Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m128i          vfitab;
107     __m128i          ifour       = _mm_set1_epi32(4);
108     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
109     real             *vftab;
110     __m256d          dummy_mask,cutoff_mask;
111     __m128           tmpmask0,tmpmask1;
112     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
113     __m256d          one     = _mm256_set1_pd(1.0);
114     __m256d          two     = _mm256_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
138     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
139     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
140     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174
175         fix0             = _mm256_setzero_pd();
176         fiy0             = _mm256_setzero_pd();
177         fiz0             = _mm256_setzero_pd();
178         fix1             = _mm256_setzero_pd();
179         fiy1             = _mm256_setzero_pd();
180         fiz1             = _mm256_setzero_pd();
181         fix2             = _mm256_setzero_pd();
182         fiy2             = _mm256_setzero_pd();
183         fiz2             = _mm256_setzero_pd();
184         fix3             = _mm256_setzero_pd();
185         fiy3             = _mm256_setzero_pd();
186         fiz3             = _mm256_setzero_pd();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_pd();
190         vvdwsum          = _mm256_setzero_pd();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
209                                                  &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm256_sub_pd(ix0,jx0);
213             dy00             = _mm256_sub_pd(iy0,jy0);
214             dz00             = _mm256_sub_pd(iz0,jz0);
215             dx10             = _mm256_sub_pd(ix1,jx0);
216             dy10             = _mm256_sub_pd(iy1,jy0);
217             dz10             = _mm256_sub_pd(iz1,jz0);
218             dx20             = _mm256_sub_pd(ix2,jx0);
219             dy20             = _mm256_sub_pd(iy2,jy0);
220             dz20             = _mm256_sub_pd(iz2,jz0);
221             dx30             = _mm256_sub_pd(ix3,jx0);
222             dy30             = _mm256_sub_pd(iy3,jy0);
223             dz30             = _mm256_sub_pd(iz3,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
227             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
228             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
229             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
230
231             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
232             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
233             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
234             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
235
236             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
237             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
238             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
239
240             /* Load parameters for j particles */
241             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
242                                                                  charge+jnrC+0,charge+jnrD+0);
243             vdwjidx0A        = 2*vdwtype[jnrA+0];
244             vdwjidx0B        = 2*vdwtype[jnrB+0];
245             vdwjidx0C        = 2*vdwtype[jnrC+0];
246             vdwjidx0D        = 2*vdwtype[jnrD+0];
247
248             fjx0             = _mm256_setzero_pd();
249             fjy0             = _mm256_setzero_pd();
250             fjz0             = _mm256_setzero_pd();
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             r00              = _mm256_mul_pd(rsq00,rinv00);
257
258             /* Compute parameters for interactions between i and j atoms */
259             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
260                                             vdwioffsetptr0+vdwjidx0B,
261                                             vdwioffsetptr0+vdwjidx0C,
262                                             vdwioffsetptr0+vdwjidx0D,
263                                             &c6_00,&c12_00);
264
265             /* Calculate table index by multiplying r with table scale and truncate to integer */
266             rt               = _mm256_mul_pd(r00,vftabscale);
267             vfitab           = _mm256_cvttpd_epi32(rt);
268             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
269             vfitab           = _mm_slli_epi32(vfitab,3);
270
271             /* CUBIC SPLINE TABLE DISPERSION */
272             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
273             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
274             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
275             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
276             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
277             Heps             = _mm256_mul_pd(vfeps,H);
278             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
279             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
280             vvdw6            = _mm256_mul_pd(c6_00,VV);
281             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
