Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m256d          dummy_mask,cutoff_mask;
90     __m128           tmpmask0,tmpmask1;
91     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
92     __m256d          one     = _mm256_set1_pd(1.0);
93     __m256d          two     = _mm256_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_pd(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     /* Setup water-specific parameters */
112     inr              = nlist->iinr[0];
113     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
114     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
115     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
116     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = jnrC = jnrD = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122     j_coord_offsetC = 0;
123     j_coord_offsetD = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     for(iidx=0;iidx<4*DIM;iidx++)
129     {
130         scratch[iidx] = 0.0;
131     }
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
149                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
150
151         fix0             = _mm256_setzero_pd();
152         fiy0             = _mm256_setzero_pd();
153         fiz0             = _mm256_setzero_pd();
154         fix1             = _mm256_setzero_pd();
155         fiy1             = _mm256_setzero_pd();
156         fiz1             = _mm256_setzero_pd();
157         fix2             = _mm256_setzero_pd();
158         fiy2             = _mm256_setzero_pd();
159         fiz2             = _mm256_setzero_pd();
160
161         /* Reset potential sums */
162         velecsum         = _mm256_setzero_pd();
163         vvdwsum          = _mm256_setzero_pd();
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
167         {
168
169             /* Get j neighbor index, and coordinate index */
170             jnrA             = jjnr[jidx];
171             jnrB             = jjnr[jidx+1];
172             jnrC             = jjnr[jidx+2];
173             jnrD             = jjnr[jidx+3];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176             j_coord_offsetC  = DIM*jnrC;
177             j_coord_offsetD  = DIM*jnrD;
178
179             /* load j atom coordinates */
180             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
181                                                  x+j_coord_offsetC,x+j_coord_offsetD,
182                                                  &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm256_sub_pd(ix0,jx0);
186             dy00             = _mm256_sub_pd(iy0,jy0);
187             dz00             = _mm256_sub_pd(iz0,jz0);
188             dx10             = _mm256_sub_pd(ix1,jx0);
189             dy10             = _mm256_sub_pd(iy1,jy0);
190             dz10             = _mm256_sub_pd(iz1,jz0);
191             dx20             = _mm256_sub_pd(ix2,jx0);
192             dy20             = _mm256_sub_pd(iy2,jy0);
193             dz20             = _mm256_sub_pd(iz2,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
197             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
198             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
199
200             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
201             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
202             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
203
204             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
205             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
206             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
210                                                                  charge+jnrC+0,charge+jnrD+0);
211             vdwjidx0A        = 2*vdwtype[jnrA+0];
212             vdwjidx0B        = 2*vdwtype[jnrB+0];
213             vdwjidx0C        = 2*vdwtype[jnrC+0];
214             vdwjidx0D        = 2*vdwtype[jnrD+0];
215
216             fjx0             = _mm256_setzero_pd();
217             fjy0             = _mm256_setzero_pd();
218             fjz0             = _mm256_setzero_pd();
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm256_mul_pd(iq0,jq0);
226             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
227                                             vdwioffsetptr0+vdwjidx0B,
228                                             vdwioffsetptr0+vdwjidx0C,
229                                             vdwioffsetptr0+vdwjidx0D,
230                                             &c6_00,&c12_00);
231
232             /* COULOMB ELECTROSTATICS */
233             velec            = _mm256_mul_pd(qq00,rinv00);
234             felec            = _mm256_mul_pd(velec,rinvsq00);
235
236             /* LENNARD-JONES DISPERSION/REPULSION */
237
238             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
239             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
240             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
241             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
242             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velecsum         = _mm256_add_pd(velecsum,velec);
246             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
247
248             fscal            = _mm256_add_pd(felec,fvdw);
249
250             /* Calculate temporary vectorial force */
251             tx               = _mm256_mul_pd(fscal,dx00);
252             ty               = _mm256_mul_pd(fscal,dy00);
253             tz               = _mm256_mul_pd(fscal,dz00);
254
255             /* Update vectorial force */
