Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
79     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
84     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
91     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m256d          dummy_mask,cutoff_mask;
97     __m128           tmpmask0,tmpmask1;
98     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
99     __m256d          one     = _mm256_set1_pd(1.0);
100     __m256d          two     = _mm256_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm256_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     vftab            = kernel_data->table_vdw->data;
119     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
124     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
125     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
126     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     for(iidx=0;iidx<4*DIM;iidx++)
139     {
140         scratch[iidx] = 0.0;
141     }
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
159                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
160
161         fix0             = _mm256_setzero_pd();
162         fiy0             = _mm256_setzero_pd();
163         fiz0             = _mm256_setzero_pd();
164         fix1             = _mm256_setzero_pd();
165         fiy1             = _mm256_setzero_pd();
166         fiz1             = _mm256_setzero_pd();
167         fix2             = _mm256_setzero_pd();
168         fiy2             = _mm256_setzero_pd();
169         fiz2             = _mm256_setzero_pd();
170         fix3             = _mm256_setzero_pd();
171         fiy3             = _mm256_setzero_pd();
172         fiz3             = _mm256_setzero_pd();
173
174         /* Reset potential sums */
175         velecsum         = _mm256_setzero_pd();
176         vvdwsum          = _mm256_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                                  x+j_coord_offsetC,x+j_coord_offsetD,
195                                                  &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm256_sub_pd(ix0,jx0);
199             dy00             = _mm256_sub_pd(iy0,jy0);
200             dz00             = _mm256_sub_pd(iz0,jz0);
201             dx10             = _mm256_sub_pd(ix1,jx0);
202             dy10             = _mm256_sub_pd(iy1,jy0);
203             dz10             = _mm256_sub_pd(iz1,jz0);
204             dx20             = _mm256_sub_pd(ix2,jx0);
205             dy20             = _mm256_sub_pd(iy2,jy0);
206             dz20             = _mm256_sub_pd(iz2,jz0);
207             dx30             = _mm256_sub_pd(ix3,jx0);
208             dy30             = _mm256_sub_pd(iy3,jy0);
209             dz30             = _mm256_sub_pd(iz3,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
213             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
214             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
215             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
216
217             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
218             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
219             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
220             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
221
222             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
223             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
224             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
228                                                                  charge+jnrC+0,charge+jnrD+0);
229             vdwjidx0A        = 2*vdwtype[jnrA+0];
230             vdwjidx0B        = 2*vdwtype[jnrB+0];
231             vdwjidx0C        = 2*vdwtype[jnrC+0];
232             vdwjidx0D        = 2*vdwtype[jnrD+0];
233
234             fjx0             = _mm256_setzero_pd();
235             fjy0             = _mm256_setzero_pd();
236             fjz0             = _mm256_setzero_pd();
237
238             /**************************
239              * CALCULATE INTERACTIONS *
240              **************************/
241
242             r00              = _mm256_mul_pd(rsq00,rinv00);
243
244             /* Compute parameters for interactions between i and j atoms */
245             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
246                                             vdwioffsetptr0+vdwjidx0B,
247                                             vdwioffsetptr0+vdwjidx0C,
248                                             vdwioffsetptr0+vdwjidx0D,
249                                             &c6_00,&c12_00);
250
251             /* Calculate table index by multiplying r with table scale and truncate to integer */
252             rt               = _mm256_mul_pd(r00,vftabscale);
253             vfitab           = _mm256_cvttpd_epi32(rt);
254             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
255             vfitab           = _mm_slli_epi32(vfitab,3);
256
257             /* CUBIC SPLINE TABLE DISPERSION */
258             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
259             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
260             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
261             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
262             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
263             Heps             = _mm256_mul_pd(vfeps,H);
264             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
265             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
266             vvdw6            = _mm256_mul_pd(c6_00,VV);
267             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
