53ba3432fc44bb90fad04f717f037f5702f0c034
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     for(iidx=0;iidx<4*DIM;iidx++)
130     {
131         scratch[iidx] = 0.0;
132     }
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
150
151         fix0             = _mm256_setzero_pd();
152         fiy0             = _mm256_setzero_pd();
153         fiz0             = _mm256_setzero_pd();
154
155         /* Load parameters for i particles */
156         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
157         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
158
159         /* Reset potential sums */
160         velecsum         = _mm256_setzero_pd();
161         vvdwsum          = _mm256_setzero_pd();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             jnrC             = jjnr[jidx+2];
171             jnrD             = jjnr[jidx+3];
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174             j_coord_offsetC  = DIM*jnrC;
175             j_coord_offsetD  = DIM*jnrD;
176
177             /* load j atom coordinates */
178             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
179                                                  x+j_coord_offsetC,x+j_coord_offsetD,
180                                                  &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm256_sub_pd(ix0,jx0);
184             dy00             = _mm256_sub_pd(iy0,jy0);
185             dz00             = _mm256_sub_pd(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
189
190             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
191
192             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
196                                                                  charge+jnrC+0,charge+jnrD+0);
197             vdwjidx0A        = 2*vdwtype[jnrA+0];
198             vdwjidx0B        = 2*vdwtype[jnrB+0];
199             vdwjidx0C        = 2*vdwtype[jnrC+0];
200             vdwjidx0D        = 2*vdwtype[jnrD+0];
201
202             /**************************
203              * CALCULATE INTERACTIONS *
204              **************************/
205
206             /* Compute parameters for interactions between i and j atoms */
207             qq00             = _mm256_mul_pd(iq0,jq0);
208             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
209                                             vdwioffsetptr0+vdwjidx0B,
210                                             vdwioffsetptr0+vdwjidx0C,
211                                             vdwioffsetptr0+vdwjidx0D,
212                                             &c6_00,&c12_00);
213
214             /* COULOMB ELECTROSTATICS */
215             velec            = _mm256_mul_pd(qq00,rinv00);
216             felec            = _mm256_mul_pd(velec,rinvsq00);
217
218             /* LENNARD-JONES DISPERSION/REPULSION */
219
220             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
221             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
222             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
223             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
224             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
225
226             /* Update potential sum for this i atom from the interaction with this j atom. */
227             velecsum         = _mm256_add_pd(velecsum,velec);
228             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
229
230             fscal            = _mm256_add_pd(felec,fvdw);
231
232             /* Calculate temporary vectorial force */
233             tx               = _mm256_mul_pd(fscal,dx00);
234             ty               = _mm256_mul_pd(fscal,dy00);
235             tz               = _mm256_mul_pd(fscal,dz00);
236
237             /* Update vectorial force */
238             fix0             = _mm256_add_pd(fix0,tx);
239             fiy0             = _mm256_add_pd(fiy0,ty);
240             fiz0             = _mm256_add_pd(fiz0,tz);
241
242             fjptrA             = f+j_coord_offsetA;
243             fjptrB             = f+j_coord_offsetB;
244             fjptrC             = f+j_coord_offsetC;
245             fjptrD             = f+j_coord_offsetD;
246             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
247
248             /* Inner loop uses 39 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             /* Get j neighbor index, and coordinate index */
255             jnrlistA         = jjnr[jidx];
256             jnrlistB         = jjnr[jidx+1];
257             jnrlistC         = jjnr[jidx+2];
258             jnrlistD         = jjnr[jidx+3];
259             /* Sign of each element will be negative for non-real atoms.
