Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m128i          vfitab;
104     __m128i          ifour       = _mm_set1_epi32(4);
105     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
106     real             *vftab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
135     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
136     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
137     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm256_setzero_pd();
173         fiy0             = _mm256_setzero_pd();
174         fiz0             = _mm256_setzero_pd();
175         fix1             = _mm256_setzero_pd();
176         fiy1             = _mm256_setzero_pd();
177         fiz1             = _mm256_setzero_pd();
178         fix2             = _mm256_setzero_pd();
179         fiy2             = _mm256_setzero_pd();
180         fiz2             = _mm256_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm256_setzero_pd();
184         vvdwsum          = _mm256_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_pd(ix0,jx0);
207             dy00             = _mm256_sub_pd(iy0,jy0);
208             dz00             = _mm256_sub_pd(iz0,jz0);
209             dx10             = _mm256_sub_pd(ix1,jx0);
210             dy10             = _mm256_sub_pd(iy1,jy0);
211             dz10             = _mm256_sub_pd(iz1,jz0);
212             dx20             = _mm256_sub_pd(ix2,jx0);
213             dy20             = _mm256_sub_pd(iy2,jy0);
214             dz20             = _mm256_sub_pd(iz2,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
218             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
219             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
220
221             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
222             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
223             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
224
225             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
226             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
227             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
231                                                                  charge+jnrC+0,charge+jnrD+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234             vdwjidx0C        = 2*vdwtype[jnrC+0];
235             vdwjidx0D        = 2*vdwtype[jnrD+0];
236
237             fjx0             = _mm256_setzero_pd();
238             fjy0             = _mm256_setzero_pd();
239             fjz0             = _mm256_setzero_pd();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             r00              = _mm256_mul_pd(rsq00,rinv00);
246
247             /* Compute parameters for interactions between i and j atoms */
248             qq00             = _mm256_mul_pd(iq0,jq0);
249             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
250                                             vdwioffsetptr0+vdwjidx0B,
251                                             vdwioffsetptr0+vdwjidx0C,
252                                             vdwioffsetptr0+vdwjidx0D,
253                                             &c6_00,&c12_00);
254
255             /* Calculate table index by multiplying r with table scale and truncate to integer */
256             rt               = _mm256_mul_pd(r00,vftabscale);
257             vfitab           = _mm256_cvttpd_epi32(rt);
258             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
259             vfitab           = _mm_slli_epi32(vfitab,3);
260
261             /* COULOMB ELECTROSTATICS */
262             velec            = _mm256_mul_pd(qq00,rinv00);
263             felec            = _mm256_mul_pd(velec,rinvsq00);
264
265             /* CUBIC SPLINE TABLE DISPERSION */
266             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
267             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
268             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
269             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
270             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
271             Heps             = _mm256_mul_pd(vfeps,H);
272             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
273             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
274             vvdw6            = _mm256_mul_pd(c6_00,VV);
275             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
276             fvdw6            = _mm256_mul_pd(c6_00,FF);
277
278             /* CUBIC SPLINE TABLE REPULSION */
279             vfitab           = _mm_add_epi32(vfitab,ifour);
280             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
281             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
282             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
283             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
284             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
285             Heps             = _mm256_mul_pd(vfeps,H);
286             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
287             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
288             vvdw12           = _mm256_mul_pd(c12_00,VV);
289             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
290             fvdw12           = _mm256_mul_pd(c12_00,FF);
291             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
292             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velecsum         = _mm256_add_pd(velecsum,velec);
296             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
297
298             fscal            = _mm256_add_pd(felec,fvdw);
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm256_mul_pd(fscal,dx00);
302             ty               = _mm256_mul_pd(fscal,dy00);