268             fvdw6            = _mm256_mul_pd(c6_00,FF);
269
270             /* CUBIC SPLINE TABLE REPULSION */
271             vfitab           = _mm_add_epi32(vfitab,ifour);
272             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
273             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
274             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
275             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
276             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
277             Heps             = _mm256_mul_pd(vfeps,H);
278             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
279             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
280             vvdw12           = _mm256_mul_pd(c12_00,VV);
281             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
282             fvdw12           = _mm256_mul_pd(c12_00,FF);
283             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
284             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
288
289             fscal            = fvdw;
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm256_mul_pd(fscal,dx00);
293             ty               = _mm256_mul_pd(fscal,dy00);
294             tz               = _mm256_mul_pd(fscal,dz00);
295
296             /* Update vectorial force */
297             fix0             = _mm256_add_pd(fix0,tx);
298             fiy0             = _mm256_add_pd(fiy0,ty);
299             fiz0             = _mm256_add_pd(fiz0,tz);
300
301             fjx0             = _mm256_add_pd(fjx0,tx);
302             fjy0             = _mm256_add_pd(fjy0,ty);
303             fjz0             = _mm256_add_pd(fjz0,tz);
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             /* Compute parameters for interactions between i and j atoms */
310             qq10             = _mm256_mul_pd(iq1,jq0);
311
312             /* COULOMB ELECTROSTATICS */
313             velec            = _mm256_mul_pd(qq10,rinv10);
314             felec            = _mm256_mul_pd(velec,rinvsq10);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velecsum         = _mm256_add_pd(velecsum,velec);
318
319             fscal            = felec;
320
321             /* Calculate temporary vectorial force */
322             tx               = _mm256_mul_pd(fscal,dx10);
323             ty               = _mm256_mul_pd(fscal,dy10);
324             tz               = _mm256_mul_pd(fscal,dz10);
325
326             /* Update vectorial force */
327             fix1             = _mm256_add_pd(fix1,tx);
328             fiy1             = _mm256_add_pd(fiy1,ty);
329             fiz1             = _mm256_add_pd(fiz1,tz);
330
331             fjx0             = _mm256_add_pd(fjx0,tx);
332             fjy0             = _mm256_add_pd(fjy0,ty);
333             fjz0             = _mm256_add_pd(fjz0,tz);
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq20             = _mm256_mul_pd(iq2,jq0);
341
342             /* COULOMB ELECTROSTATICS */
343             velec            = _mm256_mul_pd(qq20,rinv20);
344             felec            = _mm256_mul_pd(velec,rinvsq20);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm256_add_pd(velecsum,velec);
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_pd(fscal,dx20);
353             ty               = _mm256_mul_pd(fscal,dy20);
354             tz               = _mm256_mul_pd(fscal,dz20);
355
356             /* Update vectorial force */
357             fix2             = _mm256_add_pd(fix2,tx);
358             fiy2             = _mm256_add_pd(fiy2,ty);
359             fiz2             = _mm256_add_pd(fiz2,tz);
360
361             fjx0             = _mm256_add_pd(fjx0,tx);
362             fjy0             = _mm256_add_pd(fjy0,ty);
363             fjz0             = _mm256_add_pd(fjz0,tz);
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq30             = _mm256_mul_pd(iq3,jq0);
371
372             /* COULOMB ELECTROSTATICS */
373             velec            = _mm256_mul_pd(qq30,rinv30);
374             felec            = _mm256_mul_pd(velec,rinvsq30);
375
376             /* Update potential sum for this i atom from the interaction with this j atom. */
377             velecsum         = _mm256_add_pd(velecsum,velec);
378
379             fscal            = felec;
380
381             /* Calculate temporary vectorial force */
382             tx               = _mm256_mul_pd(fscal,dx30);
383             ty               = _mm256_mul_pd(fscal,dy30);
384             tz               = _mm256_mul_pd(fscal,dz30);
385
386             /* Update vectorial force */
387             fix3             = _mm256_add_pd(fix3,tx);
388             fiy3             = _mm256_add_pd(fiy3,ty);
389             fiz3             = _mm256_add_pd(fiz3,tz);
390
391             fjx0             = _mm256_add_pd(fjx0,tx);
392             fjy0             = _mm256_add_pd(fjy0,ty);
393             fjz0             = _mm256_add_pd(fjz0,tz);
394
395             fjptrA             = f+j_coord_offsetA;
396             fjptrB             = f+j_coord_offsetB;
397             fjptrC             = f+j_coord_offsetC;
398             fjptrD             = f+j_coord_offsetD;
399
400             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
401
402             /* Inner loop uses 140 flops */
403         }
404
405         if(jidx<j_index_end)
406         {
407
408             /* Get j neighbor index, and coordinate index */
409             jnrlistA         = jjnr[jidx];
410             jnrlistB         = jjnr[jidx+1];
411             jnrlistC         = jjnr[jidx+2];
412             jnrlistD         = jjnr[jidx+3];
413             /* Sign of each element will be negative for non-real atoms.