260              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
261              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
262              */
263             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
264
265             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
266             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
267             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
268
269             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
270             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
271             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
272             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
273             j_coord_offsetA  = DIM*jnrA;
274             j_coord_offsetB  = DIM*jnrB;
275             j_coord_offsetC  = DIM*jnrC;
276             j_coord_offsetD  = DIM*jnrD;
277
278             /* load j atom coordinates */
279             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
280                                                  x+j_coord_offsetC,x+j_coord_offsetD,
281                                                  &jx0,&jy0,&jz0);
282
283             /* Calculate displacement vector */
284             dx00             = _mm256_sub_pd(ix0,jx0);
285             dy00             = _mm256_sub_pd(iy0,jy0);
286             dz00             = _mm256_sub_pd(iz0,jz0);
287
288             /* Calculate squared distance and things based on it */
289             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
290
291             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
292
293             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
294
295             /* Load parameters for j particles */
296             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
297                                                                  charge+jnrC+0,charge+jnrD+0);
298             vdwjidx0A        = 2*vdwtype[jnrA+0];
299             vdwjidx0B        = 2*vdwtype[jnrB+0];
300             vdwjidx0C        = 2*vdwtype[jnrC+0];
301             vdwjidx0D        = 2*vdwtype[jnrD+0];
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq00             = _mm256_mul_pd(iq0,jq0);
309             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
310                                             vdwioffsetptr0+vdwjidx0B,
311                                             vdwioffsetptr0+vdwjidx0C,
312                                             vdwioffsetptr0+vdwjidx0D,
313                                             &c6_00,&c12_00);
314
315             /* COULOMB ELECTROSTATICS */
316             velec            = _mm256_mul_pd(qq00,rinv00);
317             felec            = _mm256_mul_pd(velec,rinvsq00);
318
319             /* LENNARD-JONES DISPERSION/REPULSION */
320
321             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
322             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
323             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
324             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
325             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velec            = _mm256_andnot_pd(dummy_mask,velec);
329             velecsum         = _mm256_add_pd(velecsum,velec);
330             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
331             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
332
333             fscal            = _mm256_add_pd(felec,fvdw);
334
335             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
336
337             /* Calculate temporary vectorial force */
338             tx               = _mm256_mul_pd(fscal,dx00);
339             ty               = _mm256_mul_pd(fscal,dy00);
340             tz               = _mm256_mul_pd(fscal,dz00);
341
342             /* Update vectorial force */
343             fix0             = _mm256_add_pd(fix0,tx);
344             fiy0             = _mm256_add_pd(fiy0,ty);
345             fiz0             = _mm256_add_pd(fiz0,tz);
346
347             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
348             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
349             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
350             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
351             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
352
353             /* Inner loop uses 39 flops */
354         }
355
356         /* End of innermost loop */
357
358         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
359                                                  f+i_coord_offset,fshift+i_shift_offset);
360
361         ggid                        = gid[iidx];
362         /* Update potential energies */
363         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
364         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
365
366         /* Increment number of inner iterations */
367         inneriter                  += j_index_end - j_index_start;
368
369         /* Outer loop uses 9 flops */
370     }
371
372     /* Increment number of outer iterations */
373     outeriter        += nri;
374
375     /* Update outer/inner flops */
376
377     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*39);
378 }
379 /*
380  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_256_double
381  * Electrostatics interaction: Coulomb
382  * VdW interaction:            LennardJones
383  * Geometry:                   Particle-Particle
384  * Calculate force/pot:        Force
385  */
386 void
387 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_256_double
388                     (t_nblist                    * gmx_restrict       nlist,
389                      rvec                        * gmx_restrict          xx,
390                      rvec                        * gmx_restrict          ff,
391                      t_forcerec                  * gmx_restrict          fr,
392                      t_mdatoms                   * gmx_restrict     mdatoms,
393                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
394                      t_nrnb                      * gmx_restrict        nrnb)
395 {
396     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
397      * just 0 for non-waters.
398      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
399      * jnr indices corresponding to data put in the four positions in the SIMD register.
