Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256d          dummy_mask,cutoff_mask;
110     __m128           tmpmask0,tmpmask1;
111     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
112     __m256d          one     = _mm256_set1_pd(1.0);
113     __m256d          two     = _mm256_set1_pd(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_pd(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     vftab            = kernel_data->table_vdw->data;
132     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
137     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
138     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173
174         fix0             = _mm256_setzero_pd();
175         fiy0             = _mm256_setzero_pd();
176         fiz0             = _mm256_setzero_pd();
177         fix1             = _mm256_setzero_pd();
178         fiy1             = _mm256_setzero_pd();
179         fiz1             = _mm256_setzero_pd();
180         fix2             = _mm256_setzero_pd();
181         fiy2             = _mm256_setzero_pd();
182         fiz2             = _mm256_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm256_setzero_pd();
186         vvdwsum          = _mm256_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             jnrC             = jjnr[jidx+2];
196             jnrD             = jjnr[jidx+3];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
204                                                  x+j_coord_offsetC,x+j_coord_offsetD,
205                                                  &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm256_sub_pd(ix0,jx0);
209             dy00             = _mm256_sub_pd(iy0,jy0);
210             dz00             = _mm256_sub_pd(iz0,jz0);
211             dx10             = _mm256_sub_pd(ix1,jx0);
212             dy10             = _mm256_sub_pd(iy1,jy0);
213             dz10             = _mm256_sub_pd(iz1,jz0);
214             dx20             = _mm256_sub_pd(ix2,jx0);
215             dy20             = _mm256_sub_pd(iy2,jy0);
216             dz20             = _mm256_sub_pd(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
220             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
221             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
222
223             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
224             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
225             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
226
227             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
228             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
229             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
233                                                                  charge+jnrC+0,charge+jnrD+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236             vdwjidx0C        = 2*vdwtype[jnrC+0];
237             vdwjidx0D        = 2*vdwtype[jnrD+0];
238
239             fjx0             = _mm256_setzero_pd();
240             fjy0             = _mm256_setzero_pd();
241             fjz0             = _mm256_setzero_pd();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             r00              = _mm256_mul_pd(rsq00,rinv00);
248
249             /* Compute parameters for interactions between i and j atoms */
250             qq00             = _mm256_mul_pd(iq0,jq0);
251             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
252                                             vdwioffsetptr0+vdwjidx0B,
253                                             vdwioffsetptr0+vdwjidx0C,
254                                             vdwioffsetptr0+vdwjidx0D,
255                                             &c6_00,&c12_00);
256
257             /* Calculate table index by multiplying r with table scale and truncate to integer */
258             rt               = _mm256_mul_pd(r00,vftabscale);
259             vfitab           = _mm256_cvttpd_epi32(rt);
260             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
261             vfitab           = _mm_slli_epi32(vfitab,3);
262
263             /* COULOMB ELECTROSTATICS */
264             velec            = _mm256_mul_pd(qq00,rinv00);
265             felec            = _mm256_mul_pd(velec,rinvsq00);
266
267             /* CUBIC SPLINE TABLE DISPERSION */
268             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
269             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
270             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
271             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
272             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
273             Heps             = _mm256_mul_pd(vfeps,H);