414              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
415              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
416              */
417             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
418
419             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
420             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
421             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
422
423             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
424             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
425             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
426             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
427             j_coord_offsetA  = DIM*jnrA;
428             j_coord_offsetB  = DIM*jnrB;
429             j_coord_offsetC  = DIM*jnrC;
430             j_coord_offsetD  = DIM*jnrD;
431
432             /* load j atom coordinates */
433             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
434                                                  x+j_coord_offsetC,x+j_coord_offsetD,
435                                                  &jx0,&jy0,&jz0);
436
437             /* Calculate displacement vector */
438             dx00             = _mm256_sub_pd(ix0,jx0);
439             dy00             = _mm256_sub_pd(iy0,jy0);
440             dz00             = _mm256_sub_pd(iz0,jz0);
441             dx10             = _mm256_sub_pd(ix1,jx0);
442             dy10             = _mm256_sub_pd(iy1,jy0);
443             dz10             = _mm256_sub_pd(iz1,jz0);
444             dx20             = _mm256_sub_pd(ix2,jx0);
445             dy20             = _mm256_sub_pd(iy2,jy0);
446             dz20             = _mm256_sub_pd(iz2,jz0);
447             dx30             = _mm256_sub_pd(ix3,jx0);
448             dy30             = _mm256_sub_pd(iy3,jy0);
449             dz30             = _mm256_sub_pd(iz3,jz0);
450
451             /* Calculate squared distance and things based on it */
452             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
453             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
454             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
455             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
456
457             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
458             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
459             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
460             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
461
462             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
463             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
464             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
465
466             /* Load parameters for j particles */
467             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
468                                                                  charge+jnrC+0,charge+jnrD+0);
469             vdwjidx0A        = 2*vdwtype[jnrA+0];
470             vdwjidx0B        = 2*vdwtype[jnrB+0];
471             vdwjidx0C        = 2*vdwtype[jnrC+0];
472             vdwjidx0D        = 2*vdwtype[jnrD+0];
473
474             fjx0             = _mm256_setzero_pd();
475             fjy0             = _mm256_setzero_pd();
476             fjz0             = _mm256_setzero_pd();
477
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             r00              = _mm256_mul_pd(rsq00,rinv00);
483             r00              = _mm256_andnot_pd(dummy_mask,r00);
484
485             /* Compute parameters for interactions between i and j atoms */
486             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
487                                             vdwioffsetptr0+vdwjidx0B,
488                                             vdwioffsetptr0+vdwjidx0C,
489                                             vdwioffsetptr0+vdwjidx0D,
490                                             &c6_00,&c12_00);
491
492             /* Calculate table index by multiplying r with table scale and truncate to integer */
493             rt               = _mm256_mul_pd(r00,vftabscale);
494             vfitab           = _mm256_cvttpd_epi32(rt);
495             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
496             vfitab           = _mm_slli_epi32(vfitab,3);
497
498             /* CUBIC SPLINE TABLE DISPERSION */
499             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
500             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
501             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
502             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
503             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
504             Heps             = _mm256_mul_pd(vfeps,H);
505             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
506             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
507             vvdw6            = _mm256_mul_pd(c6_00,VV);
508             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
509             fvdw6            = _mm256_mul_pd(c6_00,FF);
510
511             /* CUBIC SPLINE TABLE REPULSION */
512             vfitab           = _mm_add_epi32(vfitab,ifour);
513             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
514             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
515             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
516             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
517             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
518             Heps             = _mm256_mul_pd(vfeps,H);
519             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
520             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
521             vvdw12           = _mm256_mul_pd(c12_00,VV);
522             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
523             fvdw12           = _mm256_mul_pd(c12_00,FF);
524             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
525             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
529             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
530
531             fscal            = fvdw;
532
533             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
534