256             fix0             = _mm256_add_pd(fix0,tx);
257             fiy0             = _mm256_add_pd(fiy0,ty);
258             fiz0             = _mm256_add_pd(fiz0,tz);
259
260             fjx0             = _mm256_add_pd(fjx0,tx);
261             fjy0             = _mm256_add_pd(fjy0,ty);
262             fjz0             = _mm256_add_pd(fjz0,tz);
263
264             /**************************
265              * CALCULATE INTERACTIONS *
266              **************************/
267
268             /* Compute parameters for interactions between i and j atoms */
269             qq10             = _mm256_mul_pd(iq1,jq0);
270
271             /* COULOMB ELECTROSTATICS */
272             velec            = _mm256_mul_pd(qq10,rinv10);
273             felec            = _mm256_mul_pd(velec,rinvsq10);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velecsum         = _mm256_add_pd(velecsum,velec);
277
278             fscal            = felec;
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm256_mul_pd(fscal,dx10);
282             ty               = _mm256_mul_pd(fscal,dy10);
283             tz               = _mm256_mul_pd(fscal,dz10);
284
285             /* Update vectorial force */
286             fix1             = _mm256_add_pd(fix1,tx);
287             fiy1             = _mm256_add_pd(fiy1,ty);
288             fiz1             = _mm256_add_pd(fiz1,tz);
289
290             fjx0             = _mm256_add_pd(fjx0,tx);
291             fjy0             = _mm256_add_pd(fjy0,ty);
292             fjz0             = _mm256_add_pd(fjz0,tz);
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq20             = _mm256_mul_pd(iq2,jq0);
300
301             /* COULOMB ELECTROSTATICS */
302             velec            = _mm256_mul_pd(qq20,rinv20);
303             felec            = _mm256_mul_pd(velec,rinvsq20);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velecsum         = _mm256_add_pd(velecsum,velec);
307
308             fscal            = felec;
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm256_mul_pd(fscal,dx20);
312             ty               = _mm256_mul_pd(fscal,dy20);
313             tz               = _mm256_mul_pd(fscal,dz20);
314
315             /* Update vectorial force */
316             fix2             = _mm256_add_pd(fix2,tx);
317             fiy2             = _mm256_add_pd(fiy2,ty);
318             fiz2             = _mm256_add_pd(fiz2,tz);
319
320             fjx0             = _mm256_add_pd(fjx0,tx);
321             fjy0             = _mm256_add_pd(fjy0,ty);
322             fjz0             = _mm256_add_pd(fjz0,tz);
323
324             fjptrA             = f+j_coord_offsetA;
325             fjptrB             = f+j_coord_offsetB;
326             fjptrC             = f+j_coord_offsetC;
327             fjptrD             = f+j_coord_offsetD;
328
329             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
330
331             /* Inner loop uses 96 flops */
332         }
333
334         if(jidx<j_index_end)
335         {
336
337             /* Get j neighbor index, and coordinate index */
338             jnrlistA         = jjnr[jidx];
339             jnrlistB         = jjnr[jidx+1];
340             jnrlistC         = jjnr[jidx+2];
341             jnrlistD         = jjnr[jidx+3];
342             /* Sign of each element will be negative for non-real atoms.
343              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
344              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
345              */
346             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
347
348             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
349             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
350             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
351
352             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
353             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
354             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
355             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
356             j_coord_offsetA  = DIM*jnrA;
357             j_coord_offsetB  = DIM*jnrB;
358             j_coord_offsetC  = DIM*jnrC;
359             j_coord_offsetD  = DIM*jnrD;
360
361             /* load j atom coordinates */
362             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
363                                                  x+j_coord_offsetC,x+j_coord_offsetD,
364                                                  &jx0,&jy0,&jz0);
365
366             /* Calculate displacement vector */
367             dx00             = _mm256_sub_pd(ix0,jx0);
368             dy00             = _mm256_sub_pd(iy0,jy0);
369             dz00             = _mm256_sub_pd(iz0,jz0);
370             dx10             = _mm256_sub_pd(ix1,jx0);
371             dy10             = _mm256_sub_pd(iy1,jy0);
372             dz10             = _mm256_sub_pd(iz1,jz0);
373             dx20             = _mm256_sub_pd(ix2,jx0);
374             dy20             = _mm256_sub_pd(iy2,jy0);
375             dz20             = _mm256_sub_pd(iz2,jz0);
376
377             /* Calculate squared distance and things based on it */
378             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
379             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
380             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
381
382             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
383             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
384             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
385
386             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