282             fvdw6            = _mm256_mul_pd(c6_00,FF);
283
284             /* CUBIC SPLINE TABLE REPULSION */
285             vfitab           = _mm_add_epi32(vfitab,ifour);
286             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
287             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
288             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
289             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
290             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
291             Heps             = _mm256_mul_pd(vfeps,H);
292             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
293             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
294             vvdw12           = _mm256_mul_pd(c12_00,VV);
295             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
296             fvdw12           = _mm256_mul_pd(c12_00,FF);
297             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
298             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
302
303             fscal            = fvdw;
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm256_mul_pd(fscal,dx00);
307             ty               = _mm256_mul_pd(fscal,dy00);
308             tz               = _mm256_mul_pd(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm256_add_pd(fix0,tx);
312             fiy0             = _mm256_add_pd(fiy0,ty);
313             fiz0             = _mm256_add_pd(fiz0,tz);
314
315             fjx0             = _mm256_add_pd(fjx0,tx);
316             fjy0             = _mm256_add_pd(fjy0,ty);
317             fjz0             = _mm256_add_pd(fjz0,tz);
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm256_mul_pd(iq1,jq0);
325
326             /* COULOMB ELECTROSTATICS */
327             velec            = _mm256_mul_pd(qq10,rinv10);
328             felec            = _mm256_mul_pd(velec,rinvsq10);
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm256_add_pd(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm256_mul_pd(fscal,dx10);
337             ty               = _mm256_mul_pd(fscal,dy10);
338             tz               = _mm256_mul_pd(fscal,dz10);
339
340             /* Update vectorial force */
341             fix1             = _mm256_add_pd(fix1,tx);
342             fiy1             = _mm256_add_pd(fiy1,ty);
343             fiz1             = _mm256_add_pd(fiz1,tz);
344
345             fjx0             = _mm256_add_pd(fjx0,tx);
346             fjy0             = _mm256_add_pd(fjy0,ty);
347             fjz0             = _mm256_add_pd(fjz0,tz);
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm256_mul_pd(iq2,jq0);
355
356             /* COULOMB ELECTROSTATICS */
357             velec            = _mm256_mul_pd(qq20,rinv20);
358             felec            = _mm256_mul_pd(velec,rinvsq20);
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm256_add_pd(velecsum,velec);
362
363             fscal            = felec;
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm256_mul_pd(fscal,dx20);
367             ty               = _mm256_mul_pd(fscal,dy20);
368             tz               = _mm256_mul_pd(fscal,dz20);
369
370             /* Update vectorial force */
371             fix2             = _mm256_add_pd(fix2,tx);
372             fiy2             = _mm256_add_pd(fiy2,ty);
373             fiz2             = _mm256_add_pd(fiz2,tz);
374
375             fjx0             = _mm256_add_pd(fjx0,tx);
376             fjy0             = _mm256_add_pd(fjy0,ty);
377             fjz0             = _mm256_add_pd(fjz0,tz);
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq30             = _mm256_mul_pd(iq3,jq0);
385
386             /* COULOMB ELECTROSTATICS */
387             velec            = _mm256_mul_pd(qq30,rinv30);
388             felec            = _mm256_mul_pd(velec,rinvsq30);
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velecsum         = _mm256_add_pd(velecsum,velec);
392
393             fscal            = felec;
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm256_mul_pd(fscal,dx30);
397             ty               = _mm256_mul_pd(fscal,dy30);
398             tz               = _mm256_mul_pd(fscal,dz30);
399
400             /* Update vectorial force */
401             fix3             = _mm256_add_pd(fix3,tx);
402             fiy3             = _mm256_add_pd(fiy3,ty);
403             fiz3             = _mm256_add_pd(fiz3,tz);
404
405             fjx0             = _mm256_add_pd(fjx0,tx);
406             fjy0             = _mm256_add_pd(fjy0,ty);
407             fjz0             = _mm256_add_pd(fjz0,tz);
408
409             fjptrA             = f+j_coord_offsetA;
410             fjptrB             = f+j_coord_offsetB;
411             fjptrC             = f+j_coord_offsetC;
412             fjptrD             = f+j_coord_offsetD;
413
414             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
415
416             /* Inner loop uses 140 flops */
417         }
418
419         if(jidx<j_index_end)
420         {
421
422             /* Get j neighbor index, and coordinate index */
423             jnrlistA         = jjnr[jidx];
424             jnrlistB         = jjnr[jidx+1];
425             jnrlistC         = jjnr[jidx+2];
426             jnrlistD         = jjnr[jidx+3];
427             /* Sign of each element will be negative for non-real atoms.
