5057003d30e5c2bb3da24a7fc03f232800bfeafd
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m128i          vfitab;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256d          dummy_mask,cutoff_mask;
113     __m128           tmpmask0,tmpmask1;
114     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
115     __m256d          one     = _mm256_set1_pd(1.0);
116     __m256d          two     = _mm256_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     vftab            = kernel_data->table_vdw->data;
135     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
140     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
141     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
142     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
175                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
176
177         fix0             = _mm256_setzero_pd();
178         fiy0             = _mm256_setzero_pd();
179         fiz0             = _mm256_setzero_pd();
180         fix1             = _mm256_setzero_pd();
181         fiy1             = _mm256_setzero_pd();
182         fiz1             = _mm256_setzero_pd();
183         fix2             = _mm256_setzero_pd();
184         fiy2             = _mm256_setzero_pd();
185         fiz2             = _mm256_setzero_pd();
186         fix3             = _mm256_setzero_pd();
187         fiy3             = _mm256_setzero_pd();
188         fiz3             = _mm256_setzero_pd();
189
190         /* Reset potential sums */
191         velecsum         = _mm256_setzero_pd();
192         vvdwsum          = _mm256_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_pd(ix0,jx0);
215             dy00             = _mm256_sub_pd(iy0,jy0);
216             dz00             = _mm256_sub_pd(iz0,jz0);
217             dx10             = _mm256_sub_pd(ix1,jx0);
218             dy10             = _mm256_sub_pd(iy1,jy0);
219             dz10             = _mm256_sub_pd(iz1,jz0);
220             dx20             = _mm256_sub_pd(ix2,jx0);
221             dy20             = _mm256_sub_pd(iy2,jy0);
222             dz20             = _mm256_sub_pd(iz2,jz0);
223             dx30             = _mm256_sub_pd(ix3,jx0);
224             dy30             = _mm256_sub_pd(iy3,jy0);
225             dz30             = _mm256_sub_pd(iz3,jz0);
226
227             /* Calculate squared distance and things based on it */
228             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
229             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
230             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
231             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
232
233             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
234             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
235             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
236             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
237
238             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
239             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
240             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
244                                                                  charge+jnrC+0,charge+jnrD+0);
245             vdwjidx0A        = 2*vdwtype[jnrA+0];
246             vdwjidx0B        = 2*vdwtype[jnrB+0];
247             vdwjidx0C        = 2*vdwtype[jnrC+0];
248             vdwjidx0D        = 2*vdwtype[jnrD+0];
249
250             fjx0             = _mm256_setzero_pd();
251             fjy0             = _mm256_setzero_pd();
252             fjz0             = _mm256_setzero_pd();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             r00              = _mm256_mul_pd(rsq00,rinv00);
259
260             /* Compute parameters for interactions between i and j atoms */
261             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
262                                             vdwioffsetptr0+vdwjidx0B,
263                                             vdwioffsetptr0+vdwjidx0C,
264                                             vdwioffsetptr0+vdwjidx0D,
265                                             &c6_00,&c12_00);
266
267             /* Calculate table index by multiplying r with table scale and truncate to integer */
268             rt               = _mm256_mul_pd(r00,vftabscale);
269             vfitab           = _mm256_cvttpd_epi32(rt);
270             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
271             vfitab           = _mm_slli_epi32(vfitab,3);
272
273             /* CUBIC SPLINE TABLE DISPERSION */
274             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
275             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
276             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
277             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
278             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
279             Heps             = _mm256_mul_pd(vfeps,H);
280             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
281             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
282             vvdw6            = _mm256_mul_pd(c6_00,VV);
283             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
284             fvdw6            = _mm256_mul_pd(c6_00,FF);
285
286             /* CUBIC SPLINE TABLE REPULSION */
287             vfitab           = _mm_add_epi32(vfitab,ifour);
288             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
289             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
