Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m256d          dummy_mask,cutoff_mask;
100     __m128           tmpmask0,tmpmask1;
101     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
102     __m256d          one     = _mm256_set1_pd(1.0);
103     __m256d          two     = _mm256_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm256_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = jnrC = jnrD = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125     j_coord_offsetC = 0;
126     j_coord_offsetD = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     for(iidx=0;iidx<4*DIM;iidx++)
132     {
133         scratch[iidx] = 0.0;
134     }
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _mm256_setzero_pd();
154         fiy0             = _mm256_setzero_pd();
155         fiz0             = _mm256_setzero_pd();
156
157         /* Load parameters for i particles */
158         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
159         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         velecsum         = _mm256_setzero_pd();
163         vvdwsum          = _mm256_setzero_pd();
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
167         {
168
169             /* Get j neighbor index, and coordinate index */
170             jnrA             = jjnr[jidx];
171             jnrB             = jjnr[jidx+1];
172             jnrC             = jjnr[jidx+2];
173             jnrD             = jjnr[jidx+3];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176             j_coord_offsetC  = DIM*jnrC;
177             j_coord_offsetD  = DIM*jnrD;
178
179             /* load j atom coordinates */
180             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
181                                                  x+j_coord_offsetC,x+j_coord_offsetD,
182                                                  &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm256_sub_pd(ix0,jx0);
186             dy00             = _mm256_sub_pd(iy0,jy0);
187             dz00             = _mm256_sub_pd(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
191
192             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
193
194             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
198                                                                  charge+jnrC+0,charge+jnrD+0);
199             vdwjidx0A        = 2*vdwtype[jnrA+0];
200             vdwjidx0B        = 2*vdwtype[jnrB+0];
201             vdwjidx0C        = 2*vdwtype[jnrC+0];
202             vdwjidx0D        = 2*vdwtype[jnrD+0];
203
204             /**************************
205              * CALCULATE INTERACTIONS *
206              **************************/
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm256_mul_pd(iq0,jq0);
210             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
211                                             vdwioffsetptr0+vdwjidx0B,
212                                             vdwioffsetptr0+vdwjidx0C,
213                                             vdwioffsetptr0+vdwjidx0D,
214                                             &c6_00,&c12_00);
215
216             /* COULOMB ELECTROSTATICS */
217             velec            = _mm256_mul_pd(qq00,rinv00);
218             felec            = _mm256_mul_pd(velec,rinvsq00);
219
220             /* LENNARD-JONES DISPERSION/REPULSION */
221
222             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
223             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
224             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
225             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
226             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
227
228             /* Update potential sum for this i atom from the interaction with this j atom. */
229             velecsum         = _mm256_add_pd(velecsum,velec);
230             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
231
232             fscal            = _mm256_add_pd(felec,fvdw);
233
234             /* Calculate temporary vectorial force */
235             tx               = _mm256_mul_pd(fscal,dx00);
236             ty               = _mm256_mul_pd(fscal,dy00);
237             tz               = _mm256_mul_pd(fscal,dz00);
238
239             /* Update vectorial force */
240             fix0             = _mm256_add_pd(fix0,tx);
241             fiy0             = _mm256_add_pd(fiy0,ty);
242             fiz0             = _mm256_add_pd(fiz0,tz);
243
244             fjptrA             = f+j_coord_offsetA;
245             fjptrB             = f+j_coord_offsetB;
246             fjptrC             = f+j_coord_offsetC;
247             fjptrD             = f+j_coord_offsetD;
248             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
249
250             /* Inner loop uses 39 flops */
251         }
252
253         if(jidx<j_index_end)
254         {
255
256             /* Get j neighbor index, and coordinate index */
257             jnrlistA         = jjnr[jidx];
258             jnrlistB         = jjnr[jidx+1];
259             jnrlistC         = jjnr[jidx+2];
260             jnrlistD         = jjnr[jidx+3];
261             /* Sign of each element will be negative for non-real atoms.
