoff_mask;
616     __m128           tmpmask0,tmpmask1;
617     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
618     __m256d          one     = _mm256_set1_pd(1.0);
619     __m256d          two     = _mm256_set1_pd(2.0);
620     x                = xx[0];
621     f                = ff[0];
622
623     nri              = nlist->nri;
624     iinr             = nlist->iinr;
625     jindex           = nlist->jindex;
626     jjnr             = nlist->jjnr;
627     shiftidx         = nlist->shift;
628     gid              = nlist->gid;
629     shiftvec         = fr->shift_vec[0];
630     fshift           = fr->fshift[0];
631     facel            = _mm256_set1_pd(fr->ic->epsfac);
632     charge           = mdatoms->chargeA;
633     nvdwtype         = fr->ntype;
634     vdwparam         = fr->nbfp;
635     vdwtype          = mdatoms->typeA;
636
637     /* Setup water-specific parameters */
638     inr              = nlist->iinr[0];
639     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
640     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
641     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
642     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
643
644     /* Avoid stupid compiler warnings */
645     jnrA = jnrB = jnrC = jnrD = 0;
646     j_coord_offsetA = 0;
647     j_coord_offsetB = 0;
648     j_coord_offsetC = 0;
649     j_coord_offsetD = 0;
650
651     outeriter        = 0;
652     inneriter        = 0;
653
654     for(iidx=0;iidx<4*DIM;iidx++)
655     {
656         scratch[iidx] = 0.0;
657     }
658
659     /* Start outer loop over neighborlists */
660     for(iidx=0; iidx<nri; iidx++)
661     {
662         /* Load shift vector for this list */
663         i_shift_offset   = DIM*shiftidx[iidx];
664
665         /* Load limits for loop over neighbors */
666         j_index_start    = jindex[iidx];
667         j_index_end      = jindex[iidx+1];
668
669         /* Get outer coordinate index */
670         inr              = iinr[iidx];
671         i_coord_offset   = DIM*inr;
672
673         /* Load i particle coords and add shift vector */
674         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
675                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
676
677         fix0             = _mm256_setzero_pd();
678         fiy0             = _mm256_setzero_pd();
679         fiz0             = _mm256_setzero_pd();
680         fix1             = _mm256_setzero_pd();
681         fiy1             = _mm256_setzero_pd();
682         fiz1             = _mm256_setzero_pd();
683         fix2             = _mm256_setzero_pd();
684         fiy2             = _mm256_setzero_pd();
685         fiz2             = _mm256_setzero_pd();
686
687         /* Start inner kernel loop */
688         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
689         {
690
691             /* Get j neighbor index, and coordinate index */
692             jnrA             = jjnr[jidx];
693             jnrB             = jjnr[jidx+1];
694             jnrC             = jjnr[jidx+2];
695             jnrD             = jjnr[jidx+3];
696             j_coord_offsetA  = DIM*jnrA;
697             j_coord_offsetB  = DIM*jnrB;
698             j_coord_offsetC  = DIM*jnrC;
699             j_coord_offsetD  = DIM*jnrD;
700
701             /* load j atom coordinates */
702             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
703                                                  x+j_coord_offsetC,x+j_coord_offsetD,
704                                                  &jx0,&jy0,&jz0);
705
706             /* Calculate displacement vector */
707             dx00             = _mm256_sub_pd(ix0,jx0);
708             dy00             = _mm256_sub_pd(iy0,jy0);
709             dz00             = _mm256_sub_pd(iz0,jz0);
710             dx10             = _mm256_sub_pd(ix1,jx0);
711             dy10             = _mm256_sub_pd(iy1,jy0);
712             dz10             = _mm256_sub_pd(iz1,jz0);
713             dx20             = _mm256_sub_pd(ix2,jx0);
714             dy20             = _mm256_sub_pd(iy2,jy0);
715             dz20             = _mm256_sub_pd(iz2,jz0);
716
717             /* Calculate squared distance and things based on it */
718             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
719             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
720             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
721
722             rinv00           = avx256_invsqrt_d(rsq00);
723             rinv10           = avx256_invsqrt_d(rsq10);
724             rinv20           = avx256_invsqrt_d(rsq20);
725
726             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
727             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
728             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
729
730             /* Load parameters for j particles */
731             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
732                                                                  charge+jnrC+0,charge+jnrD+0);