290             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
291             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
292             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
293             Heps             = _mm256_mul_pd(vfeps,H);
294             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
295             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
296             vvdw12           = _mm256_mul_pd(c12_00,VV);
297             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
298             fvdw12           = _mm256_mul_pd(c12_00,FF);
299             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
300             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
304
305             fscal            = fvdw;
306
307             /* Calculate temporary vectorial force */
308             tx               = _mm256_mul_pd(fscal,dx00);
309             ty               = _mm256_mul_pd(fscal,dy00);
310             tz               = _mm256_mul_pd(fscal,dz00);
311
312             /* Update vectorial force */
313             fix0             = _mm256_add_pd(fix0,tx);
314             fiy0             = _mm256_add_pd(fiy0,ty);
315             fiz0             = _mm256_add_pd(fiz0,tz);
316
317             fjx0             = _mm256_add_pd(fjx0,tx);
318             fjy0             = _mm256_add_pd(fjy0,ty);
319             fjz0             = _mm256_add_pd(fjz0,tz);
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq10             = _mm256_mul_pd(iq1,jq0);
327
328             /* COULOMB ELECTROSTATICS */
329             velec            = _mm256_mul_pd(qq10,rinv10);
330             felec            = _mm256_mul_pd(velec,rinvsq10);
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velecsum         = _mm256_add_pd(velecsum,velec);
334
335             fscal            = felec;
336
337             /* Calculate temporary vectorial force */
338             tx               = _mm256_mul_pd(fscal,dx10);
339             ty               = _mm256_mul_pd(fscal,dy10);
340             tz               = _mm256_mul_pd(fscal,dz10);
341
342             /* Update vectorial force */
343             fix1             = _mm256_add_pd(fix1,tx);
344             fiy1             = _mm256_add_pd(fiy1,ty);
345             fiz1             = _mm256_add_pd(fiz1,tz);
346
347             fjx0             = _mm256_add_pd(fjx0,tx);
348             fjy0             = _mm256_add_pd(fjy0,ty);
349             fjz0             = _mm256_add_pd(fjz0,tz);
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq20             = _mm256_mul_pd(iq2,jq0);
357
358             /* COULOMB ELECTROSTATICS */
359             velec            = _mm256_mul_pd(qq20,rinv20);
360             felec            = _mm256_mul_pd(velec,rinvsq20);
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velecsum         = _mm256_add_pd(velecsum,velec);
364
365             fscal            = felec;
366
367             /* Calculate temporary vectorial force */
368             tx               = _mm256_mul_pd(fscal,dx20);
369             ty               = _mm256_mul_pd(fscal,dy20);
370             tz               = _mm256_mul_pd(fscal,dz20);
371
372             /* Update vectorial force */
373             fix2             = _mm256_add_pd(fix2,tx);
374             fiy2             = _mm256_add_pd(fiy2,ty);
375             fiz2             = _mm256_add_pd(fiz2,tz);
376
377             fjx0             = _mm256_add_pd(fjx0,tx);
378             fjy0             = _mm256_add_pd(fjy0,ty);
379             fjz0             = _mm256_add_pd(fjz0,tz);
380
381             /**************************
382              * CALCULATE INTERACTIONS *
383              **************************/
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq30             = _mm256_mul_pd(iq3,jq0);
387
388             /* COULOMB ELECTROSTATICS */
389             velec            = _mm256_mul_pd(qq30,rinv30);
390             felec            = _mm256_mul_pd(velec,rinvsq30);
391
392             /* Update potential sum for this i atom from the interaction with this j atom. */
393             velecsum         = _mm256_add_pd(velecsum,velec);
394
395             fscal            = felec;
396
397             /* Calculate temporary vectorial force */
398             tx               = _mm256_mul_pd(fscal,dx30);
399             ty               = _mm256_mul_pd(fscal,dy30);
400             tz               = _mm256_mul_pd(fscal,dz30);
401
402             /* Update vectorial force */
403             fix3             = _mm256_add_pd(fix3,tx);
404             fiy3             = _mm256_add_pd(fiy3,ty);
405             fiz3             = _mm256_add_pd(fiz3,tz);
406
407             fjx0             = _mm256_add_pd(fjx0,tx);
408             fjy0             = _mm256_add_pd(fjy0,ty);
409             fjz0             = _mm256_add_pd(fjz0,tz);
410
411             fjptrA             = f+j_coord_offsetA;
412             fjptrB             = f+j_coord_offsetB;
413             fjptrC             = f+j_coord_offsetC;
414             fjptrD             = f+j_coord_offsetD;
415
416             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
417
418             /* Inner loop uses 140 flops */
419         }
420
421         if(jidx<j_index_end)
422         {
423
424             /* Get j neighbor index, and coordinate index */
425             jnrlistA         = jjnr[jidx];
426             jnrlistB         = jjnr[jidx+1];
427             jnrlistC         = jjnr[jidx+2];
428             jnrlistD         = jjnr[jidx+3];
429             /* Sign of each element will be negative for non-real atoms.
