Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
95     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
96     __m256d          dummy_mask,cutoff_mask;
97     __m128           tmpmask0,tmpmask1;
98     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
99     __m256d          one     = _mm256_set1_pd(1.0);
100     __m256d          two     = _mm256_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm256_set1_pd(fr->ic->epsfac);
113     charge           = mdatoms->chargeA;
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = jnrC = jnrD = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122     j_coord_offsetC = 0;
123     j_coord_offsetD = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     for(iidx=0;iidx<4*DIM;iidx++)
129     {
130         scratch[iidx] = 0.0;
131     }
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150         fix0             = _mm256_setzero_pd();
151         fiy0             = _mm256_setzero_pd();
152         fiz0             = _mm256_setzero_pd();
153
154         /* Load parameters for i particles */
155         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
156         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm256_setzero_pd();
160         vvdwsum          = _mm256_setzero_pd();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             j_coord_offsetC  = DIM*jnrC;
174             j_coord_offsetD  = DIM*jnrD;
175
176             /* load j atom coordinates */
177             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                                  x+j_coord_offsetC,x+j_coord_offsetD,
179                                                  &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm256_sub_pd(ix0,jx0);
183             dy00             = _mm256_sub_pd(iy0,jy0);
184             dz00             = _mm256_sub_pd(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
188
189             rinv00           = avx256_invsqrt_d(rsq00);
190
191             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
195                                                                  charge+jnrC+0,charge+jnrD+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198             vdwjidx0C        = 2*vdwtype[jnrC+0];
199             vdwjidx0D        = 2*vdwtype[jnrD+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _mm256_mul_pd(iq0,jq0);
207             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
208                                             vdwioffsetptr0+vdwjidx0B,
209                                             vdwioffsetptr0+vdwjidx0C,
210                                             vdwioffsetptr0+vdwjidx0D,
211                                             &c6_00,&c12_00);
212
213             /* COULOMB ELECTROSTATICS */
214             velec            = _mm256_mul_pd(qq00,rinv00);
215             felec            = _mm256_mul_pd(velec,rinvsq00);
216
217             /* LENNARD-JONES DISPERSION/REPULSION */
218
219             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
220             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
221             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
222             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
223             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
224
225             /* Update potential sum for this i atom from the interaction with this j atom. */
226             velecsum         = _mm256_add_pd(velecsum,velec);
227             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
228
229             fscal            = _mm256_add_pd(felec,fvdw);
230
231             /* Calculate temporary vectorial force */
232             tx               = _mm256_mul_pd(fscal,dx00);
233             ty               = _mm256_mul_pd(fscal,dy00);
234             tz               = _mm256_mul_pd(fscal,dz00);
235
236             /* Update vectorial force */
237             fix0             = _mm256_add_pd(fix0,tx);
238             fiy0             = _mm256_add_pd(fiy0,ty);
239             fiz0             = _mm256_add_pd(fiz0,tz);
240
241             fjptrA             = f+j_coord_offsetA;
242             fjptrB             = f+j_coord_offsetB;
243             fjptrC             = f+j_coord_offsetC;
244             fjptrD             = f+j_coord_offsetD;
245             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
246
247             /* Inner loop uses 39 flops */
248         }
249
250         if(jidx<j_index_end)
251         {
252
253             /* Get j neighbor index, and coordinate index */
254             jnrlistA         = jjnr[jidx];
255             jnrlistB         = jjnr[jidx+1];
256             jnrlistC         = jjnr[jidx+2];
257             jnrlistD         = jjnr[jidx+3];
258             /* Sign of each element will be negative for non-real atoms.