428              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
429              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
430              */
431             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
432
433             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
434             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
435             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
436
437             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
438             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
439             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
440             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
441             j_coord_offsetA  = DIM*jnrA;
442             j_coord_offsetB  = DIM*jnrB;
443             j_coord_offsetC  = DIM*jnrC;
444             j_coord_offsetD  = DIM*jnrD;
445
446             /* load j atom coordinates */
447             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
448                                                  x+j_coord_offsetC,x+j_coord_offsetD,
449                                                  &jx0,&jy0,&jz0);
450
451             /* Calculate displacement vector */
452             dx00             = _mm256_sub_pd(ix0,jx0);
453             dy00             = _mm256_sub_pd(iy0,jy0);
454             dz00             = _mm256_sub_pd(iz0,jz0);
455             dx10             = _mm256_sub_pd(ix1,jx0);
456             dy10             = _mm256_sub_pd(iy1,jy0);
457             dz10             = _mm256_sub_pd(iz1,jz0);
458             dx20             = _mm256_sub_pd(ix2,jx0);
459             dy20             = _mm256_sub_pd(iy2,jy0);
460             dz20             = _mm256_sub_pd(iz2,jz0);
461             dx30             = _mm256_sub_pd(ix3,jx0);
462             dy30             = _mm256_sub_pd(iy3,jy0);
463             dz30             = _mm256_sub_pd(iz3,jz0);
464
465             /* Calculate squared distance and things based on it */
466             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
467             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
468             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
469             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
470
471             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
472             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
473             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
474             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
475
476             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
477             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
478             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
479
480             /* Load parameters for j particles */
481             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
482                                                                  charge+jnrC+0,charge+jnrD+0);
483             vdwjidx0A        = 2*vdwtype[jnrA+0];
484             vdwjidx0B        = 2*vdwtype[jnrB+0];
485             vdwjidx0C        = 2*vdwtype[jnrC+0];
486             vdwjidx0D        = 2*vdwtype[jnrD+0];
487
488             fjx0             = _mm256_setzero_pd();
489             fjy0             = _mm256_setzero_pd();
490             fjz0             = _mm256_setzero_pd();
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             r00              = _mm256_mul_pd(rsq00,rinv00);
497             r00              = _mm256_andnot_pd(dummy_mask,r00);
498
499             /* Compute parameters for interactions between i and j atoms */
500             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
501                                             vdwioffsetptr0+vdwjidx0B,
502                                             vdwioffsetptr0+vdwjidx0C,
503                                             vdwioffsetptr0+vdwjidx0D,
504                                             &c6_00,&c12_00);
505
506             /* Calculate table index by multiplying r with table scale and truncate to integer */
507             rt               = _mm256_mul_pd(r00,vftabscale);
508             vfitab           = _mm256_cvttpd_epi32(rt);
509             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
510             vfitab           = _mm_slli_epi32(vfitab,3);
511
512             /* CUBIC SPLINE TABLE DISPERSION */
513             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
514             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
515             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
516             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
517             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
518             Heps             = _mm256_mul_pd(vfeps,H);
519             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
520             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
521             vvdw6            = _mm256_mul_pd(c6_00,VV);
522             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
523             fvdw6            = _mm256_mul_pd(c6_00,FF);
524
525             /* CUBIC SPLINE TABLE REPULSION */
526             vfitab           = _mm_add_epi32(vfitab,ifour);
527             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
528             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
529             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
530             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
531             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
532             Heps             = _mm256_mul_pd(vfeps,H);
533             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
534             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
535             vvdw12           = _mm256_mul_pd(c12_00,VV);
536             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
537             fvdw12           = _mm256_mul_pd(c12_00,FF);
538             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
539             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
540
541             /* Update potential sum for this i atom from the interaction with this j atom. */
542             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
543             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
544
545             fscal            = fvdw;
546
547             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
548
549             /* Calculate temporary vectorial force */
550             tx               = _mm256_mul_pd(fscal,dx00);
551             ty               = _mm256_mul_pd(fscal,dy00);
552             tz               = _mm256_mul_pd(fscal,dz00);
553
554             /* Update vectorial force */
555             fix0             = _mm256_add_pd(fix0,tx);
556             fiy0             = _mm256_add_pd(fiy0,ty);
557             fiz0             = _mm256_add_pd(fiz0,tz);
558
559             fjx0             = _mm256_add_pd(fjx0,tx);