430              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
431              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
432              */
433             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
434
435             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
436             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
437             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
438
439             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
440             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
441             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
442             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
443             j_coord_offsetA  = DIM*jnrA;
444             j_coord_offsetB  = DIM*jnrB;
445             j_coord_offsetC  = DIM*jnrC;
446             j_coord_offsetD  = DIM*jnrD;
447
448             /* load j atom coordinates */
449             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
450                                                  x+j_coord_offsetC,x+j_coord_offsetD,
451                                                  &jx0,&jy0,&jz0);
452
453             /* Calculate displacement vector */
454             dx00             = _mm256_sub_pd(ix0,jx0);
455             dy00             = _mm256_sub_pd(iy0,jy0);
456             dz00             = _mm256_sub_pd(iz0,jz0);
457             dx10             = _mm256_sub_pd(ix1,jx0);
458             dy10             = _mm256_sub_pd(iy1,jy0);
459             dz10             = _mm256_sub_pd(iz1,jz0);
460             dx20             = _mm256_sub_pd(ix2,jx0);
461             dy20             = _mm256_sub_pd(iy2,jy0);
462             dz20             = _mm256_sub_pd(iz2,jz0);
463             dx30             = _mm256_sub_pd(ix3,jx0);
464             dy30             = _mm256_sub_pd(iy3,jy0);
465             dz30             = _mm256_sub_pd(iz3,jz0);
466
467             /* Calculate squared distance and things based on it */
468             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
469             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
470             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
471             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
472
473             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
474             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
475             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
476             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
477
478             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
479             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
480             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
481
482             /* Load parameters for j particles */
483             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
484                                                                  charge+jnrC+0,charge+jnrD+0);
485             vdwjidx0A        = 2*vdwtype[jnrA+0];
486             vdwjidx0B        = 2*vdwtype[jnrB+0];
487             vdwjidx0C        = 2*vdwtype[jnrC+0];
488             vdwjidx0D        = 2*vdwtype[jnrD+0];
489
490             fjx0             = _mm256_setzero_pd();
491             fjy0             = _mm256_setzero_pd();
492             fjz0             = _mm256_setzero_pd();
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             r00              = _mm256_mul_pd(rsq00,rinv00);
499             r00              = _mm256_andnot_pd(dummy_mask,r00);
500
501             /* Compute parameters for interactions between i and j atoms */
502             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
503                                             vdwioffsetptr0+vdwjidx0B,
504                                             vdwioffsetptr0+vdwjidx0C,
505                                             vdwioffsetptr0+vdwjidx0D,
506                                             &c6_00,&c12_00);
507
508             /* Calculate table index by multiplying r with table scale and truncate to integer */
509             rt               = _mm256_mul_pd(r00,vftabscale);
510             vfitab           = _mm256_cvttpd_epi32(rt);
511             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
512             vfitab           = _mm_slli_epi32(vfitab,3);
513
514             /* CUBIC SPLINE TABLE DISPERSION */
515             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
516             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
517             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
518             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
519             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
520             Heps             = _mm256_mul_pd(vfeps,H);
521             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
522             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
523             vvdw6            = _mm256_mul_pd(c6_00,VV);
524             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
525             fvdw6            = _mm256_mul_pd(c6_00,FF);
526
527             /* CUBIC SPLINE TABLE REPULSION */
528             vfitab           = _mm_add_epi32(vfitab,ifour);
529             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
530             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
531             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
532             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
533             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
534             Heps             = _mm256_mul_pd(vfeps,H);
535             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
536             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
537             vvdw12           = _mm256_mul_pd(c12_00,VV);
538             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
539             fvdw12           = _mm256_mul_pd(c12_00,FF);
540             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
541             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
545             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
546
547             fscal            = fvdw;
548
549             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
550
551             /* Calculate temporary vectorial force */
552             tx               = _mm256_mul_pd(fscal,dx00);
553             ty               = _mm256_mul_pd(fscal,dy00);
554             tz               = _mm256_mul_pd(fscal,dz00);