259              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
260              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
261              */
262             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
263
264             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
265             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
266             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
267
268             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
269             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
270             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
271             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
272             j_coord_offsetA  = DIM*jnrA;
273             j_coord_offsetB  = DIM*jnrB;
274             j_coord_offsetC  = DIM*jnrC;
275             j_coord_offsetD  = DIM*jnrD;
276
277             /* load j atom coordinates */
278             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
279                                                  x+j_coord_offsetC,x+j_coord_offsetD,
280                                                  &jx0,&jy0,&jz0);
281
282             /* Calculate displacement vector */
283             dx00             = _mm256_sub_pd(ix0,jx0);
284             dy00             = _mm256_sub_pd(iy0,jy0);
285             dz00             = _mm256_sub_pd(iz0,jz0);
286
287             /* Calculate squared distance and things based on it */
288             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
289
290             rinv00           = avx256_invsqrt_d(rsq00);
291
292             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
293
294             /* Load parameters for j particles */
295             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
296                                                                  charge+jnrC+0,charge+jnrD+0);
297             vdwjidx0A        = 2*vdwtype[jnrA+0];
298             vdwjidx0B        = 2*vdwtype[jnrB+0];
299             vdwjidx0C        = 2*vdwtype[jnrC+0];
300             vdwjidx0D        = 2*vdwtype[jnrD+0];
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq00             = _mm256_mul_pd(iq0,jq0);
308             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
309                                             vdwioffsetptr0+vdwjidx0B,
310                                             vdwioffsetptr0+vdwjidx0C,
311                                             vdwioffsetptr0+vdwjidx0D,
312                                             &c6_00,&c12_00);
313
314             /* COULOMB ELECTROSTATICS */
315             velec            = _mm256_mul_pd(qq00,rinv00);
316             felec            = _mm256_mul_pd(velec,rinvsq00);
317
318             /* LENNARD-JONES DISPERSION/REPULSION */
319
320             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
321             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
322             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
323             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
324             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velec            = _mm256_andnot_pd(dummy_mask,velec);
328             velecsum         = _mm256_add_pd(velecsum,velec);
329             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
330             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
331
332             fscal            = _mm256_add_pd(felec,fvdw);
333
334             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
335
336             /* Calculate temporary vectorial force */
337             tx               = _mm256_mul_pd(fscal,dx00);
338             ty               = _mm256_mul_pd(fscal,dy00);
339             tz               = _mm256_mul_pd(fscal,dz00);
340
341             /* Update vectorial force */
342             fix0             = _mm256_add_pd(fix0,tx);
343             fiy0             = _mm256_add_pd(fiy0,ty);
344             fiz0             = _mm256_add_pd(fiz0,tz);
345
346             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
347             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
348             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
349             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
350             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
351
352             /* Inner loop uses 39 flops */
353         }
354
355         /* End of innermost loop */
356
357         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
358                                                  f+i_coord_offset,fshift+i_shift_offset);
359
360         ggid                        = gid[iidx];
361         /* Update potential energies */
362         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
363         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
364
365         /* Increment number of inner iterations */
366         inneriter                  += j_index_end - j_index_start;
367
368         /* Outer loop uses 9 flops */
369     }
370
371     /* Increment number of outer iterations */
372     outeriter        += nri;
373
374     /* Update outer/inner flops */
375
376     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*39);
377 }
378 /*
379  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_256_double
380  * Electrostatics interaction: Coulomb
381  * VdW interaction:            LennardJones
382  * Geometry:                   Particle-Particle
383  * Calculate force/pot:        Force
384  */
385 void
386 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_256_double
387                     (t_nblist                    * gmx_restrict       nlist,
388                      rvec                        * gmx_restrict          xx,
389                      rvec                        * gmx_restrict          ff,
390                      struct t_forcerec           * gmx_restrict          fr,
391                      t_mdatoms                   * gmx_restrict     mdatoms,
392                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
393                      t_nrnb                      * gmx_restrict        nrnb)
394 {
395     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
396      * just 0 for non-waters.
397      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
398      * jnr indices corresponding to data put in the four positions in the SIMD register.