560             fjy0             = _mm256_add_pd(fjy0,ty);
561             fjz0             = _mm256_add_pd(fjz0,tz);
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq10             = _mm256_mul_pd(iq1,jq0);
569
570             /* COULOMB ELECTROSTATICS */
571             velec            = _mm256_mul_pd(qq10,rinv10);
572             felec            = _mm256_mul_pd(velec,rinvsq10);
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             velec            = _mm256_andnot_pd(dummy_mask,velec);
576             velecsum         = _mm256_add_pd(velecsum,velec);
577
578             fscal            = felec;
579
580             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm256_mul_pd(fscal,dx10);
584             ty               = _mm256_mul_pd(fscal,dy10);
585             tz               = _mm256_mul_pd(fscal,dz10);
586
587             /* Update vectorial force */
588             fix1             = _mm256_add_pd(fix1,tx);
589             fiy1             = _mm256_add_pd(fiy1,ty);
590             fiz1             = _mm256_add_pd(fiz1,tz);
591
592             fjx0             = _mm256_add_pd(fjx0,tx);
593             fjy0             = _mm256_add_pd(fjy0,ty);
594             fjz0             = _mm256_add_pd(fjz0,tz);
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq20             = _mm256_mul_pd(iq2,jq0);
602
603             /* COULOMB ELECTROSTATICS */
604             velec            = _mm256_mul_pd(qq20,rinv20);
605             felec            = _mm256_mul_pd(velec,rinvsq20);
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm256_andnot_pd(dummy_mask,velec);
609             velecsum         = _mm256_add_pd(velecsum,velec);
610
611             fscal            = felec;
612
613             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
614
615             /* Calculate temporary vectorial force */
616             tx               = _mm256_mul_pd(fscal,dx20);
617             ty               = _mm256_mul_pd(fscal,dy20);
618             tz               = _mm256_mul_pd(fscal,dz20);
619
620             /* Update vectorial force */
621             fix2             = _mm256_add_pd(fix2,tx);
622             fiy2             = _mm256_add_pd(fiy2,ty);
623             fiz2             = _mm256_add_pd(fiz2,tz);
624
625             fjx0             = _mm256_add_pd(fjx0,tx);
626             fjy0             = _mm256_add_pd(fjy0,ty);
627             fjz0             = _mm256_add_pd(fjz0,tz);
628
629             /**************************
630              * CALCULATE INTERACTIONS *
631              **************************/
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq30             = _mm256_mul_pd(iq3,jq0);
635
636             /* COULOMB ELECTROSTATICS */
637             velec            = _mm256_mul_pd(qq30,rinv30);
638             felec            = _mm256_mul_pd(velec,rinvsq30);
639
640             /* Update potential sum for this i atom from the interaction with this j atom. */
641             velec            = _mm256_andnot_pd(dummy_mask,velec);
642             velecsum         = _mm256_add_pd(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm256_mul_pd(fscal,dx30);
650             ty               = _mm256_mul_pd(fscal,dy30);
651             tz               = _mm256_mul_pd(fscal,dz30);
652
653             /* Update vectorial force */
654             fix3             = _mm256_add_pd(fix3,tx);
655             fiy3             = _mm256_add_pd(fiy3,ty);
656             fiz3             = _mm256_add_pd(fiz3,tz);
657
658             fjx0             = _mm256_add_pd(fjx0,tx);
659             fjy0             = _mm256_add_pd(fjy0,ty);
660             fjz0             = _mm256_add_pd(fjz0,tz);
661
662             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
663             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
664             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
665             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
666
667             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
668
669             /* Inner loop uses 141 flops */
670         }
671
672         /* End of innermost loop */
673
674         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
675                                                  f+i_coord_offset,fshift+i_shift_offset);
676
677         ggid                        = gid[iidx];
678         /* Update potential energies */
679         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
680         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
681
682         /* Increment number of inner iterations */
683         inneriter                  += j_index_end - j_index_start;
684
685         /* Outer loop uses 26 flops */
686     }
687
688     /* Increment number of outer iterations */
689     outeriter        += nri;
690
691     /* Update outer/inner flops */
692
693     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
694 }
695 /*
696  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_double
697  * Electrostatics interaction: Coulomb
698  * VdW interaction:            CubicSplineTable
699  * Geometry:                   Water4-Particle
700  * Calculate force/pot:        Force
701  */
702 void
703 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_double
704                     (t_nblist                    * gmx_restrict       nlist,
705                      rvec                        * gmx_restrict          xx,
706                      rvec                        * gmx_restrict          ff,
707                      t_forcerec                  * gmx_restrict          fr,
708                      t_mdatoms                   * gmx_restrict     mdatoms,
709                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
710                      t_nrnb                      * gmx_restrict        nrnb)
711 {
712     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
713      * just 0 for non-waters.
714      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
715      * jnr indices corresponding to data put in the four positions in the SIMD register.
716      */
717     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
718     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
719     int              jnrA,jnrB,jnrC,jnrD;
720     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
721     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
722     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
723     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
724     real             rcutoff_scalar;
725     real             *shiftvec,*fshift,*x,*f;
726     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
727     real             scratch[4*DIM];
728     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
729     real *           vdwioffsetptr0;
730     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
731     real *           vdwioffsetptr1;
732     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
733     real *           vdwioffsetptr2;
