17938f41177cca1d5b59d5a5b8505ad03fbab4f4
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
128     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
129     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
130     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
164
165         fix0             = _mm256_setzero_pd();
166         fiy0             = _mm256_setzero_pd();
167         fiz0             = _mm256_setzero_pd();
168         fix1             = _mm256_setzero_pd();
169         fiy1             = _mm256_setzero_pd();
170         fiz1             = _mm256_setzero_pd();
171         fix2             = _mm256_setzero_pd();
172         fiy2             = _mm256_setzero_pd();
173         fiz2             = _mm256_setzero_pd();
174
175         /* Reset potential sums */
176         velecsum         = _mm256_setzero_pd();
177         vvdwsum          = _mm256_setzero_pd();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
195                                                  x+j_coord_offsetC,x+j_coord_offsetD,
196                                                  &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm256_sub_pd(ix0,jx0);
200             dy00             = _mm256_sub_pd(iy0,jy0);
201             dz00             = _mm256_sub_pd(iz0,jz0);
202             dx10             = _mm256_sub_pd(ix1,jx0);
203             dy10             = _mm256_sub_pd(iy1,jy0);
204             dz10             = _mm256_sub_pd(iz1,jz0);
205             dx20             = _mm256_sub_pd(ix2,jx0);
206             dy20             = _mm256_sub_pd(iy2,jy0);
207             dz20             = _mm256_sub_pd(iz2,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
211             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
212             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
213
214             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
215             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
217
218             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
219             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
220             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
224                                                                  charge+jnrC+0,charge+jnrD+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227             vdwjidx0C        = 2*vdwtype[jnrC+0];
228             vdwjidx0D        = 2*vdwtype[jnrD+0];
229
230             fjx0             = _mm256_setzero_pd();
231             fjy0             = _mm256_setzero_pd();
232             fjz0             = _mm256_setzero_pd();
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm256_mul_pd(iq0,jq0);
240             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
241                                             vdwioffsetptr0+vdwjidx0B,
242                                             vdwioffsetptr0+vdwjidx0C,
243                                             vdwioffsetptr0+vdwjidx0D,
244                                             &c6_00,&c12_00);
245
246             /* COULOMB ELECTROSTATICS */
247             velec            = _mm256_mul_pd(qq00,rinv00);
248             felec            = _mm256_mul_pd(velec,rinvsq00);
249
250             /* LENNARD-JONES DISPERSION/REPULSION */
251
252             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
253             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
254             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
255             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
256             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
257
258             /* Update potential sum for this i atom from the interaction with this j atom. */
259             velecsum         = _mm256_add_pd(velecsum,velec);
260             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
261
262             fscal            = _mm256_add_pd(felec,fvdw);
263
264             /* Calculate temporary vectorial force */
265             tx               = _mm256_mul_pd(fscal,dx00);
266             ty               = _mm256_mul_pd(fscal,dy00);
267             tz               = _mm256_mul_pd(fscal,dz00);
268
269             /* Update vectorial force */
270             fix0             = _mm256_add_pd(fix0,tx);
271             fiy0             = _mm256_add_pd(fiy0,ty);
272             fiz0             = _mm256_add_pd(fiz0,tz);
273
274             fjx0             = _mm256_add_pd(fjx0,tx);
275             fjy0             = _mm256_add_pd(fjy0,ty);
276             fjz0             = _mm256_add_pd(fjz0,tz);
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             /* Compute parameters for interactions between i and j atoms */
283             qq10             = _mm256_mul_pd(iq1,jq0);
284
285             /* COULOMB ELECTROSTATICS */
286             velec            = _mm256_mul_pd(qq10,rinv10);
287             felec            = _mm256_mul_pd(velec,rinvsq10);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velecsum         = _mm256_add_pd(velecsum,velec);
291
292             fscal            = felec;
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm256_mul_pd(fscal,dx10);
296             ty               = _mm256_mul_pd(fscal,dy10);
297             tz               = _mm256_mul_pd(fscal,dz10);
298
299             /* Update vectorial force */
300             fix1             = _mm256_add_pd(fix1,tx);
301             fiy1             = _mm256_add_pd(fiy1,ty);
302             fiz1             = _mm256_add_pd(fiz1,tz);
303
304             fjx0             = _mm256_add_pd(fjx0,tx);
305             fjy0             = _mm256_add_pd(fjy0,ty);
306             fjz0             = _mm256_add_pd(fjz0,tz);
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq20             = _mm256_mul_pd(iq2,jq0);
314
315             /* COULOMB ELECTROSTATICS */
316             velec            = _mm256_mul_pd(qq20,rinv20);
