Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_double
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     real *           vdwioffsetptr3;
90     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256d          dummy_mask,cutoff_mask;
110     __m128           tmpmask0,tmpmask1;
111     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
112     __m256d          one     = _mm256_set1_pd(1.0);
113     __m256d          two     = _mm256_set1_pd(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_pd(fr->ic->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     vftab            = kernel_data->table_vdw->data;
132     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
137     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
138     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
173
174         fix0             = _mm256_setzero_pd();
175         fiy0             = _mm256_setzero_pd();
176         fiz0             = _mm256_setzero_pd();
177         fix1             = _mm256_setzero_pd();
178         fiy1             = _mm256_setzero_pd();
179         fiz1             = _mm256_setzero_pd();
180         fix2             = _mm256_setzero_pd();
181         fiy2             = _mm256_setzero_pd();
182         fiz2             = _mm256_setzero_pd();
183         fix3             = _mm256_setzero_pd();
184         fiy3             = _mm256_setzero_pd();
185         fiz3             = _mm256_setzero_pd();
186
187         /* Reset potential sums */
188         velecsum         = _mm256_setzero_pd();
189         vvdwsum          = _mm256_setzero_pd();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             jnrC             = jjnr[jidx+2];
199             jnrD             = jjnr[jidx+3];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204
205             /* load j atom coordinates */
206             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
207                                                  x+j_coord_offsetC,x+j_coord_offsetD,
208                                                  &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm256_sub_pd(ix0,jx0);
212             dy00             = _mm256_sub_pd(iy0,jy0);
213             dz00             = _mm256_sub_pd(iz0,jz0);
214             dx10             = _mm256_sub_pd(ix1,jx0);
215             dy10             = _mm256_sub_pd(iy1,jy0);
216             dz10             = _mm256_sub_pd(iz1,jz0);
217             dx20             = _mm256_sub_pd(ix2,jx0);
218             dy20             = _mm256_sub_pd(iy2,jy0);
219             dz20             = _mm256_sub_pd(iz2,jz0);
220             dx30             = _mm256_sub_pd(ix3,jx0);
221             dy30             = _mm256_sub_pd(iy3,jy0);
222             dz30             = _mm256_sub_pd(iz3,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
226             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
227             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
228             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
229
230             rinv00           = avx256_invsqrt_d(rsq00);
231             rinv10           = avx256_invsqrt_d(rsq10);
232             rinv20           = avx256_invsqrt_d(rsq20);
233             rinv30           = avx256_invsqrt_d(rsq30);
234
235             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
236             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
237             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
241                                                                  charge+jnrC+0,charge+jnrD+0);
242             vdwjidx0A        = 2*vdwtype[jnrA+0];
243             vdwjidx0B        = 2*vdwtype[jnrB+0];
244             vdwjidx0C        = 2*vdwtype[jnrC+0];
245             vdwjidx0D        = 2*vdwtype[jnrD+0];
246
247             fjx0             = _mm256_setzero_pd();
248             fjy0             = _mm256_setzero_pd();
249             fjz0             = _mm256_setzero_pd();
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             r00              = _mm256_mul_pd(rsq00,rinv00);
256
257             /* Compute parameters for interactions between i and j atoms */
258             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
259                                             vdwioffsetptr0+vdwjidx0B,
260                                             vdwioffsetptr0+vdwjidx0C,
261                                             vdwioffsetptr0+vdwjidx0D,
262                                             &c6_00,&c12_00);
263
264             /* Calculate table index by multiplying r with table scale and truncate to integer */
265             rt               = _mm256_mul_pd(r00,vftabscale);
266             vfitab           = _mm256_cvttpd_epi32(rt);
267             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
268             vfitab           = _mm_slli_epi32(vfitab,3);
269
270             /* CUBIC SPLINE TABLE DISPERSION */
271             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
275             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
276             Heps             = _mm256_mul_pd(vfeps,H);
277             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
278             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
279             vvdw6            = _mm256_mul_pd(c6_00,VV);
280             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
281             fvdw6            = _mm256_mul_pd(c6_00,FF);