535             /* Calculate temporary vectorial force */
536             tx               = _mm256_mul_pd(fscal,dx00);
537             ty               = _mm256_mul_pd(fscal,dy00);
538             tz               = _mm256_mul_pd(fscal,dz00);
539
540             /* Update vectorial force */
541             fix0             = _mm256_add_pd(fix0,tx);
542             fiy0             = _mm256_add_pd(fiy0,ty);
543             fiz0             = _mm256_add_pd(fiz0,tz);
544
545             fjx0             = _mm256_add_pd(fjx0,tx);
546             fjy0             = _mm256_add_pd(fjy0,ty);
547             fjz0             = _mm256_add_pd(fjz0,tz);
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq10             = _mm256_mul_pd(iq1,jq0);
555
556             /* COULOMB ELECTROSTATICS */
557             velec            = _mm256_mul_pd(qq10,rinv10);
558             felec            = _mm256_mul_pd(velec,rinvsq10);
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm256_andnot_pd(dummy_mask,velec);
562             velecsum         = _mm256_add_pd(velecsum,velec);
563
564             fscal            = felec;
565
566             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm256_mul_pd(fscal,dx10);
570             ty               = _mm256_mul_pd(fscal,dy10);
571             tz               = _mm256_mul_pd(fscal,dz10);
572
573             /* Update vectorial force */
574             fix1             = _mm256_add_pd(fix1,tx);
575             fiy1             = _mm256_add_pd(fiy1,ty);
576             fiz1             = _mm256_add_pd(fiz1,tz);
577
578             fjx0             = _mm256_add_pd(fjx0,tx);
579             fjy0             = _mm256_add_pd(fjy0,ty);
580             fjz0             = _mm256_add_pd(fjz0,tz);
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq20             = _mm256_mul_pd(iq2,jq0);
588
589             /* COULOMB ELECTROSTATICS */
590             velec            = _mm256_mul_pd(qq20,rinv20);
591             felec            = _mm256_mul_pd(velec,rinvsq20);
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm256_andnot_pd(dummy_mask,velec);
595             velecsum         = _mm256_add_pd(velecsum,velec);
596
597             fscal            = felec;
598
599             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm256_mul_pd(fscal,dx20);
603             ty               = _mm256_mul_pd(fscal,dy20);
604             tz               = _mm256_mul_pd(fscal,dz20);
605
606             /* Update vectorial force */
607             fix2             = _mm256_add_pd(fix2,tx);
608             fiy2             = _mm256_add_pd(fiy2,ty);
609             fiz2             = _mm256_add_pd(fiz2,tz);
610
611             fjx0             = _mm256_add_pd(fjx0,tx);
612             fjy0             = _mm256_add_pd(fjy0,ty);
613             fjz0             = _mm256_add_pd(fjz0,tz);
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq30             = _mm256_mul_pd(iq3,jq0);
621
622             /* COULOMB ELECTROSTATICS */
623             velec            = _mm256_mul_pd(qq30,rinv30);
624             felec            = _mm256_mul_pd(velec,rinvsq30);
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             velec            = _mm256_andnot_pd(dummy_mask,velec);
628             velecsum         = _mm256_add_pd(velecsum,velec);
629
630             fscal            = felec;
631
632             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
633
634             /* Calculate temporary vectorial force */
635             tx               = _mm256_mul_pd(fscal,dx30);
636             ty               = _mm256_mul_pd(fscal,dy30);
637             tz               = _mm256_mul_pd(fscal,dz30);
638
639             /* Update vectorial force */
640             fix3             = _mm256_add_pd(fix3,tx);
641             fiy3             = _mm256_add_pd(fiy3,ty);
642             fiz3             = _mm256_add_pd(fiz3,tz);
643
644             fjx0             = _mm256_add_pd(fjx0,tx);
645             fjy0             = _mm256_add_pd(fjy0,ty);
646             fjz0             = _mm256_add_pd(fjz0,tz);
647
648             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
649             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
650             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
651             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
652
653             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
654
655             /* Inner loop uses 141 flops */
656         }
657
658         /* End of innermost loop */
659
660         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
661                                                  f+i_coord_offset,fshift+i_shift_offset);
662
663         ggid                        = gid[iidx];
664         /* Update potential energies */
665         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
666         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
667
668         /* Increment number of inner iterations */
669         inneriter                  += j_index_end - j_index_start;
670
671         /* Outer loop uses 26 flops */
672     }
673
674     /* Increment number of outer iterations */
675     outeriter        += nri;
676
677     /* Update outer/inner flops */
678
679     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
680 }
681 /*
682  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_double
683  * Electrostatics interaction: Coulomb
684  * VdW interaction:            CubicSplineTable
685  * Geometry:                   Water4-Particle
686  * Calculate force/pot:        Force
687  */
688 void
689 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_double
690                     (t_nblist * gmx_restrict                nlist,
691                      rvec * gmx_restrict                    xx,
692                      rvec * gmx_restrict                    ff,
693                      t_forcerec * gmx_restrict              fr,
694                      t_mdatoms * gmx_restrict               mdatoms,
695                      nb_kernel_data_t * gmx_restrict        kernel_data,
696                      t_nrnb * gmx_restrict                  nrnb)
697 {
698     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
699      * just 0 for non-waters.
700      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
701      * jnr indices corresponding to data put in the four positions in the SIMD register.