262              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
263              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
264              */
265             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
266
267             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
268             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
269             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
270
271             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
272             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
273             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
274             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
275             j_coord_offsetA  = DIM*jnrA;
276             j_coord_offsetB  = DIM*jnrB;
277             j_coord_offsetC  = DIM*jnrC;
278             j_coord_offsetD  = DIM*jnrD;
279
280             /* load j atom coordinates */
281             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
282                                                  x+j_coord_offsetC,x+j_coord_offsetD,
283                                                  &jx0,&jy0,&jz0);
284
285             /* Calculate displacement vector */
286             dx00             = _mm256_sub_pd(ix0,jx0);
287             dy00             = _mm256_sub_pd(iy0,jy0);
288             dz00             = _mm256_sub_pd(iz0,jz0);
289
290             /* Calculate squared distance and things based on it */
291             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
292
293             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
294
295             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
296
297             /* Load parameters for j particles */
298             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
299                                                                  charge+jnrC+0,charge+jnrD+0);
300             vdwjidx0A        = 2*vdwtype[jnrA+0];
301             vdwjidx0B        = 2*vdwtype[jnrB+0];
302             vdwjidx0C        = 2*vdwtype[jnrC+0];
303             vdwjidx0D        = 2*vdwtype[jnrD+0];
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             /* Compute parameters for interactions between i and j atoms */
310             qq00             = _mm256_mul_pd(iq0,jq0);
311             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
312                                             vdwioffsetptr0+vdwjidx0B,
313                                             vdwioffsetptr0+vdwjidx0C,
314                                             vdwioffsetptr0+vdwjidx0D,
315                                             &c6_00,&c12_00);
316
317             /* COULOMB ELECTROSTATICS */
318             velec            = _mm256_mul_pd(qq00,rinv00);
319             felec            = _mm256_mul_pd(velec,rinvsq00);
320
321             /* LENNARD-JONES DISPERSION/REPULSION */
322
323             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
324             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
325             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
326             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
327             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velec            = _mm256_andnot_pd(dummy_mask,velec);
331             velecsum         = _mm256_add_pd(velecsum,velec);
332             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
333             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
334
335             fscal            = _mm256_add_pd(felec,fvdw);
336
337             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
338
339             /* Calculate temporary vectorial force */
340             tx               = _mm256_mul_pd(fscal,dx00);
341             ty               = _mm256_mul_pd(fscal,dy00);
342             tz               = _mm256_mul_pd(fscal,dz00);
343
344             /* Update vectorial force */
345             fix0             = _mm256_add_pd(fix0,tx);
346             fiy0             = _mm256_add_pd(fiy0,ty);
347             fiz0             = _mm256_add_pd(fiz0,tz);
348
349             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
350             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
351             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
352             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
353             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
354
355             /* Inner loop uses 39 flops */
356         }
357
358         /* End of innermost loop */
359
360         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
361                                                  f+i_coord_offset,fshift+i_shift_offset);
362
363         ggid                        = gid[iidx];
364         /* Update potential energies */
365         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
366         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
367
368         /* Increment number of inner iterations */
369         inneriter                  += j_index_end - j_index_start;
370
371         /* Outer loop uses 9 flops */
372     }
373
374     /* Increment number of outer iterations */
375     outeriter        += nri;
376
377     /* Update outer/inner flops */
378
379     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*39);
380 }
381 /*
382  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_256_double
383  * Electrostatics interaction: Coulomb
384  * VdW interaction:            LennardJones
385  * Geometry:                   Particle-Particle
386  * Calculate force/pot:        Force
387  */
388 void
389 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_256_double
390                     (t_nblist                    * gmx_restrict       nlist,
391                      rvec                        * gmx_restrict          xx,
392                      rvec                        * gmx_restrict          ff,
393                      t_forcerec                  * gmx_restrict          fr,
394                      t_mdatoms                   * gmx_restrict     mdatoms,
395                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
396                      t_nrnb                      * gmx_restrict        nrnb)
397 {
398     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
399      * just 0 for non-waters.
400      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
401      * jnr indices corresponding to data put in the four positions in the SIMD register.