387             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
388             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
389
390             /* Load parameters for j particles */
391             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
392                                                                  charge+jnrC+0,charge+jnrD+0);
393             vdwjidx0A        = 2*vdwtype[jnrA+0];
394             vdwjidx0B        = 2*vdwtype[jnrB+0];
395             vdwjidx0C        = 2*vdwtype[jnrC+0];
396             vdwjidx0D        = 2*vdwtype[jnrD+0];
397
398             fjx0             = _mm256_setzero_pd();
399             fjy0             = _mm256_setzero_pd();
400             fjz0             = _mm256_setzero_pd();
401
402             /**************************
403              * CALCULATE INTERACTIONS *
404              **************************/
405
406             /* Compute parameters for interactions between i and j atoms */
407             qq00             = _mm256_mul_pd(iq0,jq0);
408             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
409                                             vdwioffsetptr0+vdwjidx0B,
410                                             vdwioffsetptr0+vdwjidx0C,
411                                             vdwioffsetptr0+vdwjidx0D,
412                                             &c6_00,&c12_00);
413
414             /* COULOMB ELECTROSTATICS */
415             velec            = _mm256_mul_pd(qq00,rinv00);
416             felec            = _mm256_mul_pd(velec,rinvsq00);
417
418             /* LENNARD-JONES DISPERSION/REPULSION */
419
420             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
421             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
422             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
423             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
424             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
425
426             /* Update potential sum for this i atom from the interaction with this j atom. */
427             velec            = _mm256_andnot_pd(dummy_mask,velec);
428             velecsum         = _mm256_add_pd(velecsum,velec);
429             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
430             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
431
432             fscal            = _mm256_add_pd(felec,fvdw);
433
434             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
435
436             /* Calculate temporary vectorial force */
437             tx               = _mm256_mul_pd(fscal,dx00);
438             ty               = _mm256_mul_pd(fscal,dy00);
439             tz               = _mm256_mul_pd(fscal,dz00);
440
441             /* Update vectorial force */
442             fix0             = _mm256_add_pd(fix0,tx);
443             fiy0             = _mm256_add_pd(fiy0,ty);
444             fiz0             = _mm256_add_pd(fiz0,tz);
445
446             fjx0             = _mm256_add_pd(fjx0,tx);
447             fjy0             = _mm256_add_pd(fjy0,ty);
448             fjz0             = _mm256_add_pd(fjz0,tz);
449
450             /**************************
451              * CALCULATE INTERACTIONS *
452              **************************/
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq10             = _mm256_mul_pd(iq1,jq0);
456
457             /* COULOMB ELECTROSTATICS */
458             velec            = _mm256_mul_pd(qq10,rinv10);
459             felec            = _mm256_mul_pd(velec,rinvsq10);
460
461             /* Update potential sum for this i atom from the interaction with this j atom. */
462             velec            = _mm256_andnot_pd(dummy_mask,velec);
463             velecsum         = _mm256_add_pd(velecsum,velec);
464
465             fscal            = felec;
466
467             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
468
469             /* Calculate temporary vectorial force */
470             tx               = _mm256_mul_pd(fscal,dx10);
471             ty               = _mm256_mul_pd(fscal,dy10);
472             tz               = _mm256_mul_pd(fscal,dz10);
473
474             /* Update vectorial force */
475             fix1             = _mm256_add_pd(fix1,tx);
476             fiy1             = _mm256_add_pd(fiy1,ty);
477             fiz1             = _mm256_add_pd(fiz1,tz);
478
479             fjx0             = _mm256_add_pd(fjx0,tx);
480             fjy0             = _mm256_add_pd(fjy0,ty);
481             fjz0             = _mm256_add_pd(fjz0,tz);
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq20             = _mm256_mul_pd(iq2,jq0);
489
490             /* COULOMB ELECTROSTATICS */
491             velec            = _mm256_mul_pd(qq20,rinv20);
492             felec            = _mm256_mul_pd(velec,rinvsq20);
493
494             /* Update potential sum for this i atom from the interaction with this j atom. */
495             velec            = _mm256_andnot_pd(dummy_mask,velec);
496             velecsum         = _mm256_add_pd(velecsum,velec);
497
498             fscal            = felec;
499
500             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
501
502             /* Calculate temporary vectorial force */
503             tx               = _mm256_mul_pd(fscal,dx20);
504             ty               = _mm256_mul_pd(fscal,dy20);
505             tz               = _mm256_mul_pd(fscal,dz20);
506
507             /* Update vectorial force */
508             fix2             = _mm256_add_pd(fix2,tx);
509             fiy2             = _mm256_add_pd(fiy2,ty);