317             felec            = _mm256_mul_pd(velec,rinvsq20);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velecsum         = _mm256_add_pd(velecsum,velec);
321
322             fscal            = felec;
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm256_mul_pd(fscal,dx20);
326             ty               = _mm256_mul_pd(fscal,dy20);
327             tz               = _mm256_mul_pd(fscal,dz20);
328
329             /* Update vectorial force */
330             fix2             = _mm256_add_pd(fix2,tx);
331             fiy2             = _mm256_add_pd(fiy2,ty);
332             fiz2             = _mm256_add_pd(fiz2,tz);
333
334             fjx0             = _mm256_add_pd(fjx0,tx);
335             fjy0             = _mm256_add_pd(fjy0,ty);
336             fjz0             = _mm256_add_pd(fjz0,tz);
337
338             fjptrA             = f+j_coord_offsetA;
339             fjptrB             = f+j_coord_offsetB;
340             fjptrC             = f+j_coord_offsetC;
341             fjptrD             = f+j_coord_offsetD;
342
343             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
344
345             /* Inner loop uses 96 flops */
346         }
347
348         if(jidx<j_index_end)
349         {
350
351             /* Get j neighbor index, and coordinate index */
352             jnrlistA         = jjnr[jidx];
353             jnrlistB         = jjnr[jidx+1];
354             jnrlistC         = jjnr[jidx+2];
355             jnrlistD         = jjnr[jidx+3];
356             /* Sign of each element will be negative for non-real atoms.
357              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
358              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
359              */
360             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
361
362             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
363             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
364             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
365
366             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
367             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
368             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
369             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
370             j_coord_offsetA  = DIM*jnrA;
371             j_coord_offsetB  = DIM*jnrB;
372             j_coord_offsetC  = DIM*jnrC;
373             j_coord_offsetD  = DIM*jnrD;
374
375             /* load j atom coordinates */
376             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
377                                                  x+j_coord_offsetC,x+j_coord_offsetD,
378                                                  &jx0,&jy0,&jz0);
379
380             /* Calculate displacement vector */
381             dx00             = _mm256_sub_pd(ix0,jx0);
382             dy00             = _mm256_sub_pd(iy0,jy0);
383             dz00             = _mm256_sub_pd(iz0,jz0);
384             dx10             = _mm256_sub_pd(ix1,jx0);
385             dy10             = _mm256_sub_pd(iy1,jy0);
386             dz10             = _mm256_sub_pd(iz1,jz0);
387             dx20             = _mm256_sub_pd(ix2,jx0);
388             dy20             = _mm256_sub_pd(iy2,jy0);
389             dz20             = _mm256_sub_pd(iz2,jz0);
390
391             /* Calculate squared distance and things based on it */
392             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
393             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
394             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
395
396             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
397             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
398             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
399
400             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
401             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
402             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
403
404             /* Load parameters for j particles */
405             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
406                                                                  charge+jnrC+0,charge+jnrD+0);
407             vdwjidx0A        = 2*vdwtype[jnrA+0];
408             vdwjidx0B        = 2*vdwtype[jnrB+0];
409             vdwjidx0C        = 2*vdwtype[jnrC+0];
410             vdwjidx0D        = 2*vdwtype[jnrD+0];
411
412             fjx0             = _mm256_setzero_pd();
413             fjy0             = _mm256_setzero_pd();
414             fjz0             = _mm256_setzero_pd();
415
416             /**************************
417              * CALCULATE INTERACTIONS *
418              **************************/
419
420             /* Compute parameters for interactions between i and j atoms */
421             qq00             = _mm256_mul_pd(iq0,jq0);
422             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
423                                             vdwioffsetptr0+vdwjidx0B,
424                                             vdwioffsetptr0+vdwjidx0C,
425                                             vdwioffsetptr0+vdwjidx0D,
426                                             &c6_00,&c12_00);
427
428             /* COULOMB ELECTROSTATICS */
429             velec            = _mm256_mul_pd(qq00,rinv00);
430             felec            = _mm256_mul_pd(velec,rinvsq00);
431
432             /* LENNARD-JONES DISPERSION/REPULSION */
433
434             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
435             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
436             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
437             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
438             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
439
440             /* Update potential sum for this i atom from the interaction with this j atom. */