555
556             /* Update vectorial force */
557             fix0             = _mm256_add_pd(fix0,tx);
558             fiy0             = _mm256_add_pd(fiy0,ty);
559             fiz0             = _mm256_add_pd(fiz0,tz);
560
561             fjx0             = _mm256_add_pd(fjx0,tx);
562             fjy0             = _mm256_add_pd(fjy0,ty);
563             fjz0             = _mm256_add_pd(fjz0,tz);
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq10             = _mm256_mul_pd(iq1,jq0);
571
572             /* COULOMB ELECTROSTATICS */
573             velec            = _mm256_mul_pd(qq10,rinv10);
574             felec            = _mm256_mul_pd(velec,rinvsq10);
575
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             velec            = _mm256_andnot_pd(dummy_mask,velec);
578             velecsum         = _mm256_add_pd(velecsum,velec);
579
580             fscal            = felec;
581
582             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm256_mul_pd(fscal,dx10);
586             ty               = _mm256_mul_pd(fscal,dy10);
587             tz               = _mm256_mul_pd(fscal,dz10);
588
589             /* Update vectorial force */
590             fix1             = _mm256_add_pd(fix1,tx);
591             fiy1             = _mm256_add_pd(fiy1,ty);
592             fiz1             = _mm256_add_pd(fiz1,tz);
593
594             fjx0             = _mm256_add_pd(fjx0,tx);
595             fjy0             = _mm256_add_pd(fjy0,ty);
596             fjz0             = _mm256_add_pd(fjz0,tz);
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq20             = _mm256_mul_pd(iq2,jq0);
604
605             /* COULOMB ELECTROSTATICS */
606             velec            = _mm256_mul_pd(qq20,rinv20);
607             felec            = _mm256_mul_pd(velec,rinvsq20);
608
609             /* Update potential sum for this i atom from the interaction with this j atom. */
610             velec            = _mm256_andnot_pd(dummy_mask,velec);
611             velecsum         = _mm256_add_pd(velecsum,velec);
612
613             fscal            = felec;
614
615             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
616
617             /* Calculate temporary vectorial force */
618             tx               = _mm256_mul_pd(fscal,dx20);
619             ty               = _mm256_mul_pd(fscal,dy20);
620             tz               = _mm256_mul_pd(fscal,dz20);
621
622             /* Update vectorial force */
623             fix2             = _mm256_add_pd(fix2,tx);
624             fiy2             = _mm256_add_pd(fiy2,ty);
625             fiz2             = _mm256_add_pd(fiz2,tz);
626
627             fjx0             = _mm256_add_pd(fjx0,tx);
628             fjy0             = _mm256_add_pd(fjy0,ty);
629             fjz0             = _mm256_add_pd(fjz0,tz);
630
631             /**************************
632              * CALCULATE INTERACTIONS *
633              **************************/
634
635             /* Compute parameters for interactions between i and j atoms */
636             qq30             = _mm256_mul_pd(iq3,jq0);
637
638             /* COULOMB ELECTROSTATICS */
639             velec            = _mm256_mul_pd(qq30,rinv30);
640             felec            = _mm256_mul_pd(velec,rinvsq30);
641
642             /* Update potential sum for this i atom from the interaction with this j atom. */
643             velec            = _mm256_andnot_pd(dummy_mask,velec);
644             velecsum         = _mm256_add_pd(velecsum,velec);
645
646             fscal            = felec;
647
648             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm256_mul_pd(fscal,dx30);
652             ty               = _mm256_mul_pd(fscal,dy30);
653             tz               = _mm256_mul_pd(fscal,dz30);
654
655             /* Update vectorial force */
656             fix3             = _mm256_add_pd(fix3,tx);
657             fiy3             = _mm256_add_pd(fiy3,ty);
658             fiz3             = _mm256_add_pd(fiz3,tz);
659
660             fjx0             = _mm256_add_pd(fjx0,tx);
661             fjy0             = _mm256_add_pd(fjy0,ty);
662             fjz0             = _mm256_add_pd(fjz0,tz);
663
664             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
665             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
666             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
667             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
668
669             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
670
671             /* Inner loop uses 141 flops */
672         }
673
674         /* End of innermost loop */
675
676         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
677                                                  f+i_coord_offset,fshift+i_shift_offset);
678
679         ggid                        = gid[iidx];
680         /* Update potential energies */
681         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
682         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
683
684         /* Increment number of inner iterations */
685         inneriter                  += j_index_end - j_index_start;
686
687         /* Outer loop uses 26 flops */
688     }
689
690     /* Increment number of outer iterations */
691     outeriter        += nri;
692
693     /* Update outer/inner flops */
694
695     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
696 }
697 /*
698  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_double
699  * Electrostatics interaction: Coulomb
700  * VdW interaction:            CubicSplineTable
701  * Geometry:                   Water4-Particle
702  * Calculate force/pot:        Force
703  */
704 void
705 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_double
706                     (t_nblist                    * gmx_restrict       nlist,
707                      rvec                        * gmx_restrict          xx,
708                      rvec                        * gmx_restrict          ff,
709                      t_forcerec                  * gmx_restrict          fr,
710                      t_mdatoms                   * gmx_restrict     mdatoms,
711                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
712                      t_nrnb                      * gmx_restrict        nrnb)
713 {
714     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
715      * just 0 for non-waters.
716      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
717      * jnr indices corresponding to data put in the four positions in the SIMD register.