282
283             /* CUBIC SPLINE TABLE REPULSION */
284             vfitab           = _mm_add_epi32(vfitab,ifour);
285             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
286             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
287             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
288             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
289             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
290             Heps             = _mm256_mul_pd(vfeps,H);
291             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
292             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
293             vvdw12           = _mm256_mul_pd(c12_00,VV);
294             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
295             fvdw12           = _mm256_mul_pd(c12_00,FF);
296             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
297             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
301
302             fscal            = fvdw;
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm256_mul_pd(fscal,dx00);
306             ty               = _mm256_mul_pd(fscal,dy00);
307             tz               = _mm256_mul_pd(fscal,dz00);
308
309             /* Update vectorial force */
310             fix0             = _mm256_add_pd(fix0,tx);
311             fiy0             = _mm256_add_pd(fiy0,ty);
312             fiz0             = _mm256_add_pd(fiz0,tz);
313
314             fjx0             = _mm256_add_pd(fjx0,tx);
315             fjy0             = _mm256_add_pd(fjy0,ty);
316             fjz0             = _mm256_add_pd(fjz0,tz);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm256_mul_pd(iq1,jq0);
324
325             /* COULOMB ELECTROSTATICS */
326             velec            = _mm256_mul_pd(qq10,rinv10);
327             felec            = _mm256_mul_pd(velec,rinvsq10);
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm256_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             /* Calculate temporary vectorial force */
335             tx               = _mm256_mul_pd(fscal,dx10);
336             ty               = _mm256_mul_pd(fscal,dy10);
337             tz               = _mm256_mul_pd(fscal,dz10);
338
339             /* Update vectorial force */
340             fix1             = _mm256_add_pd(fix1,tx);
341             fiy1             = _mm256_add_pd(fiy1,ty);
342             fiz1             = _mm256_add_pd(fiz1,tz);
343
344             fjx0             = _mm256_add_pd(fjx0,tx);
345             fjy0             = _mm256_add_pd(fjy0,ty);
346             fjz0             = _mm256_add_pd(fjz0,tz);
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm256_mul_pd(iq2,jq0);
354
355             /* COULOMB ELECTROSTATICS */
356             velec            = _mm256_mul_pd(qq20,rinv20);
357             felec            = _mm256_mul_pd(velec,rinvsq20);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _mm256_add_pd(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm256_mul_pd(fscal,dx20);
366             ty               = _mm256_mul_pd(fscal,dy20);
367             tz               = _mm256_mul_pd(fscal,dz20);
368
369             /* Update vectorial force */
370             fix2             = _mm256_add_pd(fix2,tx);
371             fiy2             = _mm256_add_pd(fiy2,ty);
372             fiz2             = _mm256_add_pd(fiz2,tz);
373
374             fjx0             = _mm256_add_pd(fjx0,tx);
375             fjy0             = _mm256_add_pd(fjy0,ty);
376             fjz0             = _mm256_add_pd(fjz0,tz);
377
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             /* Compute parameters for interactions between i and j atoms */
383             qq30             = _mm256_mul_pd(iq3,jq0);
384
385             /* COULOMB ELECTROSTATICS */
386             velec            = _mm256_mul_pd(qq30,rinv30);
387             felec            = _mm256_mul_pd(velec,rinvsq30);
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velecsum         = _mm256_add_pd(velecsum,velec);
391
392             fscal            = felec;
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm256_mul_pd(fscal,dx30);
396             ty               = _mm256_mul_pd(fscal,dy30);
397             tz               = _mm256_mul_pd(fscal,dz30);
398
399             /* Update vectorial force */
400             fix3             = _mm256_add_pd(fix3,tx);
401             fiy3             = _mm256_add_pd(fiy3,ty);
402             fiz3             = _mm256_add_pd(fiz3,tz);
403
404             fjx0             = _mm256_add_pd(fjx0,tx);
405             fjy0             = _mm256_add_pd(fjy0,ty);
406             fjz0             = _mm256_add_pd(fjz0,tz);
407
408             fjptrA             = f+j_coord_offsetA;
409             fjptrB             = f+j_coord_offsetB;
410             fjptrC             = f+j_coord_offsetC;
411             fjptrD             = f+j_coord_offsetD;
412
413             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
414
415             /* Inner loop uses 140 flops */
416         }
417
418         if(jidx<j_index_end)
419         {
420
421             /* Get j neighbor index, and coordinate index */
422             jnrlistA         = jjnr[jidx];
423             jnrlistB         = jjnr[jidx+1];
424             jnrlistC         = jjnr[jidx+2];
425             jnrlistD         = jjnr[jidx+3];
426             /* Sign of each element will be negative for non-real atoms.