441             velec            = _mm256_andnot_pd(dummy_mask,velec);
442             velecsum         = _mm256_add_pd(velecsum,velec);
443             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
444             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
445
446             fscal            = _mm256_add_pd(felec,fvdw);
447
448             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
449
450             /* Calculate temporary vectorial force */
451             tx               = _mm256_mul_pd(fscal,dx00);
452             ty               = _mm256_mul_pd(fscal,dy00);
453             tz               = _mm256_mul_pd(fscal,dz00);
454
455             /* Update vectorial force */
456             fix0             = _mm256_add_pd(fix0,tx);
457             fiy0             = _mm256_add_pd(fiy0,ty);
458             fiz0             = _mm256_add_pd(fiz0,tz);
459
460             fjx0             = _mm256_add_pd(fjx0,tx);
461             fjy0             = _mm256_add_pd(fjy0,ty);
462             fjz0             = _mm256_add_pd(fjz0,tz);
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             /* Compute parameters for interactions between i and j atoms */
469             qq10             = _mm256_mul_pd(iq1,jq0);
470
471             /* COULOMB ELECTROSTATICS */
472             velec            = _mm256_mul_pd(qq10,rinv10);
473             felec            = _mm256_mul_pd(velec,rinvsq10);
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _mm256_andnot_pd(dummy_mask,velec);
477             velecsum         = _mm256_add_pd(velecsum,velec);
478
479             fscal            = felec;
480
481             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
482
483             /* Calculate temporary vectorial force */
484             tx               = _mm256_mul_pd(fscal,dx10);
485             ty               = _mm256_mul_pd(fscal,dy10);
486             tz               = _mm256_mul_pd(fscal,dz10);
487
488             /* Update vectorial force */
489             fix1             = _mm256_add_pd(fix1,tx);
490             fiy1             = _mm256_add_pd(fiy1,ty);
491             fiz1             = _mm256_add_pd(fiz1,tz);
492
493             fjx0             = _mm256_add_pd(fjx0,tx);
494             fjy0             = _mm256_add_pd(fjy0,ty);
495             fjz0             = _mm256_add_pd(fjz0,tz);
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             /* Compute parameters for interactions between i and j atoms */
502             qq20             = _mm256_mul_pd(iq2,jq0);
503
504             /* COULOMB ELECTROSTATICS */
505             velec            = _mm256_mul_pd(qq20,rinv20);
506             felec            = _mm256_mul_pd(velec,rinvsq20);
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             velec            = _mm256_andnot_pd(dummy_mask,velec);
510             velecsum         = _mm256_add_pd(velecsum,velec);
511
512             fscal            = felec;
513
514             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
515
516             /* Calculate temporary vectorial force */
517             tx               = _mm256_mul_pd(fscal,dx20);
518             ty               = _mm256_mul_pd(fscal,dy20);
519             tz               = _mm256_mul_pd(fscal,dz20);
520
521             /* Update vectorial force */
522             fix2             = _mm256_add_pd(fix2,tx);
523             fiy2             = _mm256_add_pd(fiy2,ty);
524             fiz2             = _mm256_add_pd(fiz2,tz);
525
526             fjx0             = _mm256_add_pd(fjx0,tx);
527             fjy0             = _mm256_add_pd(fjy0,ty);
528             fjz0             = _mm256_add_pd(fjz0,tz);
529
530             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
531             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
532             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
533             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
534
535             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
536
537             /* Inner loop uses 96 flops */
538         }
539
540         /* End of innermost loop */
541
542         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
543                                                  f+i_coord_offset,fshift+i_shift_offset);
544
545         ggid                        = gid[iidx];
546         /* Update potential energies */
547         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
548         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
549
550         /* Increment number of inner iterations */
551         inneriter                  += j_index_end - j_index_start;
552
553         /* Outer loop uses 20 flops */
554     }
555
556     /* Increment number of outer iterations */
557     outeriter        += nri;
558
559     /* Update outer/inner flops */
560
561     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*96);
562 }
563 /*
564  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_double
565  * Electrostatics interaction: Coulomb
566  * VdW interaction:            LennardJones
567  * Geometry:                   Water3-Particle
568  * Calculate force/pot:        Force
569  */
570 void
571 nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_avx_256_double
572                     (t_nblist                    * gmx_restrict       nlist,
573                      rvec                        * gmx_restrict          xx,
574                      rvec                        * gmx_restrict          ff,
575                      t_forcerec                  * gmx_restrict          fr,
576                      t_mdatoms                   * gmx_restrict     mdatoms,
577                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
578                      t_nrnb                      * gmx_restrict        nrnb)
579 {
580     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
581      * just 0 for non-waters.