510             fiz2             = _mm256_add_pd(fiz2,tz);
511
512             fjx0             = _mm256_add_pd(fjx0,tx);
513             fjy0             = _mm256_add_pd(fjy0,ty);
514             fjz0             = _mm256_add_pd(fjz0,tz);
515
516             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
517             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
518             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
519             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
520
521             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
522
523             /* Inner loop uses 96 flops */
524         }
525
526         /* End of innermost loop */
527
528         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
529                                                  f+i_coord_offset,fshift+i_shift_offset);
530
531         ggid                        = gid[iidx];
532         /* Update potential energies */
533         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
534         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
535
536         /* Increment number of inner iterations */
537         inneriter                  += j_index_end - j_index_start;
538
539         /* Outer loop uses 20 flops */
540     }
541
542     /* Increment number of outer iterations */
543     outeriter        += nri;
544
545     /* Update outer/inner flops */
546
547     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*96);
548 }
549 /*
550  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_double
551  * Electrostatics interaction: Coulomb
552  * VdW interaction:            LennardJones
553  * Geometry:                   Water3-Particle
554  * Calculate force/pot:        Force
555  */
556 void
557 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_double
558                     (t_nblist * gmx_restrict                nlist,
559                      rvec * gmx_restrict                    xx,
560                      rvec * gmx_restrict                    ff,
561                      t_forcerec * gmx_restrict              fr,
562                      t_mdatoms * gmx_restrict               mdatoms,
563                      nb_kernel_data_t * gmx_restrict        kernel_data,
564                      t_nrnb * gmx_restrict                  nrnb)
565 {
566     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
567      * just 0 for non-waters.
568      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
569      * jnr indices corresponding to data put in the four positions in the SIMD register.
570      */
571     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
572     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
573     int              jnrA,jnrB,jnrC,jnrD;
574     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
575     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
576     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
577     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
578     real             rcutoff_scalar;
579     real             *shiftvec,*fshift,*x,*f;
580     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
581     real             scratch[4*DIM];
582     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
583     real *           vdwioffsetptr0;
584     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
585     real *           vdwioffsetptr1;
586     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
587     real *           vdwioffsetptr2;
588     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
589     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
590     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
591     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
592     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
593     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
594     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
595     real             *charge;
596     int              nvdwtype;
597     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
598     int              *vdwtype;
599     real             *vdwparam;
600     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
601     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
602     __m256d          dummy_mask,cutoff_mask;
603     __m128           tmpmask0,tmpmask1;
604     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
605     __m256d          one     = _mm256_set1_pd(1.0);
606     __m256d          two     = _mm256_set1_pd(2.0);
607     x                = xx[0];
608     f                = ff[0];
609
610     nri              = nlist->nri;
611     iinr             = nlist->iinr;
612     jindex           = nlist->jindex;
613     jjnr             = nlist->jjnr;
614     shiftidx         = nlist->shift;
615     gid              = nlist->gid;
616     shiftvec         = fr->shift_vec[0];
617     fshift           = fr->fshift[0];
618     facel            = _mm256_set1_pd(fr->epsfac);
619     charge           = mdatoms->chargeA;
620     nvdwtype         = fr->ntype;
621     vdwparam         = fr->nbfp;
622     vdwtype          = mdatoms->typeA;
623
624     /* Setup water-specific parameters */
625     inr              = nlist->iinr[0];
626     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
627     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
628     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
629     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
630
631     /* Avoid stupid compiler warnings */
632     jnrA = jnrB = jnrC = jnrD = 0;
633     j_coord_offsetA = 0;
634     j_coord_offsetB = 0;
635     j_coord_offsetC = 0;