303             tz               = _mm256_mul_pd(fscal,dz00);
304
305             /* Update vectorial force */
306             fix0             = _mm256_add_pd(fix0,tx);
307             fiy0             = _mm256_add_pd(fiy0,ty);
308             fiz0             = _mm256_add_pd(fiz0,tz);
309
310             fjx0             = _mm256_add_pd(fjx0,tx);
311             fjy0             = _mm256_add_pd(fjy0,ty);
312             fjz0             = _mm256_add_pd(fjz0,tz);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq10             = _mm256_mul_pd(iq1,jq0);
320
321             /* COULOMB ELECTROSTATICS */
322             velec            = _mm256_mul_pd(qq10,rinv10);
323             felec            = _mm256_mul_pd(velec,rinvsq10);
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velecsum         = _mm256_add_pd(velecsum,velec);
327
328             fscal            = felec;
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm256_mul_pd(fscal,dx10);
332             ty               = _mm256_mul_pd(fscal,dy10);
333             tz               = _mm256_mul_pd(fscal,dz10);
334
335             /* Update vectorial force */
336             fix1             = _mm256_add_pd(fix1,tx);
337             fiy1             = _mm256_add_pd(fiy1,ty);
338             fiz1             = _mm256_add_pd(fiz1,tz);
339
340             fjx0             = _mm256_add_pd(fjx0,tx);
341             fjy0             = _mm256_add_pd(fjy0,ty);
342             fjz0             = _mm256_add_pd(fjz0,tz);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq20             = _mm256_mul_pd(iq2,jq0);
350
351             /* COULOMB ELECTROSTATICS */
352             velec            = _mm256_mul_pd(qq20,rinv20);
353             felec            = _mm256_mul_pd(velec,rinvsq20);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velecsum         = _mm256_add_pd(velecsum,velec);
357
358             fscal            = felec;
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm256_mul_pd(fscal,dx20);
362             ty               = _mm256_mul_pd(fscal,dy20);
363             tz               = _mm256_mul_pd(fscal,dz20);
364
365             /* Update vectorial force */
366             fix2             = _mm256_add_pd(fix2,tx);
367             fiy2             = _mm256_add_pd(fiy2,ty);
368             fiz2             = _mm256_add_pd(fiz2,tz);
369
370             fjx0             = _mm256_add_pd(fjx0,tx);
371             fjy0             = _mm256_add_pd(fjy0,ty);
372             fjz0             = _mm256_add_pd(fjz0,tz);
373
374             fjptrA             = f+j_coord_offsetA;
375             fjptrB             = f+j_coord_offsetB;
376             fjptrC             = f+j_coord_offsetC;
377             fjptrD             = f+j_coord_offsetD;
378
379             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
380
381             /* Inner loop uses 119 flops */
382         }
383
384         if(jidx<j_index_end)
385         {
386
387             /* Get j neighbor index, and coordinate index */
388             jnrlistA         = jjnr[jidx];
389             jnrlistB         = jjnr[jidx+1];
390             jnrlistC         = jjnr[jidx+2];
391             jnrlistD         = jjnr[jidx+3];
392             /* Sign of each element will be negative for non-real atoms.
393              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
394              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
395              */
396             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
397
398             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
399             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
400             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
401
402             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
403             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
404             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
405             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
406             j_coord_offsetA  = DIM*jnrA;
407             j_coord_offsetB  = DIM*jnrB;
408             j_coord_offsetC  = DIM*jnrC;
409             j_coord_offsetD  = DIM*jnrD;
410
411             /* load j atom coordinates */
412             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
413                                                  x+j_coord_offsetC,x+j_coord_offsetD,
414                                                  &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _mm256_sub_pd(ix0,jx0);
418             dy00             = _mm256_sub_pd(iy0,jy0);
419             dz00             = _mm256_sub_pd(iz0,jz0);
420             dx10             = _mm256_sub_pd(ix1,jx0);
421             dy10             = _mm256_sub_pd(iy1,jy0);
422             dz10             = _mm256_sub_pd(iz1,jz0);
423             dx20             = _mm256_sub_pd(ix2,jx0);
424             dy20             = _mm256_sub_pd(iy2,jy0);
425             dz20             = _mm256_sub_pd(iz2,jz0);
426
427             /* Calculate squared distance and things based on it */
428             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
429             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
430             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
431
432             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
433             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
434             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
435
436             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
437             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
438             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
439
440             /* Load parameters for j particles */
441             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