582      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
583      * jnr indices corresponding to data put in the four positions in the SIMD register.
584      */
585     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
586     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
587     int              jnrA,jnrB,jnrC,jnrD;
588     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
589     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
590     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
591     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
592     real             rcutoff_scalar;
593     real             *shiftvec,*fshift,*x,*f;
594     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
595     real             scratch[4*DIM];
596     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
597     real *           vdwioffsetptr0;
598     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
599     real *           vdwioffsetptr1;
600     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
601     real *           vdwioffsetptr2;
602     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
603     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
604     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
605     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
606     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
607     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
608     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
609     real             *charge;
610     int              nvdwtype;
611     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
612     int              *vdwtype;
613     real             *vdwparam;
614     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
615     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
616     __m256d          dummy_mask,cutoff_mask;
617     __m128           tmpmask0,tmpmask1;
618     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
619     __m256d          one     = _mm256_set1_pd(1.0);
620     __m256d          two     = _mm256_set1_pd(2.0);
621     x                = xx[0];
622     f                = ff[0];
623
624     nri              = nlist->nri;
625     iinr             = nlist->iinr;
626     jindex           = nlist->jindex;
627     jjnr             = nlist->jjnr;
628     shiftidx         = nlist->shift;
629     gid              = nlist->gid;
630     shiftvec         = fr->shift_vec[0];
631     fshift           = fr->fshift[0];
632     facel            = _mm256_set1_pd(fr->epsfac);
633     charge           = mdatoms->chargeA;
634     nvdwtype         = fr->ntype;
635     vdwparam         = fr->nbfp;
636     vdwtype          = mdatoms->typeA;
637
638     /* Setup water-specific parameters */
639     inr              = nlist->iinr[0];
640     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
641     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
642     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
643     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
644
645     /* Avoid stupid compiler warnings */
646     jnrA = jnrB = jnrC = jnrD = 0;
647     j_coord_offsetA = 0;
648     j_coord_offsetB = 0;
649     j_coord_offsetC = 0;
650     j_coord_offsetD = 0;
651
652     outeriter        = 0;
653     inneriter        = 0;
654
655     for(iidx=0;iidx<4*DIM;iidx++)
656     {
657         scratch[iidx] = 0.0;
658     }
659
660     /* Start outer loop over neighborlists */
661     for(iidx=0; iidx<nri; iidx++)
662     {
663         /* Load shift vector for this list */
664         i_shift_offset   = DIM*shiftidx[iidx];
665
666         /* Load limits for loop over neighbors */
667         j_index_start    = jindex[iidx];
668         j_index_end      = jindex[iidx+1];
669
670         /* Get outer coordinate index */
671         inr              = iinr[iidx];
672         i_coord_offset   = DIM*inr;
673
674         /* Load i particle coords and add shift vector */
675         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
676                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
677
678         fix0             = _mm256_setzero_pd();
679         fiy0             = _mm256_setzero_pd();
680         fiz0             = _mm256_setzero_pd();
681         fix1             = _mm256_setzero_pd();
682         fiy1             = _mm256_setzero_pd();
683         fiz1             = _mm256_setzero_pd();
684         fix2             = _mm256_setzero_pd();
685         fiy2             = _mm256_setzero_pd();
686         fiz2             = _mm256_setzero_pd();
687
688         /* Start inner kernel loop */
689         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
690         {
691
692             /* Get j neighbor index, and coordinate index */
693             jnrA             = jjnr[jidx];
694             jnrB             = jjnr[jidx+1];
695             jnrC             = jjnr[jidx+2];
696             jnrD             = jjnr[jidx+3];
697             j_coord_offsetA  = DIM*jnrA;
698             j_coord_offsetB  = DIM*jnrB;