274             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
275             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
276             vvdw6            = _mm256_mul_pd(c6_00,VV);
277             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
278             fvdw6            = _mm256_mul_pd(c6_00,FF);
279
280             /* CUBIC SPLINE TABLE REPULSION */
281             vfitab           = _mm_add_epi32(vfitab,ifour);
282             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
283             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
284             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
285             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
286             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
287             Heps             = _mm256_mul_pd(vfeps,H);
288             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
289             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
290             vvdw12           = _mm256_mul_pd(c12_00,VV);
291             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
292             fvdw12           = _mm256_mul_pd(c12_00,FF);
293             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
294             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velecsum         = _mm256_add_pd(velecsum,velec);
298             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
299
300             fscal            = _mm256_add_pd(felec,fvdw);
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm256_mul_pd(fscal,dx00);
304             ty               = _mm256_mul_pd(fscal,dy00);
305             tz               = _mm256_mul_pd(fscal,dz00);
306
307             /* Update vectorial force */
308             fix0             = _mm256_add_pd(fix0,tx);
309             fiy0             = _mm256_add_pd(fiy0,ty);
310             fiz0             = _mm256_add_pd(fiz0,tz);
311
312             fjx0             = _mm256_add_pd(fjx0,tx);
313             fjy0             = _mm256_add_pd(fjy0,ty);
314             fjz0             = _mm256_add_pd(fjz0,tz);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm256_mul_pd(iq1,jq0);
322
323             /* COULOMB ELECTROSTATICS */
324             velec            = _mm256_mul_pd(qq10,rinv10);
325             felec            = _mm256_mul_pd(velec,rinvsq10);
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm256_add_pd(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm256_mul_pd(fscal,dx10);
334             ty               = _mm256_mul_pd(fscal,dy10);
335             tz               = _mm256_mul_pd(fscal,dz10);
336
337             /* Update vectorial force */
338             fix1             = _mm256_add_pd(fix1,tx);
339             fiy1             = _mm256_add_pd(fiy1,ty);
340             fiz1             = _mm256_add_pd(fiz1,tz);
341
342             fjx0             = _mm256_add_pd(fjx0,tx);
343             fjy0             = _mm256_add_pd(fjy0,ty);
344             fjz0             = _mm256_add_pd(fjz0,tz);
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm256_mul_pd(iq2,jq0);
352
353             /* COULOMB ELECTROSTATICS */
354             velec            = _mm256_mul_pd(qq20,rinv20);
355             felec            = _mm256_mul_pd(velec,rinvsq20);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velecsum         = _mm256_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm256_mul_pd(fscal,dx20);
364             ty               = _mm256_mul_pd(fscal,dy20);
365             tz               = _mm256_mul_pd(fscal,dz20);
366
367             /* Update vectorial force */
368             fix2             = _mm256_add_pd(fix2,tx);
369             fiy2             = _mm256_add_pd(fiy2,ty);
370             fiz2             = _mm256_add_pd(fiz2,tz);
371
372             fjx0             = _mm256_add_pd(fjx0,tx);
373             fjy0             = _mm256_add_pd(fjy0,ty);
374             fjz0             = _mm256_add_pd(fjz0,tz);
375
376             fjptrA             = f+j_coord_offsetA;
377             fjptrB             = f+j_coord_offsetB;
378             fjptrC             = f+j_coord_offsetC;
379             fjptrD             = f+j_coord_offsetD;
380
381             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
382
383             /* Inner loop uses 119 flops */
384         }
385
386         if(jidx<j_index_end)
387         {
388
389             /* Get j neighbor index, and coordinate index */
390             jnrlistA         = jjnr[jidx];
391             jnrlistB         = jjnr[jidx+1];
392             jnrlistC         = jjnr[jidx+2];
393             jnrlistD         = jjnr[jidx+3];
394             /* Sign of each element will be negative for non-real atoms.