718      */
719     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
720     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
721     int              jnrA,jnrB,jnrC,jnrD;
722     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
723     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
724     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
725     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
726     real             rcutoff_scalar;
727     real             *shiftvec,*fshift,*x,*f;
728     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
729     real             scratch[4*DIM];
730     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
731     real *           vdwioffsetptr0;
732     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
733     real *           vdwioffsetptr1;
734     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
735     real *           vdwioffsetptr2;
736     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
737     real *           vdwioffsetptr3;
738     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
739     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
740     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
741     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
742     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
743     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
744     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
745     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
746     real             *charge;
747     int              nvdwtype;
748     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
749     int              *vdwtype;
750     real             *vdwparam;
751     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
752     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
753     __m128i          vfitab;
754     __m128i          ifour       = _mm_set1_epi32(4);
755     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
756     real             *vftab;
757     __m256d          dummy_mask,cutoff_mask;
758     __m128           tmpmask0,tmpmask1;
759     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
760     __m256d          one     = _mm256_set1_pd(1.0);
761     __m256d          two     = _mm256_set1_pd(2.0);
762     x                = xx[0];
763     f                = ff[0];
764
765     nri              = nlist->nri;
766     iinr             = nlist->iinr;
767     jindex           = nlist->jindex;
768     jjnr             = nlist->jjnr;
769     shiftidx         = nlist->shift;
770     gid              = nlist->gid;
771     shiftvec         = fr->shift_vec[0];
772     fshift           = fr->fshift[0];
773     facel            = _mm256_set1_pd(fr->epsfac);
774     charge           = mdatoms->chargeA;
775     nvdwtype         = fr->ntype;
776     vdwparam         = fr->nbfp;
777     vdwtype          = mdatoms->typeA;
778
779     vftab            = kernel_data->table_vdw->data;
780     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
781
782     /* Setup water-specific parameters */
783     inr              = nlist->iinr[0];
784     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
785     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
786     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
787     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
788
789     /* Avoid stupid compiler warnings */
790     jnrA = jnrB = jnrC = jnrD = 0;
791     j_coord_offsetA = 0;
792     j_coord_offsetB = 0;
793     j_coord_offsetC = 0;
794     j_coord_offsetD = 0;
795
796     outeriter        = 0;
797     inneriter        = 0;
798
799     for(iidx=0;iidx<4*DIM;iidx++)
800     {
801         scratch[iidx] = 0.0;
802     }
803
804     /* Start outer loop over neighborlists */
805     for(iidx=0; iidx<nri; iidx++)
806     {
807         /* Load shift vector for this list */
808         i_shift_offset   = DIM*shiftidx[iidx];
809
810         /* Load limits for loop over neighbors */
811         j_index_start    = jindex[iidx];
812         j_index_end      = jindex[iidx+1];
813
814         /* Get outer coordinate index */
815         inr              = iinr[iidx];
816         i_coord_offset   = DIM*inr;
817
818         /* Load i particle coords and add shift vector */
819         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
820                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
821
822         fix0             = _mm256_setzero_pd();
823         fiy0             = _mm256_setzero_pd();
824         fiz0             = _mm256_setzero_pd();
825         fix1             = _mm256_setzero_pd();
826         fiy1             = _mm256_setzero_pd();
827         fiz1             = _mm256_setzero_pd();
828         fix2             = _mm256_setzero_pd();
829         fiy2             = _mm256_setzero_pd();
830         fiz2             = _mm256_setzero_pd();
831         fix3             = _mm256_setzero_pd();
832         fiy3             = _mm256_setzero_pd();
833         fiz3             = _mm256_setzero_pd();
834
835         /* Start inner kernel loop */
836         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
837         {
838
839             /* Get j neighbor index, and coordinate index */
840             jnrA             = jjnr[jidx];
841             jnrB             = jjnr[jidx+1];
842             jnrC             = jjnr[jidx+2];
843             jnrD             = jjnr[jidx+3];
844             j_coord_offsetA  = DIM*jnrA;
845             j_coord_offsetB  = DIM*jnrB;
846             j_coord_offsetC  = DIM*jnrC;
847             j_coord_offsetD  = DIM*jnrD;
848
849             /* load j atom coordinates */
850             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
851                                                  x+j_coord_offsetC,x+j_coord_offsetD,
852                                                  &jx0,&jy0,&jz0);
853
854             /* Calculate displacement vector */
855             dx00             = _mm256_sub_pd(ix0,jx0);
856             dy00             = _mm256_sub_pd(iy0,jy0);
857             dz00             = _mm256_sub_pd(iz0,jz0);
858             dx10             = _mm256_sub_pd(ix1,jx0);
859             dy10             = _mm256_sub_pd(iy1,jy0);
860             dz10             = _mm256_sub_pd(iz1,jz0);
861             dx20             = _mm256_sub_pd(ix2,jx0);
862             dy20             = _mm256_sub_pd(iy2,jy0);
863             dz20             = _mm256_sub_pd(iz2,jz0);
864             dx30             = _mm256_sub_pd(ix3,jx0);
865             dy30             = _mm256_sub_pd(iy3,jy0);
866             dz30             = _mm256_sub_pd(iz3,jz0);
867
868             /* Calculate squared distance and things based on it */
869             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
870             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
871             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
872             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
873
874             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
875             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
876             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
877             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
878
879             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
880             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
881             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
882
883             /* Load parameters for j particles */