734     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
735     real *           vdwioffsetptr3;
736     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
737     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
738     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
739     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
740     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
741     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
742     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
743     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
744     real             *charge;
745     int              nvdwtype;
746     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
747     int              *vdwtype;
748     real             *vdwparam;
749     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
750     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
751     __m128i          vfitab;
752     __m128i          ifour       = _mm_set1_epi32(4);
753     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
754     real             *vftab;
755     __m256d          dummy_mask,cutoff_mask;
756     __m128           tmpmask0,tmpmask1;
757     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
758     __m256d          one     = _mm256_set1_pd(1.0);
759     __m256d          two     = _mm256_set1_pd(2.0);
760     x                = xx[0];
761     f                = ff[0];
762
763     nri              = nlist->nri;
764     iinr             = nlist->iinr;
765     jindex           = nlist->jindex;
766     jjnr             = nlist->jjnr;
767     shiftidx         = nlist->shift;
768     gid              = nlist->gid;
769     shiftvec         = fr->shift_vec[0];
770     fshift           = fr->fshift[0];
771     facel            = _mm256_set1_pd(fr->epsfac);
772     charge           = mdatoms->chargeA;
773     nvdwtype         = fr->ntype;
774     vdwparam         = fr->nbfp;
775     vdwtype          = mdatoms->typeA;
776
777     vftab            = kernel_data->table_vdw->data;
778     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
779
780     /* Setup water-specific parameters */
781     inr              = nlist->iinr[0];
782     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
783     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
784     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
785     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
786
787     /* Avoid stupid compiler warnings */
788     jnrA = jnrB = jnrC = jnrD = 0;
789     j_coord_offsetA = 0;
790     j_coord_offsetB = 0;
791     j_coord_offsetC = 0;
792     j_coord_offsetD = 0;
793
794     outeriter        = 0;
795     inneriter        = 0;
796
797     for(iidx=0;iidx<4*DIM;iidx++)
798     {
799         scratch[iidx] = 0.0;
800     }
801
802     /* Start outer loop over neighborlists */
803     for(iidx=0; iidx<nri; iidx++)
804     {
805         /* Load shift vector for this list */
806         i_shift_offset   = DIM*shiftidx[iidx];
807
808         /* Load limits for loop over neighbors */
809         j_index_start    = jindex[iidx];
810         j_index_end      = jindex[iidx+1];
811
812         /* Get outer coordinate index */
813         inr              = iinr[iidx];
814         i_coord_offset   = DIM*inr;
815
816         /* Load i particle coords and add shift vector */
817         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
818                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
819
820         fix0             = _mm256_setzero_pd();
821         fiy0             = _mm256_setzero_pd();
822         fiz0             = _mm256_setzero_pd();
823         fix1             = _mm256_setzero_pd();
824         fiy1             = _mm256_setzero_pd();
825         fiz1             = _mm256_setzero_pd();
826         fix2             = _mm256_setzero_pd();
827         fiy2             = _mm256_setzero_pd();
828         fiz2             = _mm256_setzero_pd();
829         fix3             = _mm256_setzero_pd();
830         fiy3             = _mm256_setzero_pd();
831         fiz3             = _mm256_setzero_pd();
832
833         /* Start inner kernel loop */
834         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
835         {
836
837             /* Get j neighbor index, and coordinate index */
838             jnrA             = jjnr[jidx];
839             jnrB             = jjnr[jidx+1];
840             jnrC             = jjnr[jidx+2];
841             jnrD             = jjnr[jidx+3];
842             j_coord_offsetA  = DIM*jnrA;
843             j_coord_offsetB  = DIM*jnrB;
844             j_coord_offsetC  = DIM*jnrC;
845             j_coord_offsetD  = DIM*jnrD;
846
847             /* load j atom coordinates */
848             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
849                                                  x+j_coord_offsetC,x+j_coord_offsetD,
850                                                  &jx0,&jy0,&jz0);
851
852             /* Calculate displacement vector */
853             dx00             = _mm256_sub_pd(ix0,jx0);
854             dy00             = _mm256_sub_pd(iy0,jy0);
855             dz00             = _mm256_sub_pd(iz0,jz0);
856             dx10             = _mm256_sub_pd(ix1,jx0);
857             dy10             = _mm256_sub_pd(iy1,jy0);
858             dz10             = _mm256_sub_pd(iz1,jz0);
859             dx20             = _mm256_sub_pd(ix2,jx0);
860             dy20             = _mm256_sub_pd(iy2,jy0);
861             dz20             = _mm256_sub_pd(iz2,jz0);
862             dx30             = _mm256_sub_pd(ix3,jx0);
863             dy30             = _mm256_sub_pd(iy3,jy0);
864             dz30             = _mm256_sub_pd(iz3,jz0);
865
866             /* Calculate squared distance and things based on it */
867             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
868             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
869             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
870             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
871
872             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
873             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
874             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
875             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
876
877             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
878             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
879             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
880
881             /* Load parameters for j particles */
882             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
883                                                                  charge+jnrC+0,charge+jnrD+0);
884             vdwjidx0A        = 2*vdwtype[jnrA+0];
885             vdwjidx0B        = 2*vdwtype[jnrB+0];
886             vdwjidx0C        = 2*vdwtype[jnrC+0];
887             vdwjidx0D        = 2*vdwtype[jnrD+0];
888
889             fjx0             = _mm256_setzero_pd();