395              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
396              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
397              */
398             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
399
400             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
401             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
402             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
403
404             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
405             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
406             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
407             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
408             j_coord_offsetA  = DIM*jnrA;
409             j_coord_offsetB  = DIM*jnrB;
410             j_coord_offsetC  = DIM*jnrC;
411             j_coord_offsetD  = DIM*jnrD;
412
413             /* load j atom coordinates */
414             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
415                                                  x+j_coord_offsetC,x+j_coord_offsetD,
416                                                  &jx0,&jy0,&jz0);
417
418             /* Calculate displacement vector */
419             dx00             = _mm256_sub_pd(ix0,jx0);
420             dy00             = _mm256_sub_pd(iy0,jy0);
421             dz00             = _mm256_sub_pd(iz0,jz0);
422             dx10             = _mm256_sub_pd(ix1,jx0);
423             dy10             = _mm256_sub_pd(iy1,jy0);
424             dz10             = _mm256_sub_pd(iz1,jz0);
425             dx20             = _mm256_sub_pd(ix2,jx0);
426             dy20             = _mm256_sub_pd(iy2,jy0);
427             dz20             = _mm256_sub_pd(iz2,jz0);
428
429             /* Calculate squared distance and things based on it */
430             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
431             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
432             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
433
434             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
435             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
436             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
437
438             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
439             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
440             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
441
442             /* Load parameters for j particles */
443             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
444                                                                  charge+jnrC+0,charge+jnrD+0);
445             vdwjidx0A        = 2*vdwtype[jnrA+0];
446             vdwjidx0B        = 2*vdwtype[jnrB+0];
447             vdwjidx0C        = 2*vdwtype[jnrC+0];
448             vdwjidx0D        = 2*vdwtype[jnrD+0];
449
450             fjx0             = _mm256_setzero_pd();
451             fjy0             = _mm256_setzero_pd();
452             fjz0             = _mm256_setzero_pd();
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             r00              = _mm256_mul_pd(rsq00,rinv00);
459             r00              = _mm256_andnot_pd(dummy_mask,r00);
460
461             /* Compute parameters for interactions between i and j atoms */
462             qq00             = _mm256_mul_pd(iq0,jq0);
463             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
464                                             vdwioffsetptr0+vdwjidx0B,
465                                             vdwioffsetptr0+vdwjidx0C,
466                                             vdwioffsetptr0+vdwjidx0D,
467                                             &c6_00,&c12_00);
468
469             /* Calculate table index by multiplying r with table scale and truncate to integer */
470             rt               = _mm256_mul_pd(r00,vftabscale);
471             vfitab           = _mm256_cvttpd_epi32(rt);
472             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
473             vfitab           = _mm_slli_epi32(vfitab,3);
474
475             /* COULOMB ELECTROSTATICS */
476             velec            = _mm256_mul_pd(qq00,rinv00);
477             felec            = _mm256_mul_pd(velec,rinvsq00);
478
479             /* CUBIC SPLINE TABLE DISPERSION */
480             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
481             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
482             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
483             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
484             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
485             Heps             = _mm256_mul_pd(vfeps,H);
486             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
487             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
488             vvdw6            = _mm256_mul_pd(c6_00,VV);
489             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
490             fvdw6            = _mm256_mul_pd(c6_00,FF);
491
492             /* CUBIC SPLINE TABLE REPULSION */
493             vfitab           = _mm_add_epi32(vfitab,ifour);
494             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
495             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
496             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
497             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
498             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
499             Heps             = _mm256_mul_pd(vfeps,H);
500             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
501             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
502             vvdw12           = _mm256_mul_pd(c12_00,VV);
503             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
504             fvdw12           = _mm256_mul_pd(c12_00,FF);
505             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
506             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             velec            = _mm256_andnot_pd(dummy_mask,velec);