702      */
703     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
704     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
705     int              jnrA,jnrB,jnrC,jnrD;
706     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
707     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
708     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
709     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
710     real             rcutoff_scalar;
711     real             *shiftvec,*fshift,*x,*f;
712     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
713     real             scratch[4*DIM];
714     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
715     real *           vdwioffsetptr0;
716     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
717     real *           vdwioffsetptr1;
718     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
719     real *           vdwioffsetptr2;
720     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
721     real *           vdwioffsetptr3;
722     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
723     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
724     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
725     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
726     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
727     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
728     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
729     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
730     real             *charge;
731     int              nvdwtype;
732     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
733     int              *vdwtype;
734     real             *vdwparam;
735     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
736     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
737     __m128i          vfitab;
738     __m128i          ifour       = _mm_set1_epi32(4);
739     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
740     real             *vftab;
741     __m256d          dummy_mask,cutoff_mask;
742     __m128           tmpmask0,tmpmask1;
743     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
744     __m256d          one     = _mm256_set1_pd(1.0);
745     __m256d          two     = _mm256_set1_pd(2.0);
746     x                = xx[0];
747     f                = ff[0];
748
749     nri              = nlist->nri;
750     iinr             = nlist->iinr;
751     jindex           = nlist->jindex;
752     jjnr             = nlist->jjnr;
753     shiftidx         = nlist->shift;
754     gid              = nlist->gid;
755     shiftvec         = fr->shift_vec[0];
756     fshift           = fr->fshift[0];
757     facel            = _mm256_set1_pd(fr->epsfac);
758     charge           = mdatoms->chargeA;
759     nvdwtype         = fr->ntype;
760     vdwparam         = fr->nbfp;
761     vdwtype          = mdatoms->typeA;
762
763     vftab            = kernel_data->table_vdw->data;
764     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
765
766     /* Setup water-specific parameters */
767     inr              = nlist->iinr[0];
768     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
769     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
770     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
771     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
772
773     /* Avoid stupid compiler warnings */
774     jnrA = jnrB = jnrC = jnrD = 0;
775     j_coord_offsetA = 0;
776     j_coord_offsetB = 0;
777     j_coord_offsetC = 0;
778     j_coord_offsetD = 0;
779
780     outeriter        = 0;
781     inneriter        = 0;
782
783     for(iidx=0;iidx<4*DIM;iidx++)
784     {
785         scratch[iidx] = 0.0;
786     }
787
788     /* Start outer loop over neighborlists */
789     for(iidx=0; iidx<nri; iidx++)
790     {
791         /* Load shift vector for this list */
792         i_shift_offset   = DIM*shiftidx[iidx];
793
794         /* Load limits for loop over neighbors */
795         j_index_start    = jindex[iidx];
796         j_index_end      = jindex[iidx+1];
797
798         /* Get outer coordinate index */
799         inr              = iinr[iidx];
800         i_coord_offset   = DIM*inr;
801
802         /* Load i particle coords and add shift vector */
803         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
804                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
805
806         fix0             = _mm256_setzero_pd();
807         fiy0             = _mm256_setzero_pd();
808         fiz0             = _mm256_setzero_pd();
809         fix1             = _mm256_setzero_pd();
810         fiy1             = _mm256_setzero_pd();
811         fiz1             = _mm256_setzero_pd();
812         fix2             = _mm256_setzero_pd();
813         fiy2             = _mm256_setzero_pd();
814         fiz2             = _mm256_setzero_pd();
815         fix3             = _mm256_setzero_pd();
816         fiy3             = _mm256_setzero_pd();
817         fiz3             = _mm256_setzero_pd();
818
819         /* Start inner kernel loop */
820         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
821         {
822
823             /* Get j neighbor index, and coordinate index */
824             jnrA             = jjnr[jidx];
825             jnrB             = jjnr[jidx+1];
826             jnrC             = jjnr[jidx+2];
827             jnrD             = jjnr[jidx+3];
828             j_coord_offsetA  = DIM*jnrA;
829             j_coord_offsetB  = DIM*jnrB;
830             j_coord_offsetC  = DIM*jnrC;
831             j_coord_offsetD  = DIM*jnrD;
832
833             /* load j atom coordinates */
834             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
835                                                  x+j_coord_offsetC,x+j_coord_offsetD,
836                                                  &jx0,&jy0,&jz0);
837
838             /* Calculate displacement vector */
839             dx00             = _mm256_sub_pd(ix0,jx0);
840             dy00             = _mm256_sub_pd(iy0,jy0);
841             dz00             = _mm256_sub_pd(iz0,jz0);
842             dx10             = _mm256_sub_pd(ix1,jx0);
843             dy10             = _mm256_sub_pd(iy1,jy0);
844             dz10             = _mm256_sub_pd(iz1,jz0);
845             dx20             = _mm256_sub_pd(ix2,jx0);
846             dy20             = _mm256_sub_pd(iy2,jy0);
847             dz20             = _mm256_sub_pd(iz2,jz0);
848             dx30             = _mm256_sub_pd(ix3,jx0);
849             dy30             = _mm256_sub_pd(iy3,jy0);
850             dz30             = _mm256_sub_pd(iz3,jz0);
851
852             /* Calculate squared distance and things based on it */
853             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
854             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
855             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
856             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
857
858             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
859             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
860             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
861             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
862
863             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
864             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
865             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
866
867             /* Load parameters for j particles */