402      */
403     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
404     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
405     int              jnrA,jnrB,jnrC,jnrD;
406     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
407     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
408     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
409     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
410     real             rcutoff_scalar;
411     real             *shiftvec,*fshift,*x,*f;
412     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
413     real             scratch[4*DIM];
414     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
415     real *           vdwioffsetptr0;
416     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
417     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
418     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
419     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
420     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
421     real             *charge;
422     int              nvdwtype;
423     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
424     int              *vdwtype;
425     real             *vdwparam;
426     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
427     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
428     __m256d          dummy_mask,cutoff_mask;
429     __m128           tmpmask0,tmpmask1;
430     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
431     __m256d          one     = _mm256_set1_pd(1.0);
432     __m256d          two     = _mm256_set1_pd(2.0);
433     x                = xx[0];
434     f                = ff[0];
435
436     nri              = nlist->nri;
437     iinr             = nlist->iinr;
438     jindex           = nlist->jindex;
439     jjnr             = nlist->jjnr;
440     shiftidx         = nlist->shift;
441     gid              = nlist->gid;
442     shiftvec         = fr->shift_vec[0];
443     fshift           = fr->fshift[0];
444     facel            = _mm256_set1_pd(fr->epsfac);
445     charge           = mdatoms->chargeA;
446     nvdwtype         = fr->ntype;
447     vdwparam         = fr->nbfp;
448     vdwtype          = mdatoms->typeA;
449
450     /* Avoid stupid compiler warnings */
451     jnrA = jnrB = jnrC = jnrD = 0;
452     j_coord_offsetA = 0;
453     j_coord_offsetB = 0;
454     j_coord_offsetC = 0;
455     j_coord_offsetD = 0;
456
457     outeriter        = 0;
458     inneriter        = 0;
459
460     for(iidx=0;iidx<4*DIM;iidx++)
461     {
462         scratch[iidx] = 0.0;
463     }
464
465     /* Start outer loop over neighborlists */
466     for(iidx=0; iidx<nri; iidx++)
467     {
468         /* Load shift vector for this list */
469         i_shift_offset   = DIM*shiftidx[iidx];
470
471         /* Load limits for loop over neighbors */
472         j_index_start    = jindex[iidx];
473         j_index_end      = jindex[iidx+1];
474
475         /* Get outer coordinate index */
476         inr              = iinr[iidx];
477         i_coord_offset   = DIM*inr;
478
479         /* Load i particle coords and add shift vector */
480         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
481
482         fix0             = _mm256_setzero_pd();
483         fiy0             = _mm256_setzero_pd();
484         fiz0             = _mm256_setzero_pd();
485
486         /* Load parameters for i particles */
487         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
488         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
489
490         /* Start inner kernel loop */
491         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
492         {
493
494             /* Get j neighbor index, and coordinate index */
495             jnrA             = jjnr[jidx];
496             jnrB             = jjnr[jidx+1];
497             jnrC             = jjnr[jidx+2];
498             jnrD             = jjnr[jidx+3];
499             j_coord_offsetA  = DIM*jnrA;
500             j_coord_offsetB  = DIM*jnrB;
501             j_coord_offsetC  = DIM*jnrC;
502             j_coord_offsetD  = DIM*jnrD;
503
504             /* load j atom coordinates */
505             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
506                                                  x+j_coord_offsetC,x+j_coord_offsetD,
507                                                  &jx0,&jy0,&jz0);
508
509             /* Calculate displacement vector */
510             dx00             = _mm256_sub_pd(ix0,jx0);
511             dy00             = _mm256_sub_pd(iy0,jy0);
512             dz00             = _mm256_sub_pd(iz0,jz0);
513
514             /* Calculate squared distance and things based on it */
515             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
516
517             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
518
519             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
520
521             /* Load parameters for j particles */
522             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
523                                                                  charge+jnrC+0,charge+jnrD+0);
524             vdwjidx0A        = 2*vdwtype[jnrA+0];
525             vdwjidx0B        = 2*vdwtype[jnrB+0];
526             vdwjidx0C        = 2*vdwtype[jnrC+0];
527             vdwjidx0D        = 2*vdwtype[jnrD+0];
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             /* Compute parameters for interactions between i and j atoms */
534             qq00             = _mm256_mul_pd(iq0,jq0);
535             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
536                                             vdwioffsetptr0+vdwjidx0B,
537                                             vdwioffsetptr0+vdwjidx0C,
538                                             vdwioffsetptr0+vdwjidx0D,
539                                             &c6_00,&c12_00);
540
541             /* COULOMB ELECTROSTATICS */
542             velec            = _mm256_mul_pd(qq00,rinv00);
543             felec            = _mm256_mul_pd(velec,rinvsq00);
544
545             /* LENNARD-JONES DISPERSION/REPULSION */
546
547             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
548             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
549
550             fscal            = _mm256_add_pd(felec,fvdw);
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm256_mul_pd(fscal,dx00);
554             ty               = _mm256_mul_pd(fscal,dy00);
555             tz               = _mm256_mul_pd(fscal,dz00);
556
557             /* Update vectorial force */
558             fix0             = _mm256_add_pd(fix0,tx);
559             fiy0             = _mm256_add_pd(fiy0,ty);
560             fiz0             = _mm256_add_pd(fiz0,tz);
561
562             fjptrA             = f+j_coord_offsetA;
563             fjptrB             = f+j_coord_offsetB;
564             fjptrC             = f+j_coord_offsetC;
565             fjptrD             = f+j_coord_offsetD;
566             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
567
568             /* Inner loop uses 33 flops */
569         }
570
571         if(jidx<j_index_end)
572         {
573
574             /* Get j neighbor index, and coordinate index */
575             jnrlistA         = jjnr[jidx];
576             jnrlistB         = jjnr[jidx+1];
577             jnrlistC         = jjnr[jidx+2];
578             jnrlistD         = jjnr[jidx+3];
579             /* Sign of each element will be negative for non-real atoms.