884             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
885                                                                  charge+jnrC+0,charge+jnrD+0);
886             vdwjidx0A        = 2*vdwtype[jnrA+0];
887             vdwjidx0B        = 2*vdwtype[jnrB+0];
888             vdwjidx0C        = 2*vdwtype[jnrC+0];
889             vdwjidx0D        = 2*vdwtype[jnrD+0];
890
891             fjx0             = _mm256_setzero_pd();
892             fjy0             = _mm256_setzero_pd();
893             fjz0             = _mm256_setzero_pd();
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             r00              = _mm256_mul_pd(rsq00,rinv00);
900
901             /* Compute parameters for interactions between i and j atoms */
902             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
903                                             vdwioffsetptr0+vdwjidx0B,
904                                             vdwioffsetptr0+vdwjidx0C,
905                                             vdwioffsetptr0+vdwjidx0D,
906                                             &c6_00,&c12_00);
907
908             /* Calculate table index by multiplying r with table scale and truncate to integer */
909             rt               = _mm256_mul_pd(r00,vftabscale);
910             vfitab           = _mm256_cvttpd_epi32(rt);
911             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
912             vfitab           = _mm_slli_epi32(vfitab,3);
913
914             /* CUBIC SPLINE TABLE DISPERSION */
915             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
916             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
917             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
918             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
919             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
920             Heps             = _mm256_mul_pd(vfeps,H);
921             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
922             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
923             fvdw6            = _mm256_mul_pd(c6_00,FF);
924
925             /* CUBIC SPLINE TABLE REPULSION */
926             vfitab           = _mm_add_epi32(vfitab,ifour);
927             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
928             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
929             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
930             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
931             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
932             Heps             = _mm256_mul_pd(vfeps,H);
933             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
934             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
935             fvdw12           = _mm256_mul_pd(c12_00,FF);
936             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
937
938             fscal            = fvdw;
939
940             /* Calculate temporary vectorial force */
941             tx               = _mm256_mul_pd(fscal,dx00);
942             ty               = _mm256_mul_pd(fscal,dy00);
943             tz               = _mm256_mul_pd(fscal,dz00);
944
945             /* Update vectorial force */
946             fix0             = _mm256_add_pd(fix0,tx);
947             fiy0             = _mm256_add_pd(fiy0,ty);
948             fiz0             = _mm256_add_pd(fiz0,tz);
949
950             fjx0             = _mm256_add_pd(fjx0,tx);
951             fjy0             = _mm256_add_pd(fjy0,ty);
952             fjz0             = _mm256_add_pd(fjz0,tz);
953
954             /**************************
955              * CALCULATE INTERACTIONS *
956              **************************/
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq10             = _mm256_mul_pd(iq1,jq0);
960
961             /* COULOMB ELECTROSTATICS */
962             velec            = _mm256_mul_pd(qq10,rinv10);
963             felec            = _mm256_mul_pd(velec,rinvsq10);
964
965             fscal            = felec;
966
967             /* Calculate temporary vectorial force */
968             tx               = _mm256_mul_pd(fscal,dx10);
969             ty               = _mm256_mul_pd(fscal,dy10);
970             tz               = _mm256_mul_pd(fscal,dz10);
971
972             /* Update vectorial force */
973             fix1             = _mm256_add_pd(fix1,tx);
974             fiy1             = _mm256_add_pd(fiy1,ty);
975             fiz1             = _mm256_add_pd(fiz1,tz);
976
977             fjx0             = _mm256_add_pd(fjx0,tx);
978             fjy0             = _mm256_add_pd(fjy0,ty);
979             fjz0             = _mm256_add_pd(fjz0,tz);
980
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             /* Compute parameters for interactions between i and j atoms */
986             qq20             = _mm256_mul_pd(iq2,jq0);
987
988             /* COULOMB ELECTROSTATICS */
989             velec            = _mm256_mul_pd(qq20,rinv20);
990             felec            = _mm256_mul_pd(velec,rinvsq20);
991
992             fscal            = felec;
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm256_mul_pd(fscal,dx20);
996             ty               = _mm256_mul_pd(fscal,dy20);
997             tz               = _mm256_mul_pd(fscal,dz20);
998
999             /* Update vectorial force */
1000             fix2             = _mm256_add_pd(fix2,tx);
1001             fiy2             = _mm256_add_pd(fiy2,ty);
1002             fiz2             = _mm256_add_pd(fiz2,tz);
1003
1004             fjx0             = _mm256_add_pd(fjx0,tx);
1005             fjy0             = _mm256_add_pd(fjy0,ty);
1006             fjz0             = _mm256_add_pd(fjz0,tz);
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             /* Compute parameters for interactions between i and j atoms */
1013             qq30             = _mm256_mul_pd(iq3,jq0);
1014
1015             /* COULOMB ELECTROSTATICS */
1016             velec            = _mm256_mul_pd(qq30,rinv30);
1017             felec            = _mm256_mul_pd(velec,rinvsq30);
1018
1019             fscal            = felec;
1020
1021             /* Calculate temporary vectorial force */
1022             tx               = _mm256_mul_pd(fscal,dx30);
1023             ty               = _mm256_mul_pd(fscal,dy30);
1024             tz               = _mm256_mul_pd(fscal,dz30);
1025
1026             /* Update vectorial force */
1027             fix3             = _mm256_add_pd(fix3,tx);
1028             fiy3             = _mm256_add_pd(fiy3,ty);
1029             fiz3             = _mm256_add_pd(fiz3,tz);
1030
1031             fjx0             = _mm256_add_pd(fjx0,tx);
1032             fjy0             = _mm256_add_pd(fjy0,ty);
1033             fjz0             = _mm256_add_pd(fjz0,tz);
1034
1035             fjptrA             = f+j_coord_offsetA;
1036             fjptrB             = f+j_coord_offsetB;
1037             fjptrC             = f+j_coord_offsetC;
1038             fjptrD             = f+j_coord_offsetD;
1039
1040             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1041
1042             /* Inner loop uses 129 flops */
1043         }
1044
1045         if(jidx<j_index_end)
1046         {
1047
1048             /* Get j neighbor index, and coordinate index */
1049             jnrlistA         = jjnr[jidx];
1050             jnrlistB         = jjnr[jidx+1];
1051             jnrlistC         = jjnr[jidx+2];
1052             jnrlistD         = jjnr[jidx+3];
1053             /* Sign of each element will be negative for non-real atoms.