699             j_coord_offsetC  = DIM*jnrC;
700             j_coord_offsetD  = DIM*jnrD;
701
702             /* load j atom coordinates */
703             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
704                                                  x+j_coord_offsetC,x+j_coord_offsetD,
705                                                  &jx0,&jy0,&jz0);
706
707             /* Calculate displacement vector */
708             dx00             = _mm256_sub_pd(ix0,jx0);
709             dy00             = _mm256_sub_pd(iy0,jy0);
710             dz00             = _mm256_sub_pd(iz0,jz0);
711             dx10             = _mm256_sub_pd(ix1,jx0);
712             dy10             = _mm256_sub_pd(iy1,jy0);
713             dz10             = _mm256_sub_pd(iz1,jz0);
714             dx20             = _mm256_sub_pd(ix2,jx0);
715             dy20             = _mm256_sub_pd(iy2,jy0);
716             dz20             = _mm256_sub_pd(iz2,jz0);
717
718             /* Calculate squared distance and things based on it */
719             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
720             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
721             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
722
723             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
724             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
725             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
726
727             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
728             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
729             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
730
731             /* Load parameters for j particles */
732             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
733                                                                  charge+jnrC+0,charge+jnrD+0);
734             vdwjidx0A        = 2*vdwtype[jnrA+0];
735             vdwjidx0B        = 2*vdwtype[jnrB+0];
736             vdwjidx0C        = 2*vdwtype[jnrC+0];
737             vdwjidx0D        = 2*vdwtype[jnrD+0];
738
739             fjx0             = _mm256_setzero_pd();
740             fjy0             = _mm256_setzero_pd();
741             fjz0             = _mm256_setzero_pd();
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             /* Compute parameters for interactions between i and j atoms */
748             qq00             = _mm256_mul_pd(iq0,jq0);
749             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
750                                             vdwioffsetptr0+vdwjidx0B,
751                                             vdwioffsetptr0+vdwjidx0C,
752                                             vdwioffsetptr0+vdwjidx0D,
753                                             &c6_00,&c12_00);
754
755             /* COULOMB ELECTROSTATICS */
756             velec            = _mm256_mul_pd(qq00,rinv00);
757             felec            = _mm256_mul_pd(velec,rinvsq00);
758
759             /* LENNARD-JONES DISPERSION/REPULSION */
760
761             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
762             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
763
764             fscal            = _mm256_add_pd(felec,fvdw);
765
766             /* Calculate temporary vectorial force */
767             tx               = _mm256_mul_pd(fscal,dx00);
768             ty               = _mm256_mul_pd(fscal,dy00);
769             tz               = _mm256_mul_pd(fscal,dz00);
770
771             /* Update vectorial force */
772             fix0             = _mm256_add_pd(fix0,tx);
773             fiy0             = _mm256_add_pd(fiy0,ty);
774             fiz0             = _mm256_add_pd(fiz0,tz);
775
776             fjx0             = _mm256_add_pd(fjx0,tx);
777             fjy0             = _mm256_add_pd(fjy0,ty);
778             fjz0             = _mm256_add_pd(fjz0,tz);
779
780             /**************************
781              * CALCULATE INTERACTIONS *
782              **************************/
783
784             /* Compute parameters for interactions between i and j atoms */
785             qq10             = _mm256_mul_pd(iq1,jq0);
786
787             /* COULOMB ELECTROSTATICS */
788             velec            = _mm256_mul_pd(qq10,rinv10);
789             felec            = _mm256_mul_pd(velec,rinvsq10);
790
791             fscal            = felec;
792
793             /* Calculate temporary vectorial force */
794             tx               = _mm256_mul_pd(fscal,dx10);
795             ty               = _mm256_mul_pd(fscal,dy10);
796             tz               = _mm256_mul_pd(fscal,dz10);
797
798             /* Update vectorial force */
799             fix1             = _mm256_add_pd(fix1,tx);
800             fiy1             = _mm256_add_pd(fiy1,ty);
801             fiz1             = _mm256_add_pd(fiz1,tz);
802
803             fjx0             = _mm256_add_pd(fjx0,tx);
804             fjy0             = _mm256_add_pd(fjy0,ty);
805             fjz0             = _mm256_add_pd(fjz0,tz);