580              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
581              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
582              */
583             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
584
585             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
586             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
587             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
588
589             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
590             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
591             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
592             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
593             j_coord_offsetA  = DIM*jnrA;
594             j_coord_offsetB  = DIM*jnrB;
595             j_coord_offsetC  = DIM*jnrC;
596             j_coord_offsetD  = DIM*jnrD;
597
598             /* load j atom coordinates */
599             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
600                                                  x+j_coord_offsetC,x+j_coord_offsetD,
601                                                  &jx0,&jy0,&jz0);
602
603             /* Calculate displacement vector */
604             dx00             = _mm256_sub_pd(ix0,jx0);
605             dy00             = _mm256_sub_pd(iy0,jy0);
606             dz00             = _mm256_sub_pd(iz0,jz0);
607
608             /* Calculate squared distance and things based on it */
609             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
610
611             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
612
613             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
614
615             /* Load parameters for j particles */
616             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
617                                                                  charge+jnrC+0,charge+jnrD+0);
618             vdwjidx0A        = 2*vdwtype[jnrA+0];
619             vdwjidx0B        = 2*vdwtype[jnrB+0];
620             vdwjidx0C        = 2*vdwtype[jnrC+0];
621             vdwjidx0D        = 2*vdwtype[jnrD+0];
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             /* Compute parameters for interactions between i and j atoms */
628             qq00             = _mm256_mul_pd(iq0,jq0);
629             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
630                                             vdwioffsetptr0+vdwjidx0B,
631                                             vdwioffsetptr0+vdwjidx0C,
632                                             vdwioffsetptr0+vdwjidx0D,
633                                             &c6_00,&c12_00);
634
635             /* COULOMB ELECTROSTATICS */
636             velec            = _mm256_mul_pd(qq00,rinv00);
637             felec            = _mm256_mul_pd(velec,rinvsq00);
638
639             /* LENNARD-JONES DISPERSION/REPULSION */
640
641             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
642             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
643
644             fscal            = _mm256_add_pd(felec,fvdw);
645
646             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm256_mul_pd(fscal,dx00);
650             ty               = _mm256_mul_pd(fscal,dy00);
651             tz               = _mm256_mul_pd(fscal,dz00);
652
653             /* Update vectorial force */
654             fix0             = _mm256_add_pd(fix0,tx);
655             fiy0             = _mm256_add_pd(fiy0,ty);
656             fiz0             = _mm256_add_pd(fiz0,tz);
657
658             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
659             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
660             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
661             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
662             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
663
664             /* Inner loop uses 33 flops */
665         }
666
667         /* End of innermost loop */
668
669         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
670                                                  f+i_coord_offset,fshift+i_shift_offset);
671
672         /* Increment number of inner iterations */
673         inneriter                  += j_index_end - j_index_start;
674
675         /* Outer loop uses 7 flops */
676     }
677
678     /* Increment number of outer iterations */
679     outeriter        += nri;
680
681     /* Update outer/inner flops */
682
683     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*33);
684 }