442                                                                  charge+jnrC+0,charge+jnrD+0);
443             vdwjidx0A        = 2*vdwtype[jnrA+0];
444             vdwjidx0B        = 2*vdwtype[jnrB+0];
445             vdwjidx0C        = 2*vdwtype[jnrC+0];
446             vdwjidx0D        = 2*vdwtype[jnrD+0];
447
448             fjx0             = _mm256_setzero_pd();
449             fjy0             = _mm256_setzero_pd();
450             fjz0             = _mm256_setzero_pd();
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             r00              = _mm256_mul_pd(rsq00,rinv00);
457             r00              = _mm256_andnot_pd(dummy_mask,r00);
458
459             /* Compute parameters for interactions between i and j atoms */
460             qq00             = _mm256_mul_pd(iq0,jq0);
461             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
462                                             vdwioffsetptr0+vdwjidx0B,
463                                             vdwioffsetptr0+vdwjidx0C,
464                                             vdwioffsetptr0+vdwjidx0D,
465                                             &c6_00,&c12_00);
466
467             /* Calculate table index by multiplying r with table scale and truncate to integer */
468             rt               = _mm256_mul_pd(r00,vftabscale);
469             vfitab           = _mm256_cvttpd_epi32(rt);
470             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
471             vfitab           = _mm_slli_epi32(vfitab,3);
472
473             /* COULOMB ELECTROSTATICS */
474             velec            = _mm256_mul_pd(qq00,rinv00);
475             felec            = _mm256_mul_pd(velec,rinvsq00);
476
477             /* CUBIC SPLINE TABLE DISPERSION */
478             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
479             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
480             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
481             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
482             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
483             Heps             = _mm256_mul_pd(vfeps,H);
484             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
485             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
486             vvdw6            = _mm256_mul_pd(c6_00,VV);
487             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
488             fvdw6            = _mm256_mul_pd(c6_00,FF);
489
490             /* CUBIC SPLINE TABLE REPULSION */
491             vfitab           = _mm_add_epi32(vfitab,ifour);
492             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
493             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
494             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
495             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
496             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
497             Heps             = _mm256_mul_pd(vfeps,H);
498             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
499             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
500             vvdw12           = _mm256_mul_pd(c12_00,VV);
501             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
502             fvdw12           = _mm256_mul_pd(c12_00,FF);
503             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
504             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
505
506             /* Update potential sum for this i atom from the interaction with this j atom. */
507             velec            = _mm256_andnot_pd(dummy_mask,velec);
508             velecsum         = _mm256_add_pd(velecsum,velec);
509             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
510             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
511
512             fscal            = _mm256_add_pd(felec,fvdw);
513
514             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
515
516             /* Calculate temporary vectorial force */
517             tx               = _mm256_mul_pd(fscal,dx00);
518             ty               = _mm256_mul_pd(fscal,dy00);
519             tz               = _mm256_mul_pd(fscal,dz00);
520
521             /* Update vectorial force */
522             fix0             = _mm256_add_pd(fix0,tx);
523             fiy0             = _mm256_add_pd(fiy0,ty);
524             fiz0             = _mm256_add_pd(fiz0,tz);
525
526             fjx0             = _mm256_add_pd(fjx0,tx);
527             fjy0             = _mm256_add_pd(fjy0,ty);
528             fjz0             = _mm256_add_pd(fjz0,tz);
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq10             = _mm256_mul_pd(iq1,jq0);
536
537             /* COULOMB ELECTROSTATICS */
538             velec            = _mm256_mul_pd(qq10,rinv10);
539             felec            = _mm256_mul_pd(velec,rinvsq10);
540
541             /* Update potential sum for this i atom from the interaction with this j atom. */
542             velec            = _mm256_andnot_pd(dummy_mask,velec);
543             velecsum         = _mm256_add_pd(velecsum,velec);
544
545             fscal            = felec;
546
547             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
548
549             /* Calculate temporary vectorial force */
550             tx               = _mm256_mul_pd(fscal,dx10);
551             ty               = _mm256_mul_pd(fscal,dy10);
552             tz               = _mm256_mul_pd(fscal,dz10);
553
554             /* Update vectorial force */
555             fix1             = _mm256_add_pd(fix1,tx);
556             fiy1             = _mm256_add_pd(fiy1,ty);
557             fiz1             = _mm256_add_pd(fiz1,tz);
558
559             fjx0             = _mm256_add_pd(fjx0,tx);
560             fjy0             = _mm256_add_pd(fjy0,ty);