890             fjy0             = _mm256_setzero_pd();
891             fjz0             = _mm256_setzero_pd();
892
893             /**************************
894              * CALCULATE INTERACTIONS *
895              **************************/
896
897             r00              = _mm256_mul_pd(rsq00,rinv00);
898
899             /* Compute parameters for interactions between i and j atoms */
900             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
901                                             vdwioffsetptr0+vdwjidx0B,
902                                             vdwioffsetptr0+vdwjidx0C,
903                                             vdwioffsetptr0+vdwjidx0D,
904                                             &c6_00,&c12_00);
905
906             /* Calculate table index by multiplying r with table scale and truncate to integer */
907             rt               = _mm256_mul_pd(r00,vftabscale);
908             vfitab           = _mm256_cvttpd_epi32(rt);
909             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
910             vfitab           = _mm_slli_epi32(vfitab,3);
911
912             /* CUBIC SPLINE TABLE DISPERSION */
913             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
914             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
915             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
916             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
917             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
918             Heps             = _mm256_mul_pd(vfeps,H);
919             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
920             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
921             fvdw6            = _mm256_mul_pd(c6_00,FF);
922
923             /* CUBIC SPLINE TABLE REPULSION */
924             vfitab           = _mm_add_epi32(vfitab,ifour);
925             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
926             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
927             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
928             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
929             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
930             Heps             = _mm256_mul_pd(vfeps,H);
931             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
932             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
933             fvdw12           = _mm256_mul_pd(c12_00,FF);
934             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
935
936             fscal            = fvdw;
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm256_mul_pd(fscal,dx00);
940             ty               = _mm256_mul_pd(fscal,dy00);
941             tz               = _mm256_mul_pd(fscal,dz00);
942
943             /* Update vectorial force */
944             fix0             = _mm256_add_pd(fix0,tx);
945             fiy0             = _mm256_add_pd(fiy0,ty);
946             fiz0             = _mm256_add_pd(fiz0,tz);
947
948             fjx0             = _mm256_add_pd(fjx0,tx);
949             fjy0             = _mm256_add_pd(fjy0,ty);
950             fjz0             = _mm256_add_pd(fjz0,tz);
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq10             = _mm256_mul_pd(iq1,jq0);
958
959             /* COULOMB ELECTROSTATICS */
960             velec            = _mm256_mul_pd(qq10,rinv10);
961             felec            = _mm256_mul_pd(velec,rinvsq10);
962
963             fscal            = felec;
964
965             /* Calculate temporary vectorial force */
966             tx               = _mm256_mul_pd(fscal,dx10);
967             ty               = _mm256_mul_pd(fscal,dy10);
968             tz               = _mm256_mul_pd(fscal,dz10);
969
970             /* Update vectorial force */
971             fix1             = _mm256_add_pd(fix1,tx);
972             fiy1             = _mm256_add_pd(fiy1,ty);
973             fiz1             = _mm256_add_pd(fiz1,tz);
974
975             fjx0             = _mm256_add_pd(fjx0,tx);
976             fjy0             = _mm256_add_pd(fjy0,ty);
977             fjz0             = _mm256_add_pd(fjz0,tz);
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             /* Compute parameters for interactions between i and j atoms */
984             qq20             = _mm256_mul_pd(iq2,jq0);
985
986             /* COULOMB ELECTROSTATICS */
987             velec            = _mm256_mul_pd(qq20,rinv20);
988             felec            = _mm256_mul_pd(velec,rinvsq20);
989
990             fscal            = felec;
991
992             /* Calculate temporary vectorial force */
993             tx               = _mm256_mul_pd(fscal,dx20);
994             ty               = _mm256_mul_pd(fscal,dy20);
995             tz               = _mm256_mul_pd(fscal,dz20);
996
997             /* Update vectorial force */
998             fix2             = _mm256_add_pd(fix2,tx);
999             fiy2             = _mm256_add_pd(fiy2,ty);
1000             fiz2             = _mm256_add_pd(fiz2,tz);
1001
1002             fjx0             = _mm256_add_pd(fjx0,tx);
1003             fjy0             = _mm256_add_pd(fjy0,ty);
1004             fjz0             = _mm256_add_pd(fjz0,tz);
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq30             = _mm256_mul_pd(iq3,jq0);
1012
1013             /* COULOMB ELECTROSTATICS */
1014             velec            = _mm256_mul_pd(qq30,rinv30);
1015             felec            = _mm256_mul_pd(velec,rinvsq30);
1016
1017             fscal            = felec;
1018
1019             /* Calculate temporary vectorial force */
1020             tx               = _mm256_mul_pd(fscal,dx30);
1021             ty               = _mm256_mul_pd(fscal,dy30);
1022             tz               = _mm256_mul_pd(fscal,dz30);
1023
1024             /* Update vectorial force */
1025             fix3             = _mm256_add_pd(fix3,tx);
1026             fiy3             = _mm256_add_pd(fiy3,ty);
1027             fiz3             = _mm256_add_pd(fiz3,tz);
1028
1029             fjx0             = _mm256_add_pd(fjx0,tx);
1030             fjy0             = _mm256_add_pd(fjy0,ty);
1031             fjz0             = _mm256_add_pd(fjz0,tz);
1032
1033             fjptrA             = f+j_coord_offsetA;
1034             fjptrB             = f+j_coord_offsetB;
1035             fjptrC             = f+j_coord_offsetC;
1036             fjptrD             = f+j_coord_offsetD;
1037
1038             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1039
1040             /* Inner loop uses 129 flops */
1041         }
1042
1043         if(jidx<j_index_end)
1044         {
1045
1046             /* Get j neighbor index, and coordinate index */
1047             jnrlistA         = jjnr[jidx];
1048             jnrlistB         = jjnr[jidx+1];
1049             jnrlistC         = jjnr[jidx+2];
1050             jnrlistD         = jjnr[jidx+3];
1051             /* Sign of each element will be negative for non-real atoms.