806
807             /**************************
808              * CALCULATE INTERACTIONS *
809              **************************/
810
811             /* Compute parameters for interactions between i and j atoms */
812             qq20             = _mm256_mul_pd(iq2,jq0);
813
814             /* COULOMB ELECTROSTATICS */
815             velec            = _mm256_mul_pd(qq20,rinv20);
816             felec            = _mm256_mul_pd(velec,rinvsq20);
817
818             fscal            = felec;
819
820             /* Calculate temporary vectorial force */
821             tx               = _mm256_mul_pd(fscal,dx20);
822             ty               = _mm256_mul_pd(fscal,dy20);
823             tz               = _mm256_mul_pd(fscal,dz20);
824
825             /* Update vectorial force */
826             fix2             = _mm256_add_pd(fix2,tx);
827             fiy2             = _mm256_add_pd(fiy2,ty);
828             fiz2             = _mm256_add_pd(fiz2,tz);
829
830             fjx0             = _mm256_add_pd(fjx0,tx);
831             fjy0             = _mm256_add_pd(fjy0,ty);
832             fjz0             = _mm256_add_pd(fjz0,tz);
833
834             fjptrA             = f+j_coord_offsetA;
835             fjptrB             = f+j_coord_offsetB;
836             fjptrC             = f+j_coord_offsetC;
837             fjptrD             = f+j_coord_offsetD;
838
839             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
840
841             /* Inner loop uses 88 flops */
842         }
843
844         if(jidx<j_index_end)
845         {
846
847             /* Get j neighbor index, and coordinate index */
848             jnrlistA         = jjnr[jidx];
849             jnrlistB         = jjnr[jidx+1];
850             jnrlistC         = jjnr[jidx+2];
851             jnrlistD         = jjnr[jidx+3];
852             /* Sign of each element will be negative for non-real atoms.
853              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
854              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
855              */
856             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
857
858             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
859             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
860             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
861
862             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
863             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
864             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
865             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
866             j_coord_offsetA  = DIM*jnrA;
867             j_coord_offsetB  = DIM*jnrB;
868             j_coord_offsetC  = DIM*jnrC;
869             j_coord_offsetD  = DIM*jnrD;
870
871             /* load j atom coordinates */
872             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
873                                                  x+j_coord_offsetC,x+j_coord_offsetD,
874                                                  &jx0,&jy0,&jz0);
875
876             /* Calculate displacement vector */
877             dx00             = _mm256_sub_pd(ix0,jx0);
878             dy00             = _mm256_sub_pd(iy0,jy0);
879             dz00             = _mm256_sub_pd(iz0,jz0);
880             dx10             = _mm256_sub_pd(ix1,jx0);
881             dy10             = _mm256_sub_pd(iy1,jy0);
882             dz10             = _mm256_sub_pd(iz1,jz0);
883             dx20             = _mm256_sub_pd(ix2,jx0);
884             dy20             = _mm256_sub_pd(iy2,jy0);
885             dz20             = _mm256_sub_pd(iz2,jz0);
886
887             /* Calculate squared distance and things based on it */
888             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
889             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
890             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
891
892             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
893             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
894             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
895
896             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
897             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
898             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
899
900             /* Load parameters for j particles */
901             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
902                                                                  charge+jnrC+0,charge+jnrD+0);
903             vdwjidx0A        = 2*vdwtype[jnrA+0];
904             vdwjidx0B        = 2*vdwtype[jnrB+0];
905             vdwjidx0C        = 2*vdwtype[jnrC+0];
906             vdwjidx0D        = 2*vdwtype[jnrD+0];
907
908             fjx0             = _mm256_setzero_pd();
909             fjy0             = _mm256_setzero_pd();
910             fjz0             = _mm256_setzero_pd();
911
912             /**************************