561             fjz0             = _mm256_add_pd(fjz0,tz);
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq20             = _mm256_mul_pd(iq2,jq0);
569
570             /* COULOMB ELECTROSTATICS */
571             velec            = _mm256_mul_pd(qq20,rinv20);
572             felec            = _mm256_mul_pd(velec,rinvsq20);
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             velec            = _mm256_andnot_pd(dummy_mask,velec);
576             velecsum         = _mm256_add_pd(velecsum,velec);
577
578             fscal            = felec;
579
580             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm256_mul_pd(fscal,dx20);
584             ty               = _mm256_mul_pd(fscal,dy20);
585             tz               = _mm256_mul_pd(fscal,dz20);
586
587             /* Update vectorial force */
588             fix2             = _mm256_add_pd(fix2,tx);
589             fiy2             = _mm256_add_pd(fiy2,ty);
590             fiz2             = _mm256_add_pd(fiz2,tz);
591
592             fjx0             = _mm256_add_pd(fjx0,tx);
593             fjy0             = _mm256_add_pd(fjy0,ty);
594             fjz0             = _mm256_add_pd(fjz0,tz);
595
596             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
597             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
598             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
599             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
600
601             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
602
603             /* Inner loop uses 120 flops */
604         }
605
606         /* End of innermost loop */
607
608         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
609                                                  f+i_coord_offset,fshift+i_shift_offset);
610
611         ggid                        = gid[iidx];
612         /* Update potential energies */
613         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
614         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
615
616         /* Increment number of inner iterations */
617         inneriter                  += j_index_end - j_index_start;
618
619         /* Outer loop uses 20 flops */
620     }
621
622     /* Increment number of outer iterations */
623     outeriter        += nri;
624
625     /* Update outer/inner flops */
626
627     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
628 }
629 /*
630  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_double
631  * Electrostatics interaction: Coulomb
632  * VdW interaction:            CubicSplineTable
633  * Geometry:                   Water3-Particle
634  * Calculate force/pot:        Force
635  */
636 void
637 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_double
638                     (t_nblist                    * gmx_restrict       nlist,
639                      rvec                        * gmx_restrict          xx,
640                      rvec                        * gmx_restrict          ff,
641                      t_forcerec                  * gmx_restrict          fr,
642                      t_mdatoms                   * gmx_restrict     mdatoms,
643                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
644                      t_nrnb                      * gmx_restrict        nrnb)
645 {
646     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
647      * just 0 for non-waters.
648      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
649      * jnr indices corresponding to data put in the four positions in the SIMD register.
650      */
651     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
652     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
653     int              jnrA,jnrB,jnrC,jnrD;
654     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
655     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
656     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
657     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
658     real             rcutoff_scalar;
659     real             *shiftvec,*fshift,*x,*f;
660     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
661     real             scratch[4*DIM];
662     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
663     real *           vdwioffsetptr0;
664     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
665     real *           vdwioffsetptr1;
666     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
667     real *           vdwioffsetptr2;
668     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
669     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
670     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
671     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
672     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
673     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
674     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
675     real             *charge;
676     int              nvdwtype;
677     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
678     int              *vdwtype;
679     real             *vdwparam;
680     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
681     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
682     __m128i          vfitab;
683     __m128i          ifour       = _mm_set1_epi32(4);
684     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
685     real             *vftab;
686     __m256d          dummy_mask,cutoff_mask;
687     __m128           tmpmask0,tmpmask1;
688     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
689     __m256d          one     = _mm256_set1_pd(1.0);
690     __m256d          two     = _mm256_set1_pd(2.0);
691     x                = xx[0];
692     f                = ff[0];
693
694     nri              = nlist->nri;