1052              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1053              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1054              */
1055             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1056
1057             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1058             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1059             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1060
1061             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1062             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1063             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1064             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1065             j_coord_offsetA  = DIM*jnrA;
1066             j_coord_offsetB  = DIM*jnrB;
1067             j_coord_offsetC  = DIM*jnrC;
1068             j_coord_offsetD  = DIM*jnrD;
1069
1070             /* load j atom coordinates */
1071             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1072                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1073                                                  &jx0,&jy0,&jz0);
1074
1075             /* Calculate displacement vector */
1076             dx00             = _mm256_sub_pd(ix0,jx0);
1077             dy00             = _mm256_sub_pd(iy0,jy0);
1078             dz00             = _mm256_sub_pd(iz0,jz0);
1079             dx10             = _mm256_sub_pd(ix1,jx0);
1080             dy10             = _mm256_sub_pd(iy1,jy0);
1081             dz10             = _mm256_sub_pd(iz1,jz0);
1082             dx20             = _mm256_sub_pd(ix2,jx0);
1083             dy20             = _mm256_sub_pd(iy2,jy0);
1084             dz20             = _mm256_sub_pd(iz2,jz0);
1085             dx30             = _mm256_sub_pd(ix3,jx0);
1086             dy30             = _mm256_sub_pd(iy3,jy0);
1087             dz30             = _mm256_sub_pd(iz3,jz0);
1088
1089             /* Calculate squared distance and things based on it */
1090             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1091             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1092             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1093             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1094
1095             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1096             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1097             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1098             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1099
1100             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1101             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1102             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1103
1104             /* Load parameters for j particles */
1105             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1106                                                                  charge+jnrC+0,charge+jnrD+0);
1107             vdwjidx0A        = 2*vdwtype[jnrA+0];
1108             vdwjidx0B        = 2*vdwtype[jnrB+0];
1109             vdwjidx0C        = 2*vdwtype[jnrC+0];
1110             vdwjidx0D        = 2*vdwtype[jnrD+0];
1111
1112             fjx0             = _mm256_setzero_pd();
1113             fjy0             = _mm256_setzero_pd();
1114             fjz0             = _mm256_setzero_pd();
1115
1116             /**************************
1117              * CALCULATE INTERACTIONS *
1118              **************************/
1119
1120             r00              = _mm256_mul_pd(rsq00,rinv00);
1121             r00              = _mm256_andnot_pd(dummy_mask,r00);
1122
1123             /* Compute parameters for interactions between i and j atoms */
1124             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1125                                             vdwioffsetptr0+vdwjidx0B,
1126                                             vdwioffsetptr0+vdwjidx0C,
1127                                             vdwioffsetptr0+vdwjidx0D,
1128                                             &c6_00,&c12_00);
1129
1130             /* Calculate table index by multiplying r with table scale and truncate to integer */
1131             rt               = _mm256_mul_pd(r00,vftabscale);
1132             vfitab           = _mm256_cvttpd_epi32(rt);
1133             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1134             vfitab           = _mm_slli_epi32(vfitab,3);
1135
1136             /* CUBIC SPLINE TABLE DISPERSION */
1137             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1138             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1139             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1140             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1141             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1142             Heps             = _mm256_mul_pd(vfeps,H);
1143             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1144             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1145             fvdw6            = _mm256_mul_pd(c6_00,FF);
1146
1147             /* CUBIC SPLINE TABLE REPULSION */
1148             vfitab           = _mm_add_epi32(vfitab,ifour);
1149             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1150             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1151             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1152             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1153             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1154             Heps             = _mm256_mul_pd(vfeps,H);