868             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
869                                                                  charge+jnrC+0,charge+jnrD+0);
870             vdwjidx0A        = 2*vdwtype[jnrA+0];
871             vdwjidx0B        = 2*vdwtype[jnrB+0];
872             vdwjidx0C        = 2*vdwtype[jnrC+0];
873             vdwjidx0D        = 2*vdwtype[jnrD+0];
874
875             fjx0             = _mm256_setzero_pd();
876             fjy0             = _mm256_setzero_pd();
877             fjz0             = _mm256_setzero_pd();
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             r00              = _mm256_mul_pd(rsq00,rinv00);
884
885             /* Compute parameters for interactions between i and j atoms */
886             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
887                                             vdwioffsetptr0+vdwjidx0B,
888                                             vdwioffsetptr0+vdwjidx0C,
889                                             vdwioffsetptr0+vdwjidx0D,
890                                             &c6_00,&c12_00);
891
892             /* Calculate table index by multiplying r with table scale and truncate to integer */
893             rt               = _mm256_mul_pd(r00,vftabscale);
894             vfitab           = _mm256_cvttpd_epi32(rt);
895             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
896             vfitab           = _mm_slli_epi32(vfitab,3);
897
898             /* CUBIC SPLINE TABLE DISPERSION */
899             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
900             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
901             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
902             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
903             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
904             Heps             = _mm256_mul_pd(vfeps,H);
905             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
906             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
907             fvdw6            = _mm256_mul_pd(c6_00,FF);
908
909             /* CUBIC SPLINE TABLE REPULSION */
910             vfitab           = _mm_add_epi32(vfitab,ifour);
911             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
912             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
913             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
914             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
915             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
916             Heps             = _mm256_mul_pd(vfeps,H);
917             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
918             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
919             fvdw12           = _mm256_mul_pd(c12_00,FF);
920             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
921
922             fscal            = fvdw;
923
924             /* Calculate temporary vectorial force */
925             tx               = _mm256_mul_pd(fscal,dx00);
926             ty               = _mm256_mul_pd(fscal,dy00);
927             tz               = _mm256_mul_pd(fscal,dz00);
928
929             /* Update vectorial force */
930             fix0             = _mm256_add_pd(fix0,tx);
931             fiy0             = _mm256_add_pd(fiy0,ty);
932             fiz0             = _mm256_add_pd(fiz0,tz);
933
934             fjx0             = _mm256_add_pd(fjx0,tx);
935             fjy0             = _mm256_add_pd(fjy0,ty);
936             fjz0             = _mm256_add_pd(fjz0,tz);
937
938             /**************************
939              * CALCULATE INTERACTIONS *
940              **************************/
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq10             = _mm256_mul_pd(iq1,jq0);
944
945             /* COULOMB ELECTROSTATICS */
946             velec            = _mm256_mul_pd(qq10,rinv10);
947             felec            = _mm256_mul_pd(velec,rinvsq10);
948
949             fscal            = felec;
950
951             /* Calculate temporary vectorial force */
952             tx               = _mm256_mul_pd(fscal,dx10);
953             ty               = _mm256_mul_pd(fscal,dy10);
954             tz               = _mm256_mul_pd(fscal,dz10);
955
956             /* Update vectorial force */
957             fix1             = _mm256_add_pd(fix1,tx);
958             fiy1             = _mm256_add_pd(fiy1,ty);
959             fiz1             = _mm256_add_pd(fiz1,tz);
960
961             fjx0             = _mm256_add_pd(fjx0,tx);
962             fjy0             = _mm256_add_pd(fjy0,ty);
963             fjz0             = _mm256_add_pd(fjz0,tz);
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq20             = _mm256_mul_pd(iq2,jq0);
971
972             /* COULOMB ELECTROSTATICS */
973             velec            = _mm256_mul_pd(qq20,rinv20);
974             felec            = _mm256_mul_pd(velec,rinvsq20);
975
976             fscal            = felec;
977
978             /* Calculate temporary vectorial force */
979             tx               = _mm256_mul_pd(fscal,dx20);
980             ty               = _mm256_mul_pd(fscal,dy20);
981             tz               = _mm256_mul_pd(fscal,dz20);
982
983             /* Update vectorial force */
984             fix2             = _mm256_add_pd(fix2,tx);
985             fiy2             = _mm256_add_pd(fiy2,ty);
986             fiz2             = _mm256_add_pd(fiz2,tz);
987
988             fjx0             = _mm256_add_pd(fjx0,tx);
989             fjy0             = _mm256_add_pd(fjy0,ty);
990             fjz0             = _mm256_add_pd(fjz0,tz);
991
992             /**************************
993              * CALCULATE INTERACTIONS *
994              **************************/
995
996             /* Compute parameters for interactions between i and j atoms */
997             qq30             = _mm256_mul_pd(iq3,jq0);
998
999             /* COULOMB ELECTROSTATICS */
1000             velec            = _mm256_mul_pd(qq30,rinv30);
1001             felec            = _mm256_mul_pd(velec,rinvsq30);
1002
1003             fscal            = felec;
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm256_mul_pd(fscal,dx30);
1007             ty               = _mm256_mul_pd(fscal,dy30);
1008             tz               = _mm256_mul_pd(fscal,dz30);
1009
1010             /* Update vectorial force */
1011             fix3             = _mm256_add_pd(fix3,tx);
1012             fiy3             = _mm256_add_pd(fiy3,ty);
1013             fiz3             = _mm256_add_pd(fiz3,tz);
1014
1015             fjx0             = _mm256_add_pd(fjx0,tx);
1016             fjy0             = _mm256_add_pd(fjy0,ty);
1017             fjz0             = _mm256_add_pd(fjz0,tz);
1018
1019             fjptrA             = f+j_coord_offsetA;
1020             fjptrB             = f+j_coord_offsetB;
1021             fjptrC             = f+j_coord_offsetC;
1022             fjptrD             = f+j_coord_offsetD;
1023
1024             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1025
1026             /* Inner loop uses 129 flops */
1027         }
1028
1029         if(jidx<j_index_end)
1030         {
1031
1032             /* Get j neighbor index, and coordinate index */
1033             jnrlistA         = jjnr[jidx];
1034             jnrlistB         = jjnr[jidx+1];
1035             jnrlistC         = jjnr[jidx+2];
1036             jnrlistD         = jjnr[jidx+3];
1037             /* Sign of each element will be negative for non-real atoms.