913              * CALCULATE INTERACTIONS *
914              **************************/
915
916             /* Compute parameters for interactions between i and j atoms */
917             qq00             = _mm256_mul_pd(iq0,jq0);
918             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
919                                             vdwioffsetptr0+vdwjidx0B,
920                                             vdwioffsetptr0+vdwjidx0C,
921                                             vdwioffsetptr0+vdwjidx0D,
922                                             &c6_00,&c12_00);
923
924             /* COULOMB ELECTROSTATICS */
925             velec            = _mm256_mul_pd(qq00,rinv00);
926             felec            = _mm256_mul_pd(velec,rinvsq00);
927
928             /* LENNARD-JONES DISPERSION/REPULSION */
929
930             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
931             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
932
933             fscal            = _mm256_add_pd(felec,fvdw);
934
935             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
936
937             /* Calculate temporary vectorial force */
938             tx               = _mm256_mul_pd(fscal,dx00);
939             ty               = _mm256_mul_pd(fscal,dy00);
940             tz               = _mm256_mul_pd(fscal,dz00);
941
942             /* Update vectorial force */
943             fix0             = _mm256_add_pd(fix0,tx);
944             fiy0             = _mm256_add_pd(fiy0,ty);
945             fiz0             = _mm256_add_pd(fiz0,tz);
946
947             fjx0             = _mm256_add_pd(fjx0,tx);
948             fjy0             = _mm256_add_pd(fjy0,ty);
949             fjz0             = _mm256_add_pd(fjz0,tz);
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq10             = _mm256_mul_pd(iq1,jq0);
957
958             /* COULOMB ELECTROSTATICS */
959             velec            = _mm256_mul_pd(qq10,rinv10);
960             felec            = _mm256_mul_pd(velec,rinvsq10);
961
962             fscal            = felec;
963
964             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
965
966             /* Calculate temporary vectorial force */
967             tx               = _mm256_mul_pd(fscal,dx10);
968             ty               = _mm256_mul_pd(fscal,dy10);
969             tz               = _mm256_mul_pd(fscal,dz10);
970
971             /* Update vectorial force */
972             fix1             = _mm256_add_pd(fix1,tx);
973             fiy1             = _mm256_add_pd(fiy1,ty);
974             fiz1             = _mm256_add_pd(fiz1,tz);
975
976             fjx0             = _mm256_add_pd(fjx0,tx);
977             fjy0             = _mm256_add_pd(fjy0,ty);
978             fjz0             = _mm256_add_pd(fjz0,tz);
979
980             /**************************
981              * CALCULATE INTERACTIONS *
982              **************************/
983
984             /* Compute parameters for interactions between i and j atoms */
985             qq20             = _mm256_mul_pd(iq2,jq0);
986
987             /* COULOMB ELECTROSTATICS */
988             velec            = _mm256_mul_pd(qq20,rinv20);
989             felec            = _mm256_mul_pd(velec,rinvsq20);
990
991             fscal            = felec;
992
993             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
994
995             /* Calculate temporary vectorial force */
996             tx               = _mm256_mul_pd(fscal,dx20);
997             ty               = _mm256_mul_pd(fscal,dy20);
998             tz               = _mm256_mul_pd(fscal,dz20);
999
1000             /* Update vectorial force */
1001             fix2             = _mm256_add_pd(fix2,tx);
1002             fiy2             = _mm256_add_pd(fiy2,ty);
1003             fiz2             = _mm256_add_pd(fiz2,tz);
1004
1005             fjx0             = _mm256_add_pd(fjx0,tx);
1006             fjy0             = _mm256_add_pd(fjy0,ty);
1007             fjz0             = _mm256_add_pd(fjz0,tz);
1008
1009             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1010             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1011             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1012             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1013
1014             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1015
1016             /* Inner loop uses 88 flops */
1017         }
1018
1019         /* End of innermost loop */
1020
1021         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1022                                                  f+i_coord_offset,fshift+i_shift_offset);
1023
1024         /* Increment number of inner iterations */
1025         inneriter                  += j_index_end - j_index_start;
1026
1027         /* Outer loop uses 18 flops */
1028     }
1029
1030     /* Increment number of outer iterations */
1031     outeriter        += nri;
1032
1033     /* Update outer/inner flops */
1034
1035     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1036 }