427              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
428              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
429              */
430             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
431
432             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
433             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
434             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
435
436             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
437             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
438             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
439             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
440             j_coord_offsetA  = DIM*jnrA;
441             j_coord_offsetB  = DIM*jnrB;
442             j_coord_offsetC  = DIM*jnrC;
443             j_coord_offsetD  = DIM*jnrD;
444
445             /* load j atom coordinates */
446             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
447                                                  x+j_coord_offsetC,x+j_coord_offsetD,
448                                                  &jx0,&jy0,&jz0);
449
450             /* Calculate displacement vector */
451             dx00             = _mm256_sub_pd(ix0,jx0);
452             dy00             = _mm256_sub_pd(iy0,jy0);
453             dz00             = _mm256_sub_pd(iz0,jz0);
454             dx10             = _mm256_sub_pd(ix1,jx0);
455             dy10             = _mm256_sub_pd(iy1,jy0);
456             dz10             = _mm256_sub_pd(iz1,jz0);
457             dx20             = _mm256_sub_pd(ix2,jx0);
458             dy20             = _mm256_sub_pd(iy2,jy0);
459             dz20             = _mm256_sub_pd(iz2,jz0);
460             dx30             = _mm256_sub_pd(ix3,jx0);
461             dy30             = _mm256_sub_pd(iy3,jy0);
462             dz30             = _mm256_sub_pd(iz3,jz0);
463
464             /* Calculate squared distance and things based on it */
465             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
466             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
467             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
468             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
469
470             rinv00           = avx256_invsqrt_d(rsq00);
471             rinv10           = avx256_invsqrt_d(rsq10);
472             rinv20           = avx256_invsqrt_d(rsq20);
473             rinv30           = avx256_invsqrt_d(rsq30);
474
475             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
476             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
477             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
478
479             /* Load parameters for j particles */
480             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
481                                                                  charge+jnrC+0,charge+jnrD+0);
482             vdwjidx0A        = 2*vdwtype[jnrA+0];
483             vdwjidx0B        = 2*vdwtype[jnrB+0];
484             vdwjidx0C        = 2*vdwtype[jnrC+0];
485             vdwjidx0D        = 2*vdwtype[jnrD+0];
486
487             fjx0             = _mm256_setzero_pd();
488             fjy0             = _mm256_setzero_pd();
489             fjz0             = _mm256_setzero_pd();
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             r00              = _mm256_mul_pd(rsq00,rinv00);
496             r00              = _mm256_andnot_pd(dummy_mask,r00);
497
498             /* Compute parameters for interactions between i and j atoms */
499             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
500                                             vdwioffsetptr0+vdwjidx0B,
501                                             vdwioffsetptr0+vdwjidx0C,
502                                             vdwioffsetptr0+vdwjidx0D,
503                                             &c6_00,&c12_00);
504
505             /* Calculate table index by multiplying r with table scale and truncate to integer */
506             rt               = _mm256_mul_pd(r00,vftabscale);
507             vfitab           = _mm256_cvttpd_epi32(rt);
508             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
509             vfitab           = _mm_slli_epi32(vfitab,3);
510
511             /* CUBIC SPLINE TABLE DISPERSION */
512             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
513             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
514             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
515             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
516             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
517             Heps             = _mm256_mul_pd(vfeps,H);
518             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
519             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
520             vvdw6            = _mm256_mul_pd(c6_00,VV);
521             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
522             fvdw6            = _mm256_mul_pd(c6_00,FF);
523
524             /* CUBIC SPLINE TABLE REPULSION */
525             vfitab           = _mm_add_epi32(vfitab,ifour);
526             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
527             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
528             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
529             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
530             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
531             Heps             = _mm256_mul_pd(vfeps,H);
532             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
533             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
534             vvdw12           = _mm256_mul_pd(c12_00,VV);
535             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
536             fvdw12           = _mm256_mul_pd(c12_00,FF);
537             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
538             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
539
540             /* Update potential sum for this i atom from the interaction with this j atom. */
541             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
542             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
543
544             fscal            = fvdw;
545
546             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
547
548             /* Calculate temporary vectorial force */
549             tx               = _mm256_mul_pd(fscal,dx00);
550             ty               = _mm256_mul_pd(fscal,dy00);