636     j_coord_offsetD = 0;
637
638     outeriter        = 0;
639     inneriter        = 0;
640
641     for(iidx=0;iidx<4*DIM;iidx++)
642     {
643         scratch[iidx] = 0.0;
644     }
645
646     /* Start outer loop over neighborlists */
647     for(iidx=0; iidx<nri; iidx++)
648     {
649         /* Load shift vector for this list */
650         i_shift_offset   = DIM*shiftidx[iidx];
651
652         /* Load limits for loop over neighbors */
653         j_index_start    = jindex[iidx];
654         j_index_end      = jindex[iidx+1];
655
656         /* Get outer coordinate index */
657         inr              = iinr[iidx];
658         i_coord_offset   = DIM*inr;
659
660         /* Load i particle coords and add shift vector */
661         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
662                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
663
664         fix0             = _mm256_setzero_pd();
665         fiy0             = _mm256_setzero_pd();
666         fiz0             = _mm256_setzero_pd();
667         fix1             = _mm256_setzero_pd();
668         fiy1             = _mm256_setzero_pd();
669         fiz1             = _mm256_setzero_pd();
670         fix2             = _mm256_setzero_pd();
671         fiy2             = _mm256_setzero_pd();
672         fiz2             = _mm256_setzero_pd();
673
674         /* Start inner kernel loop */
675         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
676         {
677
678             /* Get j neighbor index, and coordinate index */
679             jnrA             = jjnr[jidx];
680             jnrB             = jjnr[jidx+1];
681             jnrC             = jjnr[jidx+2];
682             jnrD             = jjnr[jidx+3];
683             j_coord_offsetA  = DIM*jnrA;
684             j_coord_offsetB  = DIM*jnrB;
685             j_coord_offsetC  = DIM*jnrC;
686             j_coord_offsetD  = DIM*jnrD;
687
688             /* load j atom coordinates */
689             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
690                                                  x+j_coord_offsetC,x+j_coord_offsetD,
691                                                  &jx0,&jy0,&jz0);
692
693             /* Calculate displacement vector */
694             dx00             = _mm256_sub_pd(ix0,jx0);
695             dy00             = _mm256_sub_pd(iy0,jy0);
696             dz00             = _mm256_sub_pd(iz0,jz0);
697             dx10             = _mm256_sub_pd(ix1,jx0);
698             dy10             = _mm256_sub_pd(iy1,jy0);
699             dz10             = _mm256_sub_pd(iz1,jz0);
700             dx20             = _mm256_sub_pd(ix2,jx0);
701             dy20             = _mm256_sub_pd(iy2,jy0);
702             dz20             = _mm256_sub_pd(iz2,jz0);
703
704             /* Calculate squared distance and things based on it */
705             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
706             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
707             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
708
709             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
710             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
711             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
712
713             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
714             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
715             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
716
717             /* Load parameters for j particles */
718             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
719                                                                  charge+jnrC+0,charge+jnrD+0);
720             vdwjidx0A        = 2*vdwtype[jnrA+0];
721             vdwjidx0B        = 2*vdwtype[jnrB+0];
722             vdwjidx0C        = 2*vdwtype[jnrC+0];
723             vdwjidx0D        = 2*vdwtype[jnrD+0];
724
725             fjx0             = _mm256_setzero_pd();
726             fjy0             = _mm256_setzero_pd();
727             fjz0             = _mm256_setzero_pd();
728
729             /**************************
730              * CALCULATE INTERACTIONS *
731              **************************/
732
733             /* Compute parameters for interactions between i and j atoms */
734             qq00             = _mm256_mul_pd(iq0,jq0);
735             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
736                                             vdwioffsetptr0+vdwjidx0B,
737                                             vdwioffsetptr0+vdwjidx0C,
738                                             vdwioffsetptr0+vdwjidx0D,
739                                             &c6_00,&c12_00);
740
741             /* COULOMB ELECTROSTATICS */
742             velec            = _mm256_mul_pd(qq00,rinv00);
743             felec            = _mm256_mul_pd(velec,rinvsq00);
744
745             /* LENNARD-JONES DISPERSION/REPULSION */
746
747             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
748             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
749
750             fscal            = _mm256_add_pd(felec,fvdw);
751
752             /* Calculate temporary vectorial force */
753             tx               = _mm256_mul_pd(fscal,dx00);
754             ty               = _mm256_mul_pd(fscal,dy00);
755             tz               = _mm256_mul_pd(fscal,dz00);
756
757             /* Update vectorial force */
758             fix0             = _mm256_add_pd(fix0,tx);
759             fiy0             = _mm256_add_pd(fiy0,ty);
760             fiz0             = _mm256_add_pd(fiz0,tz);