695     iinr             = nlist->iinr;
696     jindex           = nlist->jindex;
697     jjnr             = nlist->jjnr;
698     shiftidx         = nlist->shift;
699     gid              = nlist->gid;
700     shiftvec         = fr->shift_vec[0];
701     fshift           = fr->fshift[0];
702     facel            = _mm256_set1_pd(fr->epsfac);
703     charge           = mdatoms->chargeA;
704     nvdwtype         = fr->ntype;
705     vdwparam         = fr->nbfp;
706     vdwtype          = mdatoms->typeA;
707
708     vftab            = kernel_data->table_vdw->data;
709     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
710
711     /* Setup water-specific parameters */
712     inr              = nlist->iinr[0];
713     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
714     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
715     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
716     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
717
718     /* Avoid stupid compiler warnings */
719     jnrA = jnrB = jnrC = jnrD = 0;
720     j_coord_offsetA = 0;
721     j_coord_offsetB = 0;
722     j_coord_offsetC = 0;
723     j_coord_offsetD = 0;
724
725     outeriter        = 0;
726     inneriter        = 0;
727
728     for(iidx=0;iidx<4*DIM;iidx++)
729     {
730         scratch[iidx] = 0.0;
731     }
732
733     /* Start outer loop over neighborlists */
734     for(iidx=0; iidx<nri; iidx++)
735     {
736         /* Load shift vector for this list */
737         i_shift_offset   = DIM*shiftidx[iidx];
738
739         /* Load limits for loop over neighbors */
740         j_index_start    = jindex[iidx];
741         j_index_end      = jindex[iidx+1];
742
743         /* Get outer coordinate index */
744         inr              = iinr[iidx];
745         i_coord_offset   = DIM*inr;
746
747         /* Load i particle coords and add shift vector */
748         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
749                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
750
751         fix0             = _mm256_setzero_pd();
752         fiy0             = _mm256_setzero_pd();
753         fiz0             = _mm256_setzero_pd();
754         fix1             = _mm256_setzero_pd();
755         fiy1             = _mm256_setzero_pd();
756         fiz1             = _mm256_setzero_pd();
757         fix2             = _mm256_setzero_pd();
758         fiy2             = _mm256_setzero_pd();
759         fiz2             = _mm256_setzero_pd();
760
761         /* Start inner kernel loop */
762         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
763         {
764
765             /* Get j neighbor index, and coordinate index */
766             jnrA             = jjnr[jidx];
767             jnrB             = jjnr[jidx+1];
768             jnrC             = jjnr[jidx+2];
769             jnrD             = jjnr[jidx+3];
770             j_coord_offsetA  = DIM*jnrA;
771             j_coord_offsetB  = DIM*jnrB;
772             j_coord_offsetC  = DIM*jnrC;
773             j_coord_offsetD  = DIM*jnrD;
774
775             /* load j atom coordinates */
776             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
777                                                  x+j_coord_offsetC,x+j_coord_offsetD,
778                                                  &jx0,&jy0,&jz0);
779
780             /* Calculate displacement vector */
781             dx00             = _mm256_sub_pd(ix0,jx0);
782             dy00             = _mm256_sub_pd(iy0,jy0);
783             dz00             = _mm256_sub_pd(iz0,jz0);
784             dx10             = _mm256_sub_pd(ix1,jx0);
785             dy10             = _mm256_sub_pd(iy1,jy0);
786             dz10             = _mm256_sub_pd(iz1,jz0);
787             dx20             = _mm256_sub_pd(ix2,jx0);
788             dy20             = _mm256_sub_pd(iy2,jy0);
789             dz20             = _mm256_sub_pd(iz2,jz0);
790
791             /* Calculate squared distance and things based on it */
792             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
793             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
794             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
795
796             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
797             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
798             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
799
800             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
801             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
802             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
803
804             /* Load parameters for j particles */
805             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
806                                                                  charge+jnrC+0,charge+jnrD+0);
807             vdwjidx0A        = 2*vdwtype[jnrA+0];
808             vdwjidx0B        = 2*vdwtype[jnrB+0];
809             vdwjidx0C        = 2*vdwtype[jnrC+0];
810             vdwjidx0D        = 2*vdwtype[jnrD+0];
811
812             fjx0             = _mm256_setzero_pd();
813             fjy0             = _mm256_setzero_pd();
814             fjz0             = _mm256_setzero_pd();
815
816             /**************************
817              * CALCULATE INTERACTIONS *
818              **************************/
819
820             r00              = _mm256_mul_pd(rsq00,rinv00);
821
822             /* Compute parameters for interactions between i and j atoms */
823             qq00             = _mm256_mul_pd(iq0,jq0);
824             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
825                                             vdwioffsetptr0+vdwjidx0B,
826                                             vdwioffsetptr0+vdwjidx0C,
827                                             vdwioffsetptr0+vdwjidx0D,