400      */
401     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
402     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
403     int              jnrA,jnrB,jnrC,jnrD;
404     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
405     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
406     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
407     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
408     real             rcutoff_scalar;
409     real             *shiftvec,*fshift,*x,*f;
410     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
411     real             scratch[4*DIM];
412     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
413     real *           vdwioffsetptr0;
414     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
415     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
416     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
417     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
418     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
419     real             *charge;
420     int              nvdwtype;
421     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
422     int              *vdwtype;
423     real             *vdwparam;
424     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
425     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
426     __m256d          dummy_mask,cutoff_mask;
427     __m128           tmpmask0,tmpmask1;
428     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
429     __m256d          one     = _mm256_set1_pd(1.0);
430     __m256d          two     = _mm256_set1_pd(2.0);
431     x                = xx[0];
432     f                = ff[0];
433
434     nri              = nlist->nri;
435     iinr             = nlist->iinr;
436     jindex           = nlist->jindex;
437     jjnr             = nlist->jjnr;
438     shiftidx         = nlist->shift;
439     gid              = nlist->gid;
440     shiftvec         = fr->shift_vec[0];
441     fshift           = fr->fshift[0];
442     facel            = _mm256_set1_pd(fr->epsfac);
443     charge           = mdatoms->chargeA;
444     nvdwtype         = fr->ntype;
445     vdwparam         = fr->nbfp;
446     vdwtype          = mdatoms->typeA;
447
448     /* Avoid stupid compiler warnings */
449     jnrA = jnrB = jnrC = jnrD = 0;
450     j_coord_offsetA = 0;
451     j_coord_offsetB = 0;
452     j_coord_offsetC = 0;
453     j_coord_offsetD = 0;
454
455     outeriter        = 0;
456     inneriter        = 0;
457
458     for(iidx=0;iidx<4*DIM;iidx++)
459     {
460         scratch[iidx] = 0.0;
461     }
462
463     /* Start outer loop over neighborlists */
464     for(iidx=0; iidx<nri; iidx++)
465     {
466         /* Load shift vector for this list */
467         i_shift_offset   = DIM*shiftidx[iidx];
468
469         /* Load limits for loop over neighbors */
470         j_index_start    = jindex[iidx];
471         j_index_end      = jindex[iidx+1];
472
473         /* Get outer coordinate index */
474         inr              = iinr[iidx];
475         i_coord_offset   = DIM*inr;
476
477         /* Load i particle coords and add shift vector */
478         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
479
480         fix0             = _mm256_setzero_pd();
481         fiy0             = _mm256_setzero_pd();
482         fiz0             = _mm256_setzero_pd();
483
484         /* Load parameters for i particles */
485         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
486         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
487
488         /* Start inner kernel loop */
489         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
490         {
491
492             /* Get j neighbor index, and coordinate index */
493             jnrA             = jjnr[jidx];
494             jnrB             = jjnr[jidx+1];
495             jnrC             = jjnr[jidx+2];
496             jnrD             = jjnr[jidx+3];
497             j_coord_offsetA  = DIM*jnrA;
498             j_coord_offsetB  = DIM*jnrB;
499             j_coord_offsetC  = DIM*jnrC;
500             j_coord_offsetD  = DIM*jnrD;
501
502             /* load j atom coordinates */
503             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
504                                                  x+j_coord_offsetC,x+j_coord_offsetD,
505                                                  &jx0,&jy0,&jz0);
506
507             /* Calculate displacement vector */
508             dx00             = _mm256_sub_pd(ix0,jx0);
509             dy00             = _mm256_sub_pd(iy0,jy0);
510             dz00             = _mm256_sub_pd(iz0,jz0);
511
512             /* Calculate squared distance and things based on it */
513             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
514
515             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
516
517             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
518
519             /* Load parameters for j particles */
520             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
521                                                                  charge+jnrC+0,charge+jnrD+0);
522             vdwjidx0A        = 2*vdwtype[jnrA+0];
523             vdwjidx0B        = 2*vdwtype[jnrB+0];
524             vdwjidx0C        = 2*vdwtype[jnrC+0];
525             vdwjidx0D        = 2*vdwtype[jnrD+0];
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             /* Compute parameters for interactions between i and j atoms */
532             qq00             = _mm256_mul_pd(iq0,jq0);
533             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
534                                             vdwioffsetptr0+vdwjidx0B,
535                                             vdwioffsetptr0+vdwjidx0C,
536                                             vdwioffsetptr0+vdwjidx0D,
537                                             &c6_00,&c12_00);
538
539             /* COULOMB ELECTROSTATICS */
540             velec            = _mm256_mul_pd(qq00,rinv00);
541             felec            = _mm256_mul_pd(velec,rinvsq00);
542
543             /* LENNARD-JONES DISPERSION/REPULSION */
544
545             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
546             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
547
548             fscal            = _mm256_add_pd(felec,fvdw);
549
550             /* Calculate temporary vectorial force */
551             tx               = _mm256_mul_pd(fscal,dx00);
552             ty               = _mm256_mul_pd(fscal,dy00);
553             tz               = _mm256_mul_pd(fscal,dz00);
554
555             /* Update vectorial force */
556             fix0             = _mm256_add_pd(fix0,tx);
557             fiy0             = _mm256_add_pd(fiy0,ty);
558             fiz0             = _mm256_add_pd(fiz0,tz);
559
560             fjptrA             = f+j_coord_offsetA;
561             fjptrB             = f+j_coord_offsetB;
562             fjptrC             = f+j_coord_offsetC;
563             fjptrD             = f+j_coord_offsetD;
564             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
565
566             /* Inner loop uses 33 flops */
567         }
568
569         if(jidx<j_index_end)
570         {
571
572             /* Get j neighbor index, and coordinate index */
573             jnrlistA         = jjnr[jidx];
574             jnrlistB         = jjnr[jidx+1];
575             jnrlistC         = jjnr[jidx+2];
576             jnrlistD         = jjnr[jidx+3];
577             /* Sign of each element will be negative for non-real atoms.