761
762             fjx0             = _mm256_add_pd(fjx0,tx);
763             fjy0             = _mm256_add_pd(fjy0,ty);
764             fjz0             = _mm256_add_pd(fjz0,tz);
765
766             /**************************
767              * CALCULATE INTERACTIONS *
768              **************************/
769
770             /* Compute parameters for interactions between i and j atoms */
771             qq10             = _mm256_mul_pd(iq1,jq0);
772
773             /* COULOMB ELECTROSTATICS */
774             velec            = _mm256_mul_pd(qq10,rinv10);
775             felec            = _mm256_mul_pd(velec,rinvsq10);
776
777             fscal            = felec;
778
779             /* Calculate temporary vectorial force */
780             tx               = _mm256_mul_pd(fscal,dx10);
781             ty               = _mm256_mul_pd(fscal,dy10);
782             tz               = _mm256_mul_pd(fscal,dz10);
783
784             /* Update vectorial force */
785             fix1             = _mm256_add_pd(fix1,tx);
786             fiy1             = _mm256_add_pd(fiy1,ty);
787             fiz1             = _mm256_add_pd(fiz1,tz);
788
789             fjx0             = _mm256_add_pd(fjx0,tx);
790             fjy0             = _mm256_add_pd(fjy0,ty);
791             fjz0             = _mm256_add_pd(fjz0,tz);
792
793             /**************************
794              * CALCULATE INTERACTIONS *
795              **************************/
796
797             /* Compute parameters for interactions between i and j atoms */
798             qq20             = _mm256_mul_pd(iq2,jq0);
799
800             /* COULOMB ELECTROSTATICS */
801             velec            = _mm256_mul_pd(qq20,rinv20);
802             felec            = _mm256_mul_pd(velec,rinvsq20);
803
804             fscal            = felec;
805
806             /* Calculate temporary vectorial force */
807             tx               = _mm256_mul_pd(fscal,dx20);
808             ty               = _mm256_mul_pd(fscal,dy20);
809             tz               = _mm256_mul_pd(fscal,dz20);
810
811             /* Update vectorial force */
812             fix2             = _mm256_add_pd(fix2,tx);
813             fiy2             = _mm256_add_pd(fiy2,ty);
814             fiz2             = _mm256_add_pd(fiz2,tz);
815
816             fjx0             = _mm256_add_pd(fjx0,tx);
817             fjy0             = _mm256_add_pd(fjy0,ty);
818             fjz0             = _mm256_add_pd(fjz0,tz);
819
820             fjptrA             = f+j_coord_offsetA;
821             fjptrB             = f+j_coord_offsetB;
822             fjptrC             = f+j_coord_offsetC;
823             fjptrD             = f+j_coord_offsetD;
824
825             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
826
827             /* Inner loop uses 88 flops */
828         }
829
830         if(jidx<j_index_end)
831         {
832
833             /* Get j neighbor index, and coordinate index */
834             jnrlistA         = jjnr[jidx];
835             jnrlistB         = jjnr[jidx+1];
836             jnrlistC         = jjnr[jidx+2];
837             jnrlistD         = jjnr[jidx+3];
838             /* Sign of each element will be negative for non-real atoms.
839              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
840              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
841              */
842             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
843
844             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
845             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
846             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
847
848             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
849             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
850             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
851             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
852             j_coord_offsetA  = DIM*jnrA;
853             j_coord_offsetB  = DIM*jnrB;
854             j_coord_offsetC  = DIM*jnrC;
855             j_coord_offsetD  = DIM*jnrD;
856
857             /* load j atom coordinates */
858             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
859                                                  x+j_coord_offsetC,x+j_coord_offsetD,
860                                                  &jx0,&jy0,&jz0);
861
862             /* Calculate displacement vector */
863             dx00             = _mm256_sub_pd(ix0,jx0);
864             dy00             = _mm256_sub_pd(iy0,jy0);
865             dz00             = _mm256_sub_pd(iz0,jz0);
866             dx10             = _mm256_sub_pd(ix1,jx0);
867             dy10             = _mm256_sub_pd(iy1,jy0);
868             dz10             = _mm256_sub_pd(iz1,jz0);
869             dx20             = _mm256_sub_pd(ix2,jx0);
870             dy20             = _mm256_sub_pd(iy2,jy0);
871             dz20             = _mm256_sub_pd(iz2,jz0);
872
873             /* Calculate squared distance and things based on it */
874             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
875             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
876             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
877
878             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
879             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
880             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
881
882             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
883             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