733             vdwjidx0A        = 2*vdwtype[jnrA+0];
734             vdwjidx0B        = 2*vdwtype[jnrB+0];
735             vdwjidx0C        = 2*vdwtype[jnrC+0];
736             vdwjidx0D        = 2*vdwtype[jnrD+0];
737
738             fjx0             = _mm256_setzero_pd();
739             fjy0             = _mm256_setzero_pd();
740             fjz0             = _mm256_setzero_pd();
741
742             /**************************
743              * CALCULATE INTERACTIONS *
744              **************************/
745
746             /* Compute parameters for interactions between i and j atoms */
747             qq00             = _mm256_mul_pd(iq0,jq0);
748             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
749                                             vdwioffsetptr0+vdwjidx0B,
750                                             vdwioffsetptr0+vdwjidx0C,
751                                             vdwioffsetptr0+vdwjidx0D,
752                                             &c6_00,&c12_00);
753
754             /* COULOMB ELECTROSTATICS */
755             velec            = _mm256_mul_pd(qq00,rinv00);
756             felec            = _mm256_mul_pd(velec,rinvsq00);
757
758             /* LENNARD-JONES DISPERSION/REPULSION */
759
760             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
761             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
762
763             fscal            = _mm256_add_pd(felec,fvdw);
764
765             /* Calculate temporary vectorial force */
766             tx               = _mm256_mul_pd(fscal,dx00);
767             ty               = _mm256_mul_pd(fscal,dy00);
768             tz               = _mm256_mul_pd(fscal,dz00);
769
770             /* Update vectorial force */
771             fix0             = _mm256_add_pd(fix0,tx);
772             fiy0             = _mm256_add_pd(fiy0,ty);
773             fiz0             = _mm256_add_pd(fiz0,tz);
774
775             fjx0             = _mm256_add_pd(fjx0,tx);
776             fjy0             = _mm256_add_pd(fjy0,ty);
777             fjz0             = _mm256_add_pd(fjz0,tz);
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             /* Compute parameters for interactions between i and j atoms */
784             qq10             = _mm256_mul_pd(iq1,jq0);
785
786             /* COULOMB ELECTROSTATICS */
787             velec            = _mm256_mul_pd(qq10,rinv10);
788             felec            = _mm256_mul_pd(velec,rinvsq10);
789
790             fscal            = felec;
791
792             /* Calculate temporary vectorial force */
793             tx               = _mm256_mul_pd(fscal,dx10);
794             ty               = _mm256_mul_pd(fscal,dy10);
795             tz               = _mm256_mul_pd(fscal,dz10);
796
797             /* Update vectorial force */
798             fix1             = _mm256_add_pd(fix1,tx);
799             fiy1             = _mm256_add_pd(fiy1,ty);
800             fiz1             = _mm256_add_pd(fiz1,tz);
801
802             fjx0             = _mm256_add_pd(fjx0,tx);
803             fjy0             = _mm256_add_pd(fjy0,ty);
804             fjz0             = _mm256_add_pd(fjz0,tz);
805
806             /**************************
807              * CALCULATE INTERACTIONS *
808              **************************/
809
810             /* Compute parameters for interactions between i and j atoms */
811             qq20             = _mm256_mul_pd(iq2,jq0);
812
813             /* COULOMB ELECTROSTATICS */
814             velec            = _mm256_mul_pd(qq20,rinv20);
815             felec            = _mm256_mul_pd(velec,rinvsq20);
816
817             fscal            = felec;
818
819             /* Calculate temporary vectorial force */
820             tx               = _mm256_mul_pd(fscal,dx20);
821             ty               = _mm256_mul_pd(fscal,dy20);
822             tz               = _mm256_mul_pd(fscal,dz20);
823
824             /* Update vectorial force */
825             fix2             = _mm256_add_pd(fix2,tx);
826             fiy2             = _mm256_add_pd(fiy2,ty);
827             fiz2             = _mm256_add_pd(fiz2,tz);
828
829             fjx0             = _mm256_add_pd(fjx0,tx);
830             fjy0             = _mm256_add_pd(fjy0,ty);
831             fjz0             = _mm256_add_pd(fjz0,tz);
832
833             fjptrA             = f+j_coord_offsetA;
834             fjptrB             = f+j_coord_offsetB;
835             fjptrC             = f+j_coord_offsetC;
836             fjptrD             = f+j_coord_offsetD;
837
838             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
839
840             /* Inner loop uses 88 flops */
841         }
842
843         if(jidx<j_index_end)
844         {
845
846             /* Get j neighbor index, and coordinate index */
847             jnrlistA         = jjnr[jidx];
848             jnrlistB         = jjnr[jidx+1];
849             jnrlistC         = jjnr[jidx+2];
850             jnrlistD         = jjnr[jidx+3];
851             /* Sign of each element will be negative for non-real atoms.