551             tz               = _mm256_mul_pd(fscal,dz00);
552
553             /* Update vectorial force */
554             fix0             = _mm256_add_pd(fix0,tx);
555             fiy0             = _mm256_add_pd(fiy0,ty);
556             fiz0             = _mm256_add_pd(fiz0,tz);
557
558             fjx0             = _mm256_add_pd(fjx0,tx);
559             fjy0             = _mm256_add_pd(fjy0,ty);
560             fjz0             = _mm256_add_pd(fjz0,tz);
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm256_mul_pd(iq1,jq0);
568
569             /* COULOMB ELECTROSTATICS */
570             velec            = _mm256_mul_pd(qq10,rinv10);
571             felec            = _mm256_mul_pd(velec,rinvsq10);
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             velec            = _mm256_andnot_pd(dummy_mask,velec);
575             velecsum         = _mm256_add_pd(velecsum,velec);
576
577             fscal            = felec;
578
579             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm256_mul_pd(fscal,dx10);
583             ty               = _mm256_mul_pd(fscal,dy10);
584             tz               = _mm256_mul_pd(fscal,dz10);
585
586             /* Update vectorial force */
587             fix1             = _mm256_add_pd(fix1,tx);
588             fiy1             = _mm256_add_pd(fiy1,ty);
589             fiz1             = _mm256_add_pd(fiz1,tz);
590
591             fjx0             = _mm256_add_pd(fjx0,tx);
592             fjy0             = _mm256_add_pd(fjy0,ty);
593             fjz0             = _mm256_add_pd(fjz0,tz);
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             /* Compute parameters for interactions between i and j atoms */
600             qq20             = _mm256_mul_pd(iq2,jq0);
601
602             /* COULOMB ELECTROSTATICS */
603             velec            = _mm256_mul_pd(qq20,rinv20);
604             felec            = _mm256_mul_pd(velec,rinvsq20);
605
606             /* Update potential sum for this i atom from the interaction with this j atom. */
607             velec            = _mm256_andnot_pd(dummy_mask,velec);
608             velecsum         = _mm256_add_pd(velecsum,velec);
609
610             fscal            = felec;
611
612             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
613
614             /* Calculate temporary vectorial force */
615             tx               = _mm256_mul_pd(fscal,dx20);
616             ty               = _mm256_mul_pd(fscal,dy20);
617             tz               = _mm256_mul_pd(fscal,dz20);
618
619             /* Update vectorial force */
620             fix2             = _mm256_add_pd(fix2,tx);
621             fiy2             = _mm256_add_pd(fiy2,ty);
622             fiz2             = _mm256_add_pd(fiz2,tz);
623
624             fjx0             = _mm256_add_pd(fjx0,tx);
625             fjy0             = _mm256_add_pd(fjy0,ty);
626             fjz0             = _mm256_add_pd(fjz0,tz);
627
628             /**************************
629              * CALCULATE INTERACTIONS *
630              **************************/
631
632             /* Compute parameters for interactions between i and j atoms */
633             qq30             = _mm256_mul_pd(iq3,jq0);
634
635             /* COULOMB ELECTROSTATICS */
636             velec            = _mm256_mul_pd(qq30,rinv30);
637             felec            = _mm256_mul_pd(velec,rinvsq30);
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm256_andnot_pd(dummy_mask,velec);
641             velecsum         = _mm256_add_pd(velecsum,velec);
642
643             fscal            = felec;
644
645             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
646
647             /* Calculate temporary vectorial force */
648             tx               = _mm256_mul_pd(fscal,dx30);
649             ty               = _mm256_mul_pd(fscal,dy30);
650             tz               = _mm256_mul_pd(fscal,dz30);
651
652             /* Update vectorial force */
653             fix3             = _mm256_add_pd(fix3,tx);
654             fiy3             = _mm256_add_pd(fiy3,ty);
655             fiz3             = _mm256_add_pd(fiz3,tz);
656
657             fjx0             = _mm256_add_pd(fjx0,tx);
658             fjy0             = _mm256_add_pd(fjy0,ty);
659             fjz0             = _mm256_add_pd(fjz0,tz);
660
661             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
662             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
663             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
664             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
665
666             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
667
668             /* Inner loop uses 141 flops */
669         }
670
671         /* End of innermost loop */
672
673         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
674                                                  f+i_coord_offset,fshift+i_shift_offset);
675
676         ggid                        = gid[iidx];
677         /* Update potential energies */
678         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
679         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
680
681         /* Increment number of inner iterations */
682         inneriter                  += j_index_end - j_index_start;
683
684         /* Outer loop uses 26 flops */
685     }
686
687     /* Increment number of outer iterations */
688     outeriter        += nri;
689
690     /* Update outer/inner flops */
691
692     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
693 }
694 /*
695  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_double
696  * Electrostatics interaction: Coulomb
697  * VdW interaction:            CubicSplineTable
698  * Geometry:                   Water4-Particle
699  * Calculate force/pot:        Force
700  */
701 void
702 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_double
703                     (t_nblist                    * gmx_restrict       nlist,
704                      rvec                        * gmx_restrict          xx,
705                      rvec                        * gmx_restrict          ff,
706                      struct t_forcerec           * gmx_restrict          fr,
707                      t_mdatoms                   * gmx_restrict     mdatoms,
708                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
709                      t_nrnb                      * gmx_restrict        nrnb)
710 {
711     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
712      * just 0 for non-waters.
713      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
714      * jnr indices corresponding to data put in the four positions in the SIMD register.