884             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
885
886             /* Load parameters for j particles */
887             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
888                                                                  charge+jnrC+0,charge+jnrD+0);
889             vdwjidx0A        = 2*vdwtype[jnrA+0];
890             vdwjidx0B        = 2*vdwtype[jnrB+0];
891             vdwjidx0C        = 2*vdwtype[jnrC+0];
892             vdwjidx0D        = 2*vdwtype[jnrD+0];
893
894             fjx0             = _mm256_setzero_pd();
895             fjy0             = _mm256_setzero_pd();
896             fjz0             = _mm256_setzero_pd();
897
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             /* Compute parameters for interactions between i and j atoms */
903             qq00             = _mm256_mul_pd(iq0,jq0);
904             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
905                                             vdwioffsetptr0+vdwjidx0B,
906                                             vdwioffsetptr0+vdwjidx0C,
907                                             vdwioffsetptr0+vdwjidx0D,
908                                             &c6_00,&c12_00);
909
910             /* COULOMB ELECTROSTATICS */
911             velec            = _mm256_mul_pd(qq00,rinv00);
912             felec            = _mm256_mul_pd(velec,rinvsq00);
913
914             /* LENNARD-JONES DISPERSION/REPULSION */
915
916             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
917             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
918
919             fscal            = _mm256_add_pd(felec,fvdw);
920
921             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
922
923             /* Calculate temporary vectorial force */
924             tx               = _mm256_mul_pd(fscal,dx00);
925             ty               = _mm256_mul_pd(fscal,dy00);
926             tz               = _mm256_mul_pd(fscal,dz00);
927
928             /* Update vectorial force */
929             fix0             = _mm256_add_pd(fix0,tx);
930             fiy0             = _mm256_add_pd(fiy0,ty);
931             fiz0             = _mm256_add_pd(fiz0,tz);
932
933             fjx0             = _mm256_add_pd(fjx0,tx);
934             fjy0             = _mm256_add_pd(fjy0,ty);
935             fjz0             = _mm256_add_pd(fjz0,tz);
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             /* Compute parameters for interactions between i and j atoms */
942             qq10             = _mm256_mul_pd(iq1,jq0);
943
944             /* COULOMB ELECTROSTATICS */
945             velec            = _mm256_mul_pd(qq10,rinv10);
946             felec            = _mm256_mul_pd(velec,rinvsq10);
947
948             fscal            = felec;
949
950             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
951
952             /* Calculate temporary vectorial force */
953             tx               = _mm256_mul_pd(fscal,dx10);
954             ty               = _mm256_mul_pd(fscal,dy10);
955             tz               = _mm256_mul_pd(fscal,dz10);
956
957             /* Update vectorial force */
958             fix1             = _mm256_add_pd(fix1,tx);
959             fiy1             = _mm256_add_pd(fiy1,ty);
960             fiz1             = _mm256_add_pd(fiz1,tz);
961
962             fjx0             = _mm256_add_pd(fjx0,tx);
963             fjy0             = _mm256_add_pd(fjy0,ty);
964             fjz0             = _mm256_add_pd(fjz0,tz);
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq20             = _mm256_mul_pd(iq2,jq0);
972
973             /* COULOMB ELECTROSTATICS */
974             velec            = _mm256_mul_pd(qq20,rinv20);
975             felec            = _mm256_mul_pd(velec,rinvsq20);
976
977             fscal            = felec;
978
979             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
980
981             /* Calculate temporary vectorial force */
982             tx               = _mm256_mul_pd(fscal,dx20);
983             ty               = _mm256_mul_pd(fscal,dy20);
984             tz               = _mm256_mul_pd(fscal,dz20);
985
986             /* Update vectorial force */
987             fix2             = _mm256_add_pd(fix2,tx);
988             fiy2             = _mm256_add_pd(fiy2,ty);
989             fiz2             = _mm256_add_pd(fiz2,tz);
990
991             fjx0             = _mm256_add_pd(fjx0,tx);
992             fjy0             = _mm256_add_pd(fjy0,ty);
993             fjz0             = _mm256_add_pd(fjz0,tz);
994
995             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
996             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
997             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
998             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
999
1000             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1001
1002             /* Inner loop uses 88 flops */
1003         }
1004
1005         /* End of innermost loop */
1006
1007         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1008                                                  f+i_coord_offset,fshift+i_shift_offset);
1009
1010         /* Increment number of inner iterations */
1011         inneriter                  += j_index_end - j_index_start;
1012
1013         /* Outer loop uses 18 flops */
1014     }
1015
1016     /* Increment number of outer iterations */
1017     outeriter        += nri;
1018
1019     /* Update outer/inner flops */
1020
1021     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1022 }