852              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
853              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
854              */
855             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
856
857             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
858             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
859             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
860
861             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
862             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
863             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
864             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
865             j_coord_offsetA  = DIM*jnrA;
866             j_coord_offsetB  = DIM*jnrB;
867             j_coord_offsetC  = DIM*jnrC;
868             j_coord_offsetD  = DIM*jnrD;
869
870             /* load j atom coordinates */
871             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
872                                                  x+j_coord_offsetC,x+j_coord_offsetD,
873                                                  &jx0,&jy0,&jz0);
874
875             /* Calculate displacement vector */
876             dx00             = _mm256_sub_pd(ix0,jx0);
877             dy00             = _mm256_sub_pd(iy0,jy0);
878             dz00             = _mm256_sub_pd(iz0,jz0);
879             dx10             = _mm256_sub_pd(ix1,jx0);
880             dy10             = _mm256_sub_pd(iy1,jy0);
881             dz10             = _mm256_sub_pd(iz1,jz0);
882             dx20             = _mm256_sub_pd(ix2,jx0);
883             dy20             = _mm256_sub_pd(iy2,jy0);
884             dz20             = _mm256_sub_pd(iz2,jz0);
885
886             /* Calculate squared distance and things based on it */
887             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
888             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
889             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
890
891             rinv00           = avx256_invsqrt_d(rsq00);
892             rinv10           = avx256_invsqrt_d(rsq10);
893             rinv20           = avx256_invsqrt_d(rsq20);
894
895             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
896             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
897             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
898
899             /* Load parameters for j particles */
900             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
901                                                                  charge+jnrC+0,charge+jnrD+0);
902             vdwjidx0A        = 2*vdwtype[jnrA+0];
903             vdwjidx0B        = 2*vdwtype[jnrB+0];
904             vdwjidx0C        = 2*vdwtype[jnrC+0];
905             vdwjidx0D        = 2*vdwtype[jnrD+0];
906
907             fjx0             = _mm256_setzero_pd();
908             fjy0             = _mm256_setzero_pd();
909             fjz0             = _mm256_setzero_pd();
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             /* Compute parameters for interactions between i and j atoms */
916             qq00             = _mm256_mul_pd(iq0,jq0);
917             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
918                                             vdwioffsetptr0+vdwjidx0B,
919                                             vdwioffsetptr0+vdwjidx0C,
920                                             vdwioffsetptr0+vdwjidx0D,
921                                             &c6_00,&c12_00);
922
923             /* COULOMB ELECTROSTATICS */
924             velec            = _mm256_mul_pd(qq00,rinv00);
925             felec            = _mm256_mul_pd(velec,rinvsq00);
926
927             /* LENNARD-JONES DISPERSION/REPULSION */
928
929             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
930             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
931
932             fscal            = _mm256_add_pd(felec,fvdw);
933
934             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
935
936             /* Calculate temporary vectorial force */
937             tx               = _mm256_mul_pd(fscal,dx00);
938             ty               = _mm256_mul_pd(fscal,dy00);
939             tz               = _mm256_mul_pd(fscal,dz00);
940
941             /* Update vectorial force */
942             fix0             = _mm256_add_pd(fix0,tx);
943             fiy0             = _mm256_add_pd(fiy0,ty);
944             fiz0             = _mm256_add_pd(fiz0,tz);
945
946             fjx0             = _mm256_add_pd(fjx0,tx);
947             fjy0             = _mm256_add_pd(fjy0,ty);
948             fjz0             = _mm256_add_pd(fjz0,tz);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq10             = _mm256_mul_pd(iq1,jq0);
956
957             /* COULOMB ELECTROSTATICS */
958             velec            = _mm256_mul_pd(qq10,rinv10);
959             felec            = _mm256_mul_pd(velec,rinvsq10);
960
961             fscal            = felec;
962
963             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
964
965             /* Calculate temporary vectorial force */
966             tx               = _mm256_mul_pd(fscal,dx10);
967             ty               = _mm256_mul_pd(fscal,dy10);
968             tz               = _mm256_mul_pd(fscal,dz10);
969
970             /* Update vectorial force */
971             fix1             = _mm256_add_pd(fix1,tx);
972             fiy1             = _mm256_add_pd(fiy1,ty);
973             fiz1             = _mm256_add_pd(fiz1,tz);
974
975             fjx0             = _mm256_add_pd(fjx0,tx);
976             fjy0             = _mm256_add_pd(fjy0,ty);
977             fjz0             = _mm256_add_pd(fjz0,tz);
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             /* Compute parameters for interactions between i and j atoms */
984             qq20             = _mm256_mul_pd(iq2,jq0);
985
986             /* COULOMB ELECTROSTATICS */
987             velec            = _mm256_mul_pd(qq20,rinv20);
988             felec            = _mm256_mul_pd(velec,rinvsq20);
989
990             fscal            = felec;
991
992             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm256_mul_pd(fscal,dx20);
996             ty               = _mm256_mul_pd(fscal,dy20);
997             tz               = _mm256_mul_pd(fscal,dz20);
998
999             /* Update vectorial force */
1000             fix2             = _mm256_add_pd(fix2,tx);
1001             fiy2             = _mm256_add_pd(fiy2,ty);
1002             fiz2             = _mm256_add_pd(fiz2,tz);
1003
1004             fjx0             = _mm256_add_pd(fjx0,tx);
1005             fjy0             = _mm256_add_pd(fjy0,ty);
1006             fjz0             = _mm256_add_pd(fjz0,tz);
1007
1008             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1009             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1010             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1011             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1012
1013             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1014
1015             /* Inner loop uses 88 flops */
1016         }
1017
1018         /* End of innermost loop */
1019
1020         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1021                                                  f+i_coord_offset,fshift+i_shift_offset);
1022
1023         /* Increment number of inner iterations */
1024         inneriter                  += j_index_end - j_index_start;
1025
1026         /* Outer loop uses 18 flops */
1027     }
1028
1029     /* Increment number of outer iterations */
1030     outeriter        += nri;
1031
1032     /* Update outer/inner flops */
1033
1034     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1035 }