828                                             &c6_00,&c12_00);
829
830             /* Calculate table index by multiplying r with table scale and truncate to integer */
831             rt               = _mm256_mul_pd(r00,vftabscale);
832             vfitab           = _mm256_cvttpd_epi32(rt);
833             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
834             vfitab           = _mm_slli_epi32(vfitab,3);
835
836             /* COULOMB ELECTROSTATICS */
837             velec            = _mm256_mul_pd(qq00,rinv00);
838             felec            = _mm256_mul_pd(velec,rinvsq00);
839
840             /* CUBIC SPLINE TABLE DISPERSION */
841             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
842             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
843             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
844             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
845             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
846             Heps             = _mm256_mul_pd(vfeps,H);
847             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
848             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
849             fvdw6            = _mm256_mul_pd(c6_00,FF);
850
851             /* CUBIC SPLINE TABLE REPULSION */
852             vfitab           = _mm_add_epi32(vfitab,ifour);
853             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
854             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
855             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
856             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
857             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
858             Heps             = _mm256_mul_pd(vfeps,H);
859             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
860             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
861             fvdw12           = _mm256_mul_pd(c12_00,FF);
862             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
863
864             fscal            = _mm256_add_pd(felec,fvdw);
865
866             /* Calculate temporary vectorial force */
867             tx               = _mm256_mul_pd(fscal,dx00);
868             ty               = _mm256_mul_pd(fscal,dy00);
869             tz               = _mm256_mul_pd(fscal,dz00);
870
871             /* Update vectorial force */
872             fix0             = _mm256_add_pd(fix0,tx);
873             fiy0             = _mm256_add_pd(fiy0,ty);
874             fiz0             = _mm256_add_pd(fiz0,tz);
875
876             fjx0             = _mm256_add_pd(fjx0,tx);
877             fjy0             = _mm256_add_pd(fjy0,ty);
878             fjz0             = _mm256_add_pd(fjz0,tz);
879
880             /**************************
881              * CALCULATE INTERACTIONS *
882              **************************/
883
884             /* Compute parameters for interactions between i and j atoms */
885             qq10             = _mm256_mul_pd(iq1,jq0);
886
887             /* COULOMB ELECTROSTATICS */
888             velec            = _mm256_mul_pd(qq10,rinv10);
889             felec            = _mm256_mul_pd(velec,rinvsq10);
890
891             fscal            = felec;
892
893             /* Calculate temporary vectorial force */
894             tx               = _mm256_mul_pd(fscal,dx10);
895             ty               = _mm256_mul_pd(fscal,dy10);
896             tz               = _mm256_mul_pd(fscal,dz10);
897
898             /* Update vectorial force */
899             fix1             = _mm256_add_pd(fix1,tx);
900             fiy1             = _mm256_add_pd(fiy1,ty);
901             fiz1             = _mm256_add_pd(fiz1,tz);
902
903             fjx0             = _mm256_add_pd(fjx0,tx);
904             fjy0             = _mm256_add_pd(fjy0,ty);
905             fjz0             = _mm256_add_pd(fjz0,tz);
906
907             /**************************
908              * CALCULATE INTERACTIONS *
909              **************************/
910
911             /* Compute parameters for interactions between i and j atoms */
912             qq20             = _mm256_mul_pd(iq2,jq0);
913
914             /* COULOMB ELECTROSTATICS */
915             velec            = _mm256_mul_pd(qq20,rinv20);
916             felec            = _mm256_mul_pd(velec,rinvsq20);
917
918             fscal            = felec;
919
920             /* Calculate temporary vectorial force */
921             tx               = _mm256_mul_pd(fscal,dx20);
922             ty               = _mm256_mul_pd(fscal,dy20);
923             tz               = _mm256_mul_pd(fscal,dz20);
924
925             /* Update vectorial force */
926             fix2             = _mm256_add_pd(fix2,tx);
927             fiy2             = _mm256_add_pd(fiy2,ty);
928             fiz2             = _mm256_add_pd(fiz2,tz);
929
930             fjx0             = _mm256_add_pd(fjx0,tx);
931             fjy0             = _mm256_add_pd(fjy0,ty);
932             fjz0             = _mm256_add_pd(fjz0,tz);
933
934             fjptrA             = f+j_coord_offsetA;
935             fjptrB             = f+j_coord_offsetB;
936             fjptrC             = f+j_coord_offsetC;
937             fjptrD             = f+j_coord_offsetD;
938
939             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
940
941             /* Inner loop uses 108 flops */
942         }
943
944         if(jidx<j_index_end)
945         {
946
947             /* Get j neighbor index, and coordinate index */
948             jnrlistA         = jjnr[jidx];
949             jnrlistB         = jjnr[jidx+1];
950             jnrlistC         = jjnr[jidx+2];
951             jnrlistD         = jjnr[jidx+3];
952             /* Sign of each element will be negative for non-real atoms.