1054              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1055              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1056              */
1057             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1058
1059             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1060             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1061             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1062
1063             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1064             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1065             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1066             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1067             j_coord_offsetA  = DIM*jnrA;
1068             j_coord_offsetB  = DIM*jnrB;
1069             j_coord_offsetC  = DIM*jnrC;
1070             j_coord_offsetD  = DIM*jnrD;
1071
1072             /* load j atom coordinates */
1073             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1074                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1075                                                  &jx0,&jy0,&jz0);
1076
1077             /* Calculate displacement vector */
1078             dx00             = _mm256_sub_pd(ix0,jx0);
1079             dy00             = _mm256_sub_pd(iy0,jy0);
1080             dz00             = _mm256_sub_pd(iz0,jz0);
1081             dx10             = _mm256_sub_pd(ix1,jx0);
1082             dy10             = _mm256_sub_pd(iy1,jy0);
1083             dz10             = _mm256_sub_pd(iz1,jz0);
1084             dx20             = _mm256_sub_pd(ix2,jx0);
1085             dy20             = _mm256_sub_pd(iy2,jy0);
1086             dz20             = _mm256_sub_pd(iz2,jz0);
1087             dx30             = _mm256_sub_pd(ix3,jx0);
1088             dy30             = _mm256_sub_pd(iy3,jy0);
1089             dz30             = _mm256_sub_pd(iz3,jz0);
1090
1091             /* Calculate squared distance and things based on it */
1092             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1093             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1094             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1095             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1096
1097             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1098             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1099             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1100             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1101
1102             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1103             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1104             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1105
1106             /* Load parameters for j particles */
1107             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1108                                                                  charge+jnrC+0,charge+jnrD+0);
1109             vdwjidx0A        = 2*vdwtype[jnrA+0];
1110             vdwjidx0B        = 2*vdwtype[jnrB+0];
1111             vdwjidx0C        = 2*vdwtype[jnrC+0];
1112             vdwjidx0D        = 2*vdwtype[jnrD+0];
1113
1114             fjx0             = _mm256_setzero_pd();
1115             fjy0             = _mm256_setzero_pd();
1116             fjz0             = _mm256_setzero_pd();
1117
1118             /**************************
1119              * CALCULATE INTERACTIONS *
1120              **************************/
1121
1122             r00              = _mm256_mul_pd(rsq00,rinv00);
1123             r00              = _mm256_andnot_pd(dummy_mask,r00);
1124
1125             /* Compute parameters for interactions between i and j atoms */
1126             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1127                                             vdwioffsetptr0+vdwjidx0B,
1128                                             vdwioffsetptr0+vdwjidx0C,
1129                                             vdwioffsetptr0+vdwjidx0D,
1130                                             &c6_00,&c12_00);
1131
1132             /* Calculate table index by multiplying r with table scale and truncate to integer */
1133             rt               = _mm256_mul_pd(r00,vftabscale);
1134             vfitab           = _mm256_cvttpd_epi32(rt);
1135             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1136             vfitab           = _mm_slli_epi32(vfitab,3);
1137
1138             /* CUBIC SPLINE TABLE DISPERSION */
1139             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1140             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1141             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1142             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1143             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1144             Heps             = _mm256_mul_pd(vfeps,H);
1145             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1146             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1147             fvdw6            = _mm256_mul_pd(c6_00,FF);
1148
1149             /* CUBIC SPLINE TABLE REPULSION */
1150             vfitab           = _mm_add_epi32(vfitab,ifour);
1151             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1152             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1153             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1154             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1155             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1156             Heps             = _mm256_mul_pd(vfeps,H);