715      */
716     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
717     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
718     int              jnrA,jnrB,jnrC,jnrD;
719     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
720     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
721     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
722     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
723     real             rcutoff_scalar;
724     real             *shiftvec,*fshift,*x,*f;
725     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
726     real             scratch[4*DIM];
727     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
728     real *           vdwioffsetptr0;
729     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
730     real *           vdwioffsetptr1;
731     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
732     real *           vdwioffsetptr2;
733     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
734     real *           vdwioffsetptr3;
735     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
736     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
737     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
738     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
739     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
740     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
741     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
742     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
743     real             *charge;
744     int              nvdwtype;
745     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
746     int              *vdwtype;
747     real             *vdwparam;
748     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
749     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
750     __m128i          vfitab;
751     __m128i          ifour       = _mm_set1_epi32(4);
752     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
753     real             *vftab;
754     __m256d          dummy_mask,cutoff_mask;
755     __m128           tmpmask0,tmpmask1;
756     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
757     __m256d          one     = _mm256_set1_pd(1.0);
758     __m256d          two     = _mm256_set1_pd(2.0);
759     x                = xx[0];
760     f                = ff[0];
761
762     nri              = nlist->nri;
763     iinr             = nlist->iinr;
764     jindex           = nlist->jindex;
765     jjnr             = nlist->jjnr;
766     shiftidx         = nlist->shift;
767     gid              = nlist->gid;
768     shiftvec         = fr->shift_vec[0];
769     fshift           = fr->fshift[0];
770     facel            = _mm256_set1_pd(fr->ic->epsfac);
771     charge           = mdatoms->chargeA;
772     nvdwtype         = fr->ntype;
773     vdwparam         = fr->nbfp;
774     vdwtype          = mdatoms->typeA;
775
776     vftab            = kernel_data->table_vdw->data;
777     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
778
779     /* Setup water-specific parameters */
780     inr              = nlist->iinr[0];
781     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
782     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
783     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
784     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
785
786     /* Avoid stupid compiler warnings */
787     jnrA = jnrB = jnrC = jnrD = 0;
788     j_coord_offsetA = 0;
789     j_coord_offsetB = 0;
790     j_coord_offsetC = 0;
791     j_coord_offsetD = 0;
792
793     outeriter        = 0;
794     inneriter        = 0;
795
796     for(iidx=0;iidx<4*DIM;iidx++)
797     {
798         scratch[iidx] = 0.0;
799     }
800
801     /* Start outer loop over neighborlists */
802     for(iidx=0; iidx<nri; iidx++)
803     {
804         /* Load shift vector for this list */
805         i_shift_offset   = DIM*shiftidx[iidx];
806
807         /* Load limits for loop over neighbors */
808         j_index_start    = jindex[iidx];
809         j_index_end      = jindex[iidx+1];
810
811         /* Get outer coordinate index */
812         inr              = iinr[iidx];
813         i_coord_offset   = DIM*inr;
814
815         /* Load i particle coords and add shift vector */
816         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
817                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
818
819         fix0             = _mm256_setzero_pd();
820         fiy0             = _mm256_setzero_pd();
821         fiz0             = _mm256_setzero_pd();
822         fix1             = _mm256_setzero_pd();
823         fiy1             = _mm256_setzero_pd();
824         fiz1             = _mm256_setzero_pd();
825         fix2             = _mm256_setzero_pd();
826         fiy2             = _mm256_setzero_pd();
827         fiz2             = _mm256_setzero_pd();
828         fix3             = _mm256_setzero_pd();
829         fiy3             = _mm256_setzero_pd();
830         fiz3             = _mm256_setzero_pd();
831
832         /* Start inner kernel loop */
833         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrA             = jjnr[jidx];
838             jnrB             = jjnr[jidx+1];
839             jnrC             = jjnr[jidx+2];
840             jnrD             = jjnr[jidx+3];
841             j_coord_offsetA  = DIM*jnrA;
842             j_coord_offsetB  = DIM*jnrB;
843             j_coord_offsetC  = DIM*jnrC;
844             j_coord_offsetD  = DIM*jnrD;
845
846             /* load j atom coordinates */
847             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
848                                                  x+j_coord_offsetC,x+j_coord_offsetD,
849                                                  &jx0,&jy0,&jz0);
850
851             /* Calculate displacement vector */
852             dx00             = _mm256_sub_pd(ix0,jx0);
853             dy00             = _mm256_sub_pd(iy0,jy0);
854             dz00             = _mm256_sub_pd(iz0,jz0);
855             dx10             = _mm256_sub_pd(ix1,jx0);
856             dy10             = _mm256_sub_pd(iy1,jy0);
857             dz10             = _mm256_sub_pd(iz1,jz0);
858             dx20             = _mm256_sub_pd(ix2,jx0);
859             dy20             = _mm256_sub_pd(iy2,jy0);
860             dz20             = _mm256_sub_pd(iz2,jz0);
861             dx30             = _mm256_sub_pd(ix3,jx0);
862             dy30             = _mm256_sub_pd(iy3,jy0);
863             dz30             = _mm256_sub_pd(iz3,jz0);
864
865             /* Calculate squared distance and things based on it */
866             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
867             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
868             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
869             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
870
871             rinv00           = avx256_invsqrt_d(rsq00);
872             rinv10           = avx256_invsqrt_d(rsq10);
873             rinv20           = avx256_invsqrt_d(rsq20);
874             rinv30           = avx256_invsqrt_d(rsq30);
875
876             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
877             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
878             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
879
880             /* Load parameters for j particles */
881             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