953              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
954              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
955              */
956             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
957
958             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
959             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
960             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
961
962             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
963             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
964             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
965             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
966             j_coord_offsetA  = DIM*jnrA;
967             j_coord_offsetB  = DIM*jnrB;
968             j_coord_offsetC  = DIM*jnrC;
969             j_coord_offsetD  = DIM*jnrD;
970
971             /* load j atom coordinates */
972             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
973                                                  x+j_coord_offsetC,x+j_coord_offsetD,
974                                                  &jx0,&jy0,&jz0);
975
976             /* Calculate displacement vector */
977             dx00             = _mm256_sub_pd(ix0,jx0);
978             dy00             = _mm256_sub_pd(iy0,jy0);
979             dz00             = _mm256_sub_pd(iz0,jz0);
980             dx10             = _mm256_sub_pd(ix1,jx0);
981             dy10             = _mm256_sub_pd(iy1,jy0);
982             dz10             = _mm256_sub_pd(iz1,jz0);
983             dx20             = _mm256_sub_pd(ix2,jx0);
984             dy20             = _mm256_sub_pd(iy2,jy0);
985             dz20             = _mm256_sub_pd(iz2,jz0);
986
987             /* Calculate squared distance and things based on it */
988             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
989             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
990             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
991
992             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
993             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
994             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
995
996             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
997             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
998             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
999
1000             /* Load parameters for j particles */
1001             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1002                                                                  charge+jnrC+0,charge+jnrD+0);
1003             vdwjidx0A        = 2*vdwtype[jnrA+0];
1004             vdwjidx0B        = 2*vdwtype[jnrB+0];
1005             vdwjidx0C        = 2*vdwtype[jnrC+0];
1006             vdwjidx0D        = 2*vdwtype[jnrD+0];
1007
1008             fjx0             = _mm256_setzero_pd();
1009             fjy0             = _mm256_setzero_pd();
1010             fjz0             = _mm256_setzero_pd();
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             r00              = _mm256_mul_pd(rsq00,rinv00);
1017             r00              = _mm256_andnot_pd(dummy_mask,r00);
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq00             = _mm256_mul_pd(iq0,jq0);
1021             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1022                                             vdwioffsetptr0+vdwjidx0B,
1023                                             vdwioffsetptr0+vdwjidx0C,
1024                                             vdwioffsetptr0+vdwjidx0D,
1025                                             &c6_00,&c12_00);
1026
1027             /* Calculate table index by multiplying r with table scale and truncate to integer */
1028             rt               = _mm256_mul_pd(r00,vftabscale);
1029             vfitab           = _mm256_cvttpd_epi32(rt);
1030             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1031             vfitab           = _mm_slli_epi32(vfitab,3);
1032
1033             /* COULOMB ELECTROSTATICS */
1034             velec            = _mm256_mul_pd(qq00,rinv00);
1035             felec            = _mm256_mul_pd(velec,rinvsq00);
1036
1037             /* CUBIC SPLINE TABLE DISPERSION */
1038             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1039             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1040             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1041             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1042             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1043             Heps             = _mm256_mul_pd(vfeps,H);
1044             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1045             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1046             fvdw6            = _mm256_mul_pd(c6_00,FF);
1047