1157             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1158             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1159             fvdw12           = _mm256_mul_pd(c12_00,FF);
1160             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1161
1162             fscal            = fvdw;
1163
1164             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1165
1166             /* Calculate temporary vectorial force */
1167             tx               = _mm256_mul_pd(fscal,dx00);
1168             ty               = _mm256_mul_pd(fscal,dy00);
1169             tz               = _mm256_mul_pd(fscal,dz00);
1170
1171             /* Update vectorial force */
1172             fix0             = _mm256_add_pd(fix0,tx);
1173             fiy0             = _mm256_add_pd(fiy0,ty);
1174             fiz0             = _mm256_add_pd(fiz0,tz);
1175
1176             fjx0             = _mm256_add_pd(fjx0,tx);
1177             fjy0             = _mm256_add_pd(fjy0,ty);
1178             fjz0             = _mm256_add_pd(fjz0,tz);
1179
1180             /**************************
1181              * CALCULATE INTERACTIONS *
1182              **************************/
1183
1184             /* Compute parameters for interactions between i and j atoms */
1185             qq10             = _mm256_mul_pd(iq1,jq0);
1186
1187             /* COULOMB ELECTROSTATICS */
1188             velec            = _mm256_mul_pd(qq10,rinv10);
1189             felec            = _mm256_mul_pd(velec,rinvsq10);
1190
1191             fscal            = felec;
1192
1193             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1194
1195             /* Calculate temporary vectorial force */
1196             tx               = _mm256_mul_pd(fscal,dx10);
1197             ty               = _mm256_mul_pd(fscal,dy10);
1198             tz               = _mm256_mul_pd(fscal,dz10);
1199
1200             /* Update vectorial force */
1201             fix1             = _mm256_add_pd(fix1,tx);
1202             fiy1             = _mm256_add_pd(fiy1,ty);
1203             fiz1             = _mm256_add_pd(fiz1,tz);
1204
1205             fjx0             = _mm256_add_pd(fjx0,tx);
1206             fjy0             = _mm256_add_pd(fjy0,ty);
1207             fjz0             = _mm256_add_pd(fjz0,tz);
1208
1209             /**************************
1210              * CALCULATE INTERACTIONS *
1211              **************************/
1212
1213             /* Compute parameters for interactions between i and j atoms */
1214             qq20             = _mm256_mul_pd(iq2,jq0);
1215
1216             /* COULOMB ELECTROSTATICS */
1217             velec            = _mm256_mul_pd(qq20,rinv20);
1218             felec            = _mm256_mul_pd(velec,rinvsq20);
1219
1220             fscal            = felec;
1221
1222             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1223
1224             /* Calculate temporary vectorial force */
1225             tx               = _mm256_mul_pd(fscal,dx20);
1226             ty               = _mm256_mul_pd(fscal,dy20);
1227             tz               = _mm256_mul_pd(fscal,dz20);
1228
1229             /* Update vectorial force */
1230             fix2             = _mm256_add_pd(fix2,tx);
1231             fiy2             = _mm256_add_pd(fiy2,ty);
1232             fiz2             = _mm256_add_pd(fiz2,tz);
1233
1234             fjx0             = _mm256_add_pd(fjx0,tx);
1235             fjy0             = _mm256_add_pd(fjy0,ty);
1236             fjz0             = _mm256_add_pd(fjz0,tz);
1237
1238             /**************************
1239              * CALCULATE INTERACTIONS *
1240              **************************/
1241
1242             /* Compute parameters for interactions between i and j atoms */
1243             qq30             = _mm256_mul_pd(iq3,jq0);
1244
1245             /* COULOMB ELECTROSTATICS */
1246             velec            = _mm256_mul_pd(qq30,rinv30);
1247             felec            = _mm256_mul_pd(velec,rinvsq30);
1248
1249             fscal            = felec;
1250
1251             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1252
1253             /* Calculate temporary vectorial force */
1254             tx               = _mm256_mul_pd(fscal,dx30);
1255             ty               = _mm256_mul_pd(fscal,dy30);
1256             tz               = _mm256_mul_pd(fscal,dz30);
1257
1258             /* Update vectorial force */
1259             fix3             = _mm256_add_pd(fix3,tx);
1260             fiy3             = _mm256_add_pd(fiy3,ty);
1261             fiz3             = _mm256_add_pd(fiz3,tz);
1262
1263             fjx0             = _mm256_add_pd(fjx0,tx);
1264             fjy0             = _mm256_add_pd(fjy0,ty);
1265             fjz0             = _mm256_add_pd(fjz0,tz);
1266
1267             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1268             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1269             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1270             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1271
1272             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1273
1274             /* Inner loop uses 130 flops */
1275         }
1276
1277         /* End of innermost loop */
1278
1279         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1280                                                  f+i_coord_offset,fshift+i_shift_offset);
1281
1282         /* Increment number of inner iterations */
1283         inneriter                  += j_index_end - j_index_start;
1284
1285         /* Outer loop uses 24 flops */
1286     }
1287
1288     /* Increment number of outer iterations */
1289     outeriter        += nri;
1290
1291     /* Update outer/inner flops */
1292
1293     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1294 }