1038              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1039              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1040              */
1041             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1042
1043             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1044             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1045             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1046
1047             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1048             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1049             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1050             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1051             j_coord_offsetA  = DIM*jnrA;
1052             j_coord_offsetB  = DIM*jnrB;
1053             j_coord_offsetC  = DIM*jnrC;
1054             j_coord_offsetD  = DIM*jnrD;
1055
1056             /* load j atom coordinates */
1057             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1058                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1059                                                  &jx0,&jy0,&jz0);
1060
1061             /* Calculate displacement vector */
1062             dx00             = _mm256_sub_pd(ix0,jx0);
1063             dy00             = _mm256_sub_pd(iy0,jy0);
1064             dz00             = _mm256_sub_pd(iz0,jz0);
1065             dx10             = _mm256_sub_pd(ix1,jx0);
1066             dy10             = _mm256_sub_pd(iy1,jy0);
1067             dz10             = _mm256_sub_pd(iz1,jz0);
1068             dx20             = _mm256_sub_pd(ix2,jx0);
1069             dy20             = _mm256_sub_pd(iy2,jy0);
1070             dz20             = _mm256_sub_pd(iz2,jz0);
1071             dx30             = _mm256_sub_pd(ix3,jx0);
1072             dy30             = _mm256_sub_pd(iy3,jy0);
1073             dz30             = _mm256_sub_pd(iz3,jz0);
1074
1075             /* Calculate squared distance and things based on it */
1076             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1077             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1078             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1079             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1080
1081             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1082             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1083             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1084             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1085
1086             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1087             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1088             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1089
1090             /* Load parameters for j particles */
1091             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1092                                                                  charge+jnrC+0,charge+jnrD+0);
1093             vdwjidx0A        = 2*vdwtype[jnrA+0];
1094             vdwjidx0B        = 2*vdwtype[jnrB+0];
1095             vdwjidx0C        = 2*vdwtype[jnrC+0];
1096             vdwjidx0D        = 2*vdwtype[jnrD+0];
1097
1098             fjx0             = _mm256_setzero_pd();
1099             fjy0             = _mm256_setzero_pd();
1100             fjz0             = _mm256_setzero_pd();
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             r00              = _mm256_mul_pd(rsq00,rinv00);
1107             r00              = _mm256_andnot_pd(dummy_mask,r00);
1108
1109             /* Compute parameters for interactions between i and j atoms */
1110             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1111                                             vdwioffsetptr0+vdwjidx0B,
1112                                             vdwioffsetptr0+vdwjidx0C,
1113                                             vdwioffsetptr0+vdwjidx0D,
1114                                             &c6_00,&c12_00);
1115
1116             /* Calculate table index by multiplying r with table scale and truncate to integer */
1117             rt               = _mm256_mul_pd(r00,vftabscale);
1118             vfitab           = _mm256_cvttpd_epi32(rt);
1119             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1120             vfitab           = _mm_slli_epi32(vfitab,3);
1121
1122             /* CUBIC SPLINE TABLE DISPERSION */
1123             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1124             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1125             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1126             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1127             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1128             Heps             = _mm256_mul_pd(vfeps,H);
1129             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1130             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1131             fvdw6            = _mm256_mul_pd(c6_00,FF);
1132
1133             /* CUBIC SPLINE TABLE REPULSION */
1134             vfitab           = _mm_add_epi32(vfitab,ifour);
1135             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1136             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1137             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1138             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1139             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1140             Heps             = _mm256_mul_pd(vfeps,H);
1141             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1142             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1143             fvdw12           = _mm256_mul_pd(c12_00,FF);