1048             /* CUBIC SPLINE TABLE REPULSION */
1049             vfitab           = _mm_add_epi32(vfitab,ifour);
1050             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1051             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1052             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1053             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1054             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1055             Heps             = _mm256_mul_pd(vfeps,H);
1056             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1057             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1058             fvdw12           = _mm256_mul_pd(c12_00,FF);
1059             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1060
1061             fscal            = _mm256_add_pd(felec,fvdw);
1062
1063             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1064
1065             /* Calculate temporary vectorial force */
1066             tx               = _mm256_mul_pd(fscal,dx00);
1067             ty               = _mm256_mul_pd(fscal,dy00);
1068             tz               = _mm256_mul_pd(fscal,dz00);
1069
1070             /* Update vectorial force */
1071             fix0             = _mm256_add_pd(fix0,tx);
1072             fiy0             = _mm256_add_pd(fiy0,ty);
1073             fiz0             = _mm256_add_pd(fiz0,tz);
1074
1075             fjx0             = _mm256_add_pd(fjx0,tx);
1076             fjy0             = _mm256_add_pd(fjy0,ty);
1077             fjz0             = _mm256_add_pd(fjz0,tz);
1078
1079             /**************************
1080              * CALCULATE INTERACTIONS *
1081              **************************/
1082
1083             /* Compute parameters for interactions between i and j atoms */
1084             qq10             = _mm256_mul_pd(iq1,jq0);
1085
1086             /* COULOMB ELECTROSTATICS */
1087             velec            = _mm256_mul_pd(qq10,rinv10);
1088             felec            = _mm256_mul_pd(velec,rinvsq10);
1089
1090             fscal            = felec;
1091
1092             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm256_mul_pd(fscal,dx10);
1096             ty               = _mm256_mul_pd(fscal,dy10);
1097             tz               = _mm256_mul_pd(fscal,dz10);
1098
1099             /* Update vectorial force */
1100             fix1             = _mm256_add_pd(fix1,tx);
1101             fiy1             = _mm256_add_pd(fiy1,ty);
1102             fiz1             = _mm256_add_pd(fiz1,tz);
1103
1104             fjx0             = _mm256_add_pd(fjx0,tx);
1105             fjy0             = _mm256_add_pd(fjy0,ty);
1106             fjz0             = _mm256_add_pd(fjz0,tz);
1107
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             /* Compute parameters for interactions between i and j atoms */
1113             qq20             = _mm256_mul_pd(iq2,jq0);
1114
1115             /* COULOMB ELECTROSTATICS */
1116             velec            = _mm256_mul_pd(qq20,rinv20);
1117             felec            = _mm256_mul_pd(velec,rinvsq20);
1118
1119             fscal            = felec;
1120
1121             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1122
1123             /* Calculate temporary vectorial force */
1124             tx               = _mm256_mul_pd(fscal,dx20);
1125             ty               = _mm256_mul_pd(fscal,dy20);
1126             tz               = _mm256_mul_pd(fscal,dz20);
1127
1128             /* Update vectorial force */
1129             fix2             = _mm256_add_pd(fix2,tx);
1130             fiy2             = _mm256_add_pd(fiy2,ty);
1131             fiz2             = _mm256_add_pd(fiz2,tz);
1132
1133             fjx0             = _mm256_add_pd(fjx0,tx);
1134             fjy0             = _mm256_add_pd(fjy0,ty);
1135             fjz0             = _mm256_add_pd(fjz0,tz);
1136
1137             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1138             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1139             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1140             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1141
1142             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1143
1144             /* Inner loop uses 109 flops */
1145         }
1146
1147         /* End of innermost loop */
1148
1149         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1150                                                  f+i_coord_offset,fshift+i_shift_offset);
1151
1152         /* Increment number of inner iterations */
1153         inneriter                  += j_index_end - j_index_start;
1154
1155         /* Outer loop uses 18 flops */
1156     }
1157
1158     /* Increment number of outer iterations */
1159     outeriter        += nri;
1160
1161     /* Update outer/inner flops */
1162
1163     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1164 }