882                                                                  charge+jnrC+0,charge+jnrD+0);
883             vdwjidx0A        = 2*vdwtype[jnrA+0];
884             vdwjidx0B        = 2*vdwtype[jnrB+0];
885             vdwjidx0C        = 2*vdwtype[jnrC+0];
886             vdwjidx0D        = 2*vdwtype[jnrD+0];
887
888             fjx0             = _mm256_setzero_pd();
889             fjy0             = _mm256_setzero_pd();
890             fjz0             = _mm256_setzero_pd();
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             r00              = _mm256_mul_pd(rsq00,rinv00);
897
898             /* Compute parameters for interactions between i and j atoms */
899             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
900                                             vdwioffsetptr0+vdwjidx0B,
901                                             vdwioffsetptr0+vdwjidx0C,
902                                             vdwioffsetptr0+vdwjidx0D,
903                                             &c6_00,&c12_00);
904
905             /* Calculate table index by multiplying r with table scale and truncate to integer */
906             rt               = _mm256_mul_pd(r00,vftabscale);
907             vfitab           = _mm256_cvttpd_epi32(rt);
908             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
909             vfitab           = _mm_slli_epi32(vfitab,3);
910
911             /* CUBIC SPLINE TABLE DISPERSION */
912             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
913             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
914             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
915             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
916             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
917             Heps             = _mm256_mul_pd(vfeps,H);
918             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
919             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
920             fvdw6            = _mm256_mul_pd(c6_00,FF);
921
922             /* CUBIC SPLINE TABLE REPULSION */
923             vfitab           = _mm_add_epi32(vfitab,ifour);
924             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
925             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
926             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
927             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
928             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
929             Heps             = _mm256_mul_pd(vfeps,H);
930             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
931             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
932             fvdw12           = _mm256_mul_pd(c12_00,FF);
933             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
934
935             fscal            = fvdw;
936
937             /* Calculate temporary vectorial force */
938             tx               = _mm256_mul_pd(fscal,dx00);
939             ty               = _mm256_mul_pd(fscal,dy00);
940             tz               = _mm256_mul_pd(fscal,dz00);
941
942             /* Update vectorial force */
943             fix0             = _mm256_add_pd(fix0,tx);
944             fiy0             = _mm256_add_pd(fiy0,ty);
945             fiz0             = _mm256_add_pd(fiz0,tz);
946
947             fjx0             = _mm256_add_pd(fjx0,tx);
948             fjy0             = _mm256_add_pd(fjy0,ty);
949             fjz0             = _mm256_add_pd(fjz0,tz);
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq10             = _mm256_mul_pd(iq1,jq0);
957
958             /* COULOMB ELECTROSTATICS */
959             velec            = _mm256_mul_pd(qq10,rinv10);
960             felec            = _mm256_mul_pd(velec,rinvsq10);
961
962             fscal            = felec;
963
964             /* Calculate temporary vectorial force */
965             tx               = _mm256_mul_pd(fscal,dx10);
966             ty               = _mm256_mul_pd(fscal,dy10);
967             tz               = _mm256_mul_pd(fscal,dz10);
968
969             /* Update vectorial force */
970             fix1             = _mm256_add_pd(fix1,tx);
971             fiy1             = _mm256_add_pd(fiy1,ty);
972             fiz1             = _mm256_add_pd(fiz1,tz);
973
974             fjx0             = _mm256_add_pd(fjx0,tx);
975             fjy0             = _mm256_add_pd(fjy0,ty);
976             fjz0             = _mm256_add_pd(fjz0,tz);
977
978             /**************************
979              * CALCULATE INTERACTIONS *
980              **************************/
981
982             /* Compute parameters for interactions between i and j atoms */
983             qq20             = _mm256_mul_pd(iq2,jq0);
984
985             /* COULOMB ELECTROSTATICS */
986             velec            = _mm256_mul_pd(qq20,rinv20);
987             felec            = _mm256_mul_pd(velec,rinvsq20);
988
989             fscal            = felec;
990
991             /* Calculate temporary vectorial force */
992             tx               = _mm256_mul_pd(fscal,dx20);
993             ty               = _mm256_mul_pd(fscal,dy20);
994             tz               = _mm256_mul_pd(fscal,dz20);
995
996             /* Update vectorial force */
997             fix2             = _mm256_add_pd(fix2,tx);
998             fiy2             = _mm256_add_pd(fiy2,ty);
999             fiz2             = _mm256_add_pd(fiz2,tz);
1000
1001             fjx0             = _mm256_add_pd(fjx0,tx);
1002             fjy0             = _mm256_add_pd(fjy0,ty);
1003             fjz0             = _mm256_add_pd(fjz0,tz);
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             qq30             = _mm256_mul_pd(iq3,jq0);
1011
1012             /* COULOMB ELECTROSTATICS */
1013             velec            = _mm256_mul_pd(qq30,rinv30);
1014             felec            = _mm256_mul_pd(velec,rinvsq30);
1015
1016             fscal            = felec;
1017
1018             /* Calculate temporary vectorial force */
1019             tx               = _mm256_mul_pd(fscal,dx30);
1020             ty               = _mm256_mul_pd(fscal,dy30);
1021             tz               = _mm256_mul_pd(fscal,dz30);
1022
1023             /* Update vectorial force */
1024             fix3             = _mm256_add_pd(fix3,tx);
1025             fiy3             = _mm256_add_pd(fiy3,ty);
1026             fiz3             = _mm256_add_pd(fiz3,tz);
1027
1028             fjx0             = _mm256_add_pd(fjx0,tx);
1029             fjy0             = _mm256_add_pd(fjy0,ty);
1030             fjz0             = _mm256_add_pd(fjz0,tz);
1031
1032             fjptrA             = f+j_coord_offsetA;
1033             fjptrB             = f+j_coord_offsetB;
1034             fjptrC             = f+j_coord_offsetC;
1035             fjptrD             = f+j_coord_offsetD;
1036
1037             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1038
1039             /* Inner loop uses 129 flops */
1040         }
1041
1042         if(jidx<j_index_end)
1043         {
1044
1045             /* Get j neighbor index, and coordinate index */
1046             jnrlistA         = jjnr[jidx];
1047             jnrlistB         = jjnr[jidx+1];
1048             jnrlistC         = jjnr[jidx+2];
1049             jnrlistD         = jjnr[jidx+3];
1050             /* Sign of each element will be negative for non-real atoms.