578              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
579              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
580              */
581             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
582
583             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
584             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
585             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
586
587             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
588             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
589             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
590             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
591             j_coord_offsetA  = DIM*jnrA;
592             j_coord_offsetB  = DIM*jnrB;
593             j_coord_offsetC  = DIM*jnrC;
594             j_coord_offsetD  = DIM*jnrD;
595
596             /* load j atom coordinates */
597             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
598                                                  x+j_coord_offsetC,x+j_coord_offsetD,
599                                                  &jx0,&jy0,&jz0);
600
601             /* Calculate displacement vector */
602             dx00             = _mm256_sub_pd(ix0,jx0);
603             dy00             = _mm256_sub_pd(iy0,jy0);
604             dz00             = _mm256_sub_pd(iz0,jz0);
605
606             /* Calculate squared distance and things based on it */
607             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
608
609             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
610
611             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
612
613             /* Load parameters for j particles */
614             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
615                                                                  charge+jnrC+0,charge+jnrD+0);
616             vdwjidx0A        = 2*vdwtype[jnrA+0];
617             vdwjidx0B        = 2*vdwtype[jnrB+0];
618             vdwjidx0C        = 2*vdwtype[jnrC+0];
619             vdwjidx0D        = 2*vdwtype[jnrD+0];
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq00             = _mm256_mul_pd(iq0,jq0);
627             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
628                                             vdwioffsetptr0+vdwjidx0B,
629                                             vdwioffsetptr0+vdwjidx0C,
630                                             vdwioffsetptr0+vdwjidx0D,
631                                             &c6_00,&c12_00);
632
633             /* COULOMB ELECTROSTATICS */
634             velec            = _mm256_mul_pd(qq00,rinv00);
635             felec            = _mm256_mul_pd(velec,rinvsq00);
636
637             /* LENNARD-JONES DISPERSION/REPULSION */
638
639             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
640             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
641
642             fscal            = _mm256_add_pd(felec,fvdw);
643
644             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
645
646             /* Calculate temporary vectorial force */
647             tx               = _mm256_mul_pd(fscal,dx00);
648             ty               = _mm256_mul_pd(fscal,dy00);
649             tz               = _mm256_mul_pd(fscal,dz00);
650
651             /* Update vectorial force */
652             fix0             = _mm256_add_pd(fix0,tx);
653             fiy0             = _mm256_add_pd(fiy0,ty);
654             fiz0             = _mm256_add_pd(fiz0,tz);
655
656             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
657             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
658             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
659             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
660             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
661
662             /* Inner loop uses 33 flops */
663         }
664
665         /* End of innermost loop */
666
667         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
668                                                  f+i_coord_offset,fshift+i_shift_offset);
669
670         /* Increment number of inner iterations */
671         inneriter                  += j_index_end - j_index_start;
672
673         /* Outer loop uses 7 flops */
674     }
675
676     /* Increment number of outer iterations */
677     outeriter        += nri;
678
679     /* Update outer/inner flops */
680
681     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*33);
682 }