399      */
400     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
401     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
402     int              jnrA,jnrB,jnrC,jnrD;
403     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
404     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
405     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
406     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
407     real             rcutoff_scalar;
408     real             *shiftvec,*fshift,*x,*f;
409     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
410     real             scratch[4*DIM];
411     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
412     real *           vdwioffsetptr0;
413     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
414     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
415     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
416     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
417     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
418     real             *charge;
419     int              nvdwtype;
420     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
421     int              *vdwtype;
422     real             *vdwparam;
423     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
424     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
425     __m256d          dummy_mask,cutoff_mask;
426     __m128           tmpmask0,tmpmask1;
427     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
428     __m256d          one     = _mm256_set1_pd(1.0);
429     __m256d          two     = _mm256_set1_pd(2.0);
430     x                = xx[0];
431     f                = ff[0];
432
433     nri              = nlist->nri;
434     iinr             = nlist->iinr;
435     jindex           = nlist->jindex;
436     jjnr             = nlist->jjnr;
437     shiftidx         = nlist->shift;
438     gid              = nlist->gid;
439     shiftvec         = fr->shift_vec[0];
440     fshift           = fr->fshift[0];
441     facel            = _mm256_set1_pd(fr->ic->epsfac);
442     charge           = mdatoms->chargeA;
443     nvdwtype         = fr->ntype;
444     vdwparam         = fr->nbfp;
445     vdwtype          = mdatoms->typeA;
446
447     /* Avoid stupid compiler warnings */
448     jnrA = jnrB = jnrC = jnrD = 0;
449     j_coord_offsetA = 0;
450     j_coord_offsetB = 0;
451     j_coord_offsetC = 0;
452     j_coord_offsetD = 0;
453
454     outeriter        = 0;
455     inneriter        = 0;
456
457     for(iidx=0;iidx<4*DIM;iidx++)
458     {
459         scratch[iidx] = 0.0;
460     }
461
462     /* Start outer loop over neighborlists */
463     for(iidx=0; iidx<nri; iidx++)
464     {
465         /* Load shift vector for this list */
466         i_shift_offset   = DIM*shiftidx[iidx];
467
468         /* Load limits for loop over neighbors */
469         j_index_start    = jindex[iidx];
470         j_index_end      = jindex[iidx+1];
471
472         /* Get outer coordinate index */
473         inr              = iinr[iidx];
474         i_coord_offset   = DIM*inr;
475
476         /* Load i particle coords and add shift vector */
477         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
478
479         fix0             = _mm256_setzero_pd();
480         fiy0             = _mm256_setzero_pd();
481         fiz0             = _mm256_setzero_pd();
482
483         /* Load parameters for i particles */
484         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
485         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
486
487         /* Start inner kernel loop */
488         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
489         {
490
491             /* Get j neighbor index, and coordinate index */
492             jnrA             = jjnr[jidx];
493             jnrB             = jjnr[jidx+1];
494             jnrC             = jjnr[jidx+2];
495             jnrD             = jjnr[jidx+3];
496             j_coord_offsetA  = DIM*jnrA;
497             j_coord_offsetB  = DIM*jnrB;
498             j_coord_offsetC  = DIM*jnrC;
499             j_coord_offsetD  = DIM*jnrD;
500
501             /* load j atom coordinates */
502             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
503                                                  x+j_coord_offsetC,x+j_coord_offsetD,
504                                                  &jx0,&jy0,&jz0);
505
506             /* Calculate displacement vector */
507             dx00             = _mm256_sub_pd(ix0,jx0);
508             dy00             = _mm256_sub_pd(iy0,jy0);
509             dz00             = _mm256_sub_pd(iz0,jz0);
510
511             /* Calculate squared distance and things based on it */
512             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
513
514             rinv00           = avx256_invsqrt_d(rsq00);
515
516             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
517
518             /* Load parameters for j particles */
519             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
520                                                                  charge+jnrC+0,charge+jnrD+0);
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523             vdwjidx0C        = 2*vdwtype[jnrC+0];
524             vdwjidx0D        = 2*vdwtype[jnrD+0];
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq00             = _mm256_mul_pd(iq0,jq0);
532             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
533                                             vdwioffsetptr0+vdwjidx0B,
534                                             vdwioffsetptr0+vdwjidx0C,
535                                             vdwioffsetptr0+vdwjidx0D,
536                                             &c6_00,&c12_00);
537
538             /* COULOMB ELECTROSTATICS */
539             velec            = _mm256_mul_pd(qq00,rinv00);
540             felec            = _mm256_mul_pd(velec,rinvsq00);
541
542             /* LENNARD-JONES DISPERSION/REPULSION */
543
544             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
545             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
546
547             fscal            = _mm256_add_pd(felec,fvdw);
548
549             /* Calculate temporary vectorial force */
550             tx               = _mm256_mul_pd(fscal,dx00);
551             ty               = _mm256_mul_pd(fscal,dy00);
552             tz               = _mm256_mul_pd(fscal,dz00);
553
554             /* Update vectorial force */
555             fix0             = _mm256_add_pd(fix0,tx);
556             fiy0             = _mm256_add_pd(fiy0,ty);
557             fiz0             = _mm256_add_pd(fiz0,tz);
558
559             fjptrA             = f+j_coord_offsetA;
560             fjptrB             = f+j_coord_offsetB;
561             fjptrC             = f+j_coord_offsetC;
562             fjptrD             = f+j_coord_offsetD;
563             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
564
565             /* Inner loop uses 33 flops */
566         }
567
568         if(jidx<j_index_end)
569         {
570
571             /* Get j neighbor index, and coordinate index */
572             jnrlistA         = jjnr[jidx];
573             jnrlistB         = jjnr[jidx+1];
574             jnrlistC         = jjnr[jidx+2];
575             jnrlistD         = jjnr[jidx+3];
576             /* Sign of each element will be negative for non-real atoms.