1051              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1052              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1053              */
1054             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1055
1056             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1057             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1058             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1059
1060             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1061             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1062             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1063             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1064             j_coord_offsetA  = DIM*jnrA;
1065             j_coord_offsetB  = DIM*jnrB;
1066             j_coord_offsetC  = DIM*jnrC;
1067             j_coord_offsetD  = DIM*jnrD;
1068
1069             /* load j atom coordinates */
1070             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1071                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1072                                                  &jx0,&jy0,&jz0);
1073
1074             /* Calculate displacement vector */
1075             dx00             = _mm256_sub_pd(ix0,jx0);
1076             dy00             = _mm256_sub_pd(iy0,jy0);
1077             dz00             = _mm256_sub_pd(iz0,jz0);
1078             dx10             = _mm256_sub_pd(ix1,jx0);
1079             dy10             = _mm256_sub_pd(iy1,jy0);
1080             dz10             = _mm256_sub_pd(iz1,jz0);
1081             dx20             = _mm256_sub_pd(ix2,jx0);
1082             dy20             = _mm256_sub_pd(iy2,jy0);
1083             dz20             = _mm256_sub_pd(iz2,jz0);
1084             dx30             = _mm256_sub_pd(ix3,jx0);
1085             dy30             = _mm256_sub_pd(iy3,jy0);
1086             dz30             = _mm256_sub_pd(iz3,jz0);
1087
1088             /* Calculate squared distance and things based on it */
1089             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1090             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1091             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1092             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1093
1094             rinv00           = avx256_invsqrt_d(rsq00);
1095             rinv10           = avx256_invsqrt_d(rsq10);
1096             rinv20           = avx256_invsqrt_d(rsq20);
1097             rinv30           = avx256_invsqrt_d(rsq30);
1098
1099             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1100             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1101             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1102
1103             /* Load parameters for j particles */
1104             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1105                                                                  charge+jnrC+0,charge+jnrD+0);
1106             vdwjidx0A        = 2*vdwtype[jnrA+0];
1107             vdwjidx0B        = 2*vdwtype[jnrB+0];
1108             vdwjidx0C        = 2*vdwtype[jnrC+0];
1109             vdwjidx0D        = 2*vdwtype[jnrD+0];
1110
1111             fjx0             = _mm256_setzero_pd();
1112             fjy0             = _mm256_setzero_pd();
1113             fjz0             = _mm256_setzero_pd();
1114
1115             /**************************
1116              * CALCULATE INTERACTIONS *
1117              **************************/
1118
1119             r00              = _mm256_mul_pd(rsq00,rinv00);
1120             r00              = _mm256_andnot_pd(dummy_mask,r00);
1121
1122             /* Compute parameters for interactions between i and j atoms */
1123             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1124                                             vdwioffsetptr0+vdwjidx0B,
1125                                             vdwioffsetptr0+vdwjidx0C,
1126                                             vdwioffsetptr0+vdwjidx0D,
1127                                             &c6_00,&c12_00);
1128
1129             /* Calculate table index by multiplying r with table scale and truncate to integer */
1130             rt               = _mm256_mul_pd(r00,vftabscale);
1131             vfitab           = _mm256_cvttpd_epi32(rt);
1132             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1133             vfitab           = _mm_slli_epi32(vfitab,3);
1134
1135             /* CUBIC SPLINE TABLE DISPERSION */
1136             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1137             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1138             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1139             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1140             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1141             Heps             = _mm256_mul_pd(vfeps,H);
1142             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1143             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1144             fvdw6            = _mm256_mul_pd(c6_00,FF);
1145
1146             /* CUBIC SPLINE TABLE REPULSION */
1147             vfitab           = _mm_add_epi32(vfitab,ifour);
1148             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1149             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1150             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1151             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1152             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1153             Heps             = _mm256_mul_pd(vfeps,H);