1144             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1145
1146             fscal            = fvdw;
1147
1148             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1149
1150             /* Calculate temporary vectorial force */
1151             tx               = _mm256_mul_pd(fscal,dx00);
1152             ty               = _mm256_mul_pd(fscal,dy00);
1153             tz               = _mm256_mul_pd(fscal,dz00);
1154
1155             /* Update vectorial force */
1156             fix0             = _mm256_add_pd(fix0,tx);
1157             fiy0             = _mm256_add_pd(fiy0,ty);
1158             fiz0             = _mm256_add_pd(fiz0,tz);
1159
1160             fjx0             = _mm256_add_pd(fjx0,tx);
1161             fjy0             = _mm256_add_pd(fjy0,ty);
1162             fjz0             = _mm256_add_pd(fjz0,tz);
1163
1164             /**************************
1165              * CALCULATE INTERACTIONS *
1166              **************************/
1167
1168             /* Compute parameters for interactions between i and j atoms */
1169             qq10             = _mm256_mul_pd(iq1,jq0);
1170
1171             /* COULOMB ELECTROSTATICS */
1172             velec            = _mm256_mul_pd(qq10,rinv10);
1173             felec            = _mm256_mul_pd(velec,rinvsq10);
1174
1175             fscal            = felec;
1176
1177             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1178
1179             /* Calculate temporary vectorial force */
1180             tx               = _mm256_mul_pd(fscal,dx10);
1181             ty               = _mm256_mul_pd(fscal,dy10);
1182             tz               = _mm256_mul_pd(fscal,dz10);
1183
1184             /* Update vectorial force */
1185             fix1             = _mm256_add_pd(fix1,tx);
1186             fiy1             = _mm256_add_pd(fiy1,ty);
1187             fiz1             = _mm256_add_pd(fiz1,tz);
1188
1189             fjx0             = _mm256_add_pd(fjx0,tx);
1190             fjy0             = _mm256_add_pd(fjy0,ty);
1191             fjz0             = _mm256_add_pd(fjz0,tz);
1192
1193             /**************************
1194              * CALCULATE INTERACTIONS *
1195              **************************/
1196
1197             /* Compute parameters for interactions between i and j atoms */
1198             qq20             = _mm256_mul_pd(iq2,jq0);
1199
1200             /* COULOMB ELECTROSTATICS */
1201             velec            = _mm256_mul_pd(qq20,rinv20);
1202             felec            = _mm256_mul_pd(velec,rinvsq20);
1203
1204             fscal            = felec;
1205
1206             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1207
1208             /* Calculate temporary vectorial force */
1209             tx               = _mm256_mul_pd(fscal,dx20);
1210             ty               = _mm256_mul_pd(fscal,dy20);
1211             tz               = _mm256_mul_pd(fscal,dz20);
1212
1213             /* Update vectorial force */
1214             fix2             = _mm256_add_pd(fix2,tx);
1215             fiy2             = _mm256_add_pd(fiy2,ty);
1216             fiz2             = _mm256_add_pd(fiz2,tz);
1217
1218             fjx0             = _mm256_add_pd(fjx0,tx);
1219             fjy0             = _mm256_add_pd(fjy0,ty);
1220             fjz0             = _mm256_add_pd(fjz0,tz);
1221
1222             /**************************
1223              * CALCULATE INTERACTIONS *
1224              **************************/
1225
1226             /* Compute parameters for interactions between i and j atoms */
1227             qq30             = _mm256_mul_pd(iq3,jq0);
1228
1229             /* COULOMB ELECTROSTATICS */
1230             velec            = _mm256_mul_pd(qq30,rinv30);
1231             felec            = _mm256_mul_pd(velec,rinvsq30);
1232
1233             fscal            = felec;
1234
1235             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1236
1237             /* Calculate temporary vectorial force */
1238             tx               = _mm256_mul_pd(fscal,dx30);
1239             ty               = _mm256_mul_pd(fscal,dy30);
1240             tz               = _mm256_mul_pd(fscal,dz30);
1241
1242             /* Update vectorial force */
1243             fix3             = _mm256_add_pd(fix3,tx);
1244             fiy3             = _mm256_add_pd(fiy3,ty);
1245             fiz3             = _mm256_add_pd(fiz3,tz);
1246
1247             fjx0             = _mm256_add_pd(fjx0,tx);
1248             fjy0             = _mm256_add_pd(fjy0,ty);
1249             fjz0             = _mm256_add_pd(fjz0,tz);
1250
1251             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1252             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1253             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1254             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1255
1256             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1257
1258             /* Inner loop uses 130 flops */
1259         }
1260
1261         /* End of innermost loop */
1262
1263         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1264                                                  f+i_coord_offset,fshift+i_shift_offset);
1265
1266         /* Increment number of inner iterations */
1267         inneriter                  += j_index_end - j_index_start;
1268
1269         /* Outer loop uses 24 flops */
1270     }
1271
1272     /* Increment number of outer iterations */
1273     outeriter        += nri;
1274
1275     /* Update outer/inner flops */
1276
1277     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1278 }