577              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
578              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
579              */
580             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
581
582             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
583             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
584             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
585
586             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
587             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
588             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
589             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
590             j_coord_offsetA  = DIM*jnrA;
591             j_coord_offsetB  = DIM*jnrB;
592             j_coord_offsetC  = DIM*jnrC;
593             j_coord_offsetD  = DIM*jnrD;
594
595             /* load j atom coordinates */
596             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
597                                                  x+j_coord_offsetC,x+j_coord_offsetD,
598                                                  &jx0,&jy0,&jz0);
599
600             /* Calculate displacement vector */
601             dx00             = _mm256_sub_pd(ix0,jx0);
602             dy00             = _mm256_sub_pd(iy0,jy0);
603             dz00             = _mm256_sub_pd(iz0,jz0);
604
605             /* Calculate squared distance and things based on it */
606             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
607
608             rinv00           = avx256_invsqrt_d(rsq00);
609
610             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
611
612             /* Load parameters for j particles */
613             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
614                                                                  charge+jnrC+0,charge+jnrD+0);
615             vdwjidx0A        = 2*vdwtype[jnrA+0];
616             vdwjidx0B        = 2*vdwtype[jnrB+0];
617             vdwjidx0C        = 2*vdwtype[jnrC+0];
618             vdwjidx0D        = 2*vdwtype[jnrD+0];
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq00             = _mm256_mul_pd(iq0,jq0);
626             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
627                                             vdwioffsetptr0+vdwjidx0B,
628                                             vdwioffsetptr0+vdwjidx0C,
629                                             vdwioffsetptr0+vdwjidx0D,
630                                             &c6_00,&c12_00);
631
632             /* COULOMB ELECTROSTATICS */
633             velec            = _mm256_mul_pd(qq00,rinv00);
634             felec            = _mm256_mul_pd(velec,rinvsq00);
635
636             /* LENNARD-JONES DISPERSION/REPULSION */
637
638             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
639             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
640
641             fscal            = _mm256_add_pd(felec,fvdw);
642
643             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
644
645             /* Calculate temporary vectorial force */
646             tx               = _mm256_mul_pd(fscal,dx00);
647             ty               = _mm256_mul_pd(fscal,dy00);
648             tz               = _mm256_mul_pd(fscal,dz00);
649
650             /* Update vectorial force */
651             fix0             = _mm256_add_pd(fix0,tx);
652             fiy0             = _mm256_add_pd(fiy0,ty);
653             fiz0             = _mm256_add_pd(fiz0,tz);
654
655             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
656             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
657             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
658             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
659             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
660
661             /* Inner loop uses 33 flops */
662         }
663
664         /* End of innermost loop */
665
666         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
667                                                  f+i_coord_offset,fshift+i_shift_offset);
668
669         /* Increment number of inner iterations */
670         inneriter                  += j_index_end - j_index_start;
671
672         /* Outer loop uses 7 flops */
673     }
674
675     /* Increment number of outer iterations */
676     outeriter        += nri;
677
678     /* Update outer/inner flops */
679
680     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*33);
681 }