1155             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1156             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1157             fvdw12           = _mm256_mul_pd(c12_00,FF);
1158             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1159
1160             fscal            = fvdw;
1161
1162             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1163
1164             /* Calculate temporary vectorial force */
1165             tx               = _mm256_mul_pd(fscal,dx00);
1166             ty               = _mm256_mul_pd(fscal,dy00);
1167             tz               = _mm256_mul_pd(fscal,dz00);
1168
1169             /* Update vectorial force */
1170             fix0             = _mm256_add_pd(fix0,tx);
1171             fiy0             = _mm256_add_pd(fiy0,ty);
1172             fiz0             = _mm256_add_pd(fiz0,tz);
1173
1174             fjx0             = _mm256_add_pd(fjx0,tx);
1175             fjy0             = _mm256_add_pd(fjy0,ty);
1176             fjz0             = _mm256_add_pd(fjz0,tz);
1177
1178             /**************************
1179              * CALCULATE INTERACTIONS *
1180              **************************/
1181
1182             /* Compute parameters for interactions between i and j atoms */
1183             qq10             = _mm256_mul_pd(iq1,jq0);
1184
1185             /* COULOMB ELECTROSTATICS */
1186             velec            = _mm256_mul_pd(qq10,rinv10);
1187             felec            = _mm256_mul_pd(velec,rinvsq10);
1188
1189             fscal            = felec;
1190
1191             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1192
1193             /* Calculate temporary vectorial force */
1194             tx               = _mm256_mul_pd(fscal,dx10);
1195             ty               = _mm256_mul_pd(fscal,dy10);
1196             tz               = _mm256_mul_pd(fscal,dz10);
1197
1198             /* Update vectorial force */
1199             fix1             = _mm256_add_pd(fix1,tx);
1200             fiy1             = _mm256_add_pd(fiy1,ty);
1201             fiz1             = _mm256_add_pd(fiz1,tz);
1202
1203             fjx0             = _mm256_add_pd(fjx0,tx);
1204             fjy0             = _mm256_add_pd(fjy0,ty);
1205             fjz0             = _mm256_add_pd(fjz0,tz);
1206
1207             /**************************
1208              * CALCULATE INTERACTIONS *
1209              **************************/
1210
1211             /* Compute parameters for interactions between i and j atoms */
1212             qq20             = _mm256_mul_pd(iq2,jq0);
1213
1214             /* COULOMB ELECTROSTATICS */
1215             velec            = _mm256_mul_pd(qq20,rinv20);
1216             felec            = _mm256_mul_pd(velec,rinvsq20);
1217
1218             fscal            = felec;
1219
1220             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1221
1222             /* Calculate temporary vectorial force */
1223             tx               = _mm256_mul_pd(fscal,dx20);
1224             ty               = _mm256_mul_pd(fscal,dy20);
1225             tz               = _mm256_mul_pd(fscal,dz20);
1226
1227             /* Update vectorial force */
1228             fix2             = _mm256_add_pd(fix2,tx);
1229             fiy2             = _mm256_add_pd(fiy2,ty);
1230             fiz2             = _mm256_add_pd(fiz2,tz);
1231
1232             fjx0             = _mm256_add_pd(fjx0,tx);
1233             fjy0             = _mm256_add_pd(fjy0,ty);
1234             fjz0             = _mm256_add_pd(fjz0,tz);
1235
1236             /**************************
1237              * CALCULATE INTERACTIONS *
1238              **************************/
1239
1240             /* Compute parameters for interactions between i and j atoms */
1241             qq30             = _mm256_mul_pd(iq3,jq0);
1242
1243             /* COULOMB ELECTROSTATICS */
1244             velec            = _mm256_mul_pd(qq30,rinv30);
1245             felec            = _mm256_mul_pd(velec,rinvsq30);
1246
1247             fscal            = felec;
1248
1249             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1250
1251             /* Calculate temporary vectorial force */
1252             tx               = _mm256_mul_pd(fscal,dx30);
1253             ty               = _mm256_mul_pd(fscal,dy30);
1254             tz               = _mm256_mul_pd(fscal,dz30);
1255
1256             /* Update vectorial force */
1257             fix3             = _mm256_add_pd(fix3,tx);
1258             fiy3             = _mm256_add_pd(fiy3,ty);
1259             fiz3             = _mm256_add_pd(fiz3,tz);
1260
1261             fjx0             = _mm256_add_pd(fjx0,tx);
1262             fjy0             = _mm256_add_pd(fjy0,ty);
1263             fjz0             = _mm256_add_pd(fjz0,tz);
1264
1265             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1266             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1267             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1268             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1269
1270             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1271
1272             /* Inner loop uses 130 flops */
1273         }
1274
1275         /* End of innermost loop */
1276
1277         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1278                                                  f+i_coord_offset,fshift+i_shift_offset);
1279
1280         /* Increment number of inner iterations */
1281         inneriter                  += j_index_end - j_index_start;
1282
1283         /* Outer loop uses 24 flops */
1284     }
1285
1286     /* Increment number of outer iterations */
1287     outeriter        += nri;
1288
1289     /* Update outer/inner flops */
1290
1291     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1292 }