1154             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1155             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1156             fvdw12           = _mm256_mul_pd(c12_00,FF);
1157             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1158
1159             fscal            = fvdw;
1160
1161             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1162
1163             /* Calculate temporary vectorial force */
1164             tx               = _mm256_mul_pd(fscal,dx00);
1165             ty               = _mm256_mul_pd(fscal,dy00);
1166             tz               = _mm256_mul_pd(fscal,dz00);
1167
1168             /* Update vectorial force */
1169             fix0             = _mm256_add_pd(fix0,tx);
1170             fiy0             = _mm256_add_pd(fiy0,ty);
1171             fiz0             = _mm256_add_pd(fiz0,tz);
1172
1173             fjx0             = _mm256_add_pd(fjx0,tx);
1174             fjy0             = _mm256_add_pd(fjy0,ty);
1175             fjz0             = _mm256_add_pd(fjz0,tz);
1176
1177             /**************************
1178              * CALCULATE INTERACTIONS *
1179              **************************/
1180
1181             /* Compute parameters for interactions between i and j atoms */
1182             qq10             = _mm256_mul_pd(iq1,jq0);
1183
1184             /* COULOMB ELECTROSTATICS */
1185             velec            = _mm256_mul_pd(qq10,rinv10);
1186             felec            = _mm256_mul_pd(velec,rinvsq10);
1187
1188             fscal            = felec;
1189
1190             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1191
1192             /* Calculate temporary vectorial force */
1193             tx               = _mm256_mul_pd(fscal,dx10);
1194             ty               = _mm256_mul_pd(fscal,dy10);
1195             tz               = _mm256_mul_pd(fscal,dz10);
1196
1197             /* Update vectorial force */
1198             fix1             = _mm256_add_pd(fix1,tx);
1199             fiy1             = _mm256_add_pd(fiy1,ty);
1200             fiz1             = _mm256_add_pd(fiz1,tz);
1201
1202             fjx0             = _mm256_add_pd(fjx0,tx);
1203             fjy0             = _mm256_add_pd(fjy0,ty);
1204             fjz0             = _mm256_add_pd(fjz0,tz);
1205
1206             /**************************
1207              * CALCULATE INTERACTIONS *
1208              **************************/
1209
1210             /* Compute parameters for interactions between i and j atoms */
1211             qq20             = _mm256_mul_pd(iq2,jq0);
1212
1213             /* COULOMB ELECTROSTATICS */
1214             velec            = _mm256_mul_pd(qq20,rinv20);
1215             felec            = _mm256_mul_pd(velec,rinvsq20);
1216
1217             fscal            = felec;
1218
1219             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1220
1221             /* Calculate temporary vectorial force */
1222             tx               = _mm256_mul_pd(fscal,dx20);
1223             ty               = _mm256_mul_pd(fscal,dy20);
1224             tz               = _mm256_mul_pd(fscal,dz20);
1225
1226             /* Update vectorial force */
1227             fix2             = _mm256_add_pd(fix2,tx);
1228             fiy2             = _mm256_add_pd(fiy2,ty);
1229             fiz2             = _mm256_add_pd(fiz2,tz);
1230
1231             fjx0             = _mm256_add_pd(fjx0,tx);
1232             fjy0             = _mm256_add_pd(fjy0,ty);
1233             fjz0             = _mm256_add_pd(fjz0,tz);
1234
1235             /**************************
1236              * CALCULATE INTERACTIONS *
1237              **************************/
1238
1239             /* Compute parameters for interactions between i and j atoms */
1240             qq30             = _mm256_mul_pd(iq3,jq0);
1241
1242             /* COULOMB ELECTROSTATICS */
1243             velec            = _mm256_mul_pd(qq30,rinv30);
1244             felec            = _mm256_mul_pd(velec,rinvsq30);
1245
1246             fscal            = felec;
1247
1248             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1249
1250             /* Calculate temporary vectorial force */
1251             tx               = _mm256_mul_pd(fscal,dx30);
1252             ty               = _mm256_mul_pd(fscal,dy30);
1253             tz               = _mm256_mul_pd(fscal,dz30);
1254
1255             /* Update vectorial force */
1256             fix3             = _mm256_add_pd(fix3,tx);
1257             fiy3             = _mm256_add_pd(fiy3,ty);
1258             fiz3             = _mm256_add_pd(fiz3,tz);
1259
1260             fjx0             = _mm256_add_pd(fjx0,tx);
1261             fjy0             = _mm256_add_pd(fjy0,ty);
1262             fjz0             = _mm256_add_pd(fjz0,tz);
1263
1264             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1265             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1266             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1267             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1268
1269             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1270
1271             /* Inner loop uses 130 flops */
1272         }
1273
1274         /* End of innermost loop */
1275
1276         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1277                                                  f+i_coord_offset,fshift+i_shift_offset);
1278
1279         /* Increment number of inner iterations */
1280         inneriter                  += j_index_end - j_index_start;
1281
1282         /* Outer loop uses 24 flops */
1283     }
1284
1285     /* Increment number of outer iterations */
1286     outeriter        += nri;
1287
1288     /* Update outer/inner flops */
1289
1290     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1291 }