510             velecsum         = _mm256_add_pd(velecsum,velec);
511             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
512             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
513
514             fscal            = _mm256_add_pd(felec,fvdw);
515
516             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm256_mul_pd(fscal,dx00);
520             ty               = _mm256_mul_pd(fscal,dy00);
521             tz               = _mm256_mul_pd(fscal,dz00);
522
523             /* Update vectorial force */
524             fix0             = _mm256_add_pd(fix0,tx);
525             fiy0             = _mm256_add_pd(fiy0,ty);
526             fiz0             = _mm256_add_pd(fiz0,tz);
527
528             fjx0             = _mm256_add_pd(fjx0,tx);
529             fjy0             = _mm256_add_pd(fjy0,ty);
530             fjz0             = _mm256_add_pd(fjz0,tz);
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq10             = _mm256_mul_pd(iq1,jq0);
538
539             /* COULOMB ELECTROSTATICS */
540             velec            = _mm256_mul_pd(qq10,rinv10);
541             felec            = _mm256_mul_pd(velec,rinvsq10);
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             velec            = _mm256_andnot_pd(dummy_mask,velec);
545             velecsum         = _mm256_add_pd(velecsum,velec);
546
547             fscal            = felec;
548
549             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
550
551             /* Calculate temporary vectorial force */
552             tx               = _mm256_mul_pd(fscal,dx10);
553             ty               = _mm256_mul_pd(fscal,dy10);
554             tz               = _mm256_mul_pd(fscal,dz10);
555
556             /* Update vectorial force */
557             fix1             = _mm256_add_pd(fix1,tx);
558             fiy1             = _mm256_add_pd(fiy1,ty);
559             fiz1             = _mm256_add_pd(fiz1,tz);
560
561             fjx0             = _mm256_add_pd(fjx0,tx);
562             fjy0             = _mm256_add_pd(fjy0,ty);
563             fjz0             = _mm256_add_pd(fjz0,tz);
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq20             = _mm256_mul_pd(iq2,jq0);
571
572             /* COULOMB ELECTROSTATICS */
573             velec            = _mm256_mul_pd(qq20,rinv20);
574             felec            = _mm256_mul_pd(velec,rinvsq20);
575
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             velec            = _mm256_andnot_pd(dummy_mask,velec);
578             velecsum         = _mm256_add_pd(velecsum,velec);
579
580             fscal            = felec;
581
582             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm256_mul_pd(fscal,dx20);
586             ty               = _mm256_mul_pd(fscal,dy20);
587             tz               = _mm256_mul_pd(fscal,dz20);
588
589             /* Update vectorial force */
590             fix2             = _mm256_add_pd(fix2,tx);
591             fiy2             = _mm256_add_pd(fiy2,ty);
592             fiz2             = _mm256_add_pd(fiz2,tz);
593
594             fjx0             = _mm256_add_pd(fjx0,tx);
595             fjy0             = _mm256_add_pd(fjy0,ty);
596             fjz0             = _mm256_add_pd(fjz0,tz);
597
598             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
599             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
600             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
601             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
602
603             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
604
605             /* Inner loop uses 120 flops */
606         }
607
608         /* End of innermost loop */
609
610         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
611                                                  f+i_coord_offset,fshift+i_shift_offset);
612
613         ggid                        = gid[iidx];
614         /* Update potential energies */
615         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
616         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
617
618         /* Increment number of inner iterations */
619         inneriter                  += j_index_end - j_index_start;
620
621         /* Outer loop uses 20 flops */
622     }
623
624     /* Increment number of outer iterations */
625     outeriter        += nri;
626
627     /* Update outer/inner flops */
628
629     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
630 }
631 /*
632  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_double
633  * Electrostatics interaction: Coulomb
634  * VdW interaction:            CubicSplineTable
635  * Geometry:                   Water3-Particle
636  * Calculate force/pot:        Force
637  */
638 void
639 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_double
640                     (t_nblist                    * gmx_restrict       nlist,
641                      rvec                        * gmx_restrict          xx,
642                      rvec                        * gmx_restrict          ff,
643                      t_forcerec                  * gmx_restrict          fr,
644                      t_mdatoms                   * gmx_restrict     mdatoms,
645                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
646                      t_nrnb                      * gmx_restrict        nrnb)
647 {
648     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
649      * just 0 for non-waters.
650      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
651      * jnr indices corresponding to data put in the four positions in the SIMD register.
652      */
653     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
654     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
655     int              jnrA,jnrB,jnrC,jnrD;
656     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
657     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
658     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
659     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
660     real             rcutoff_scalar;
661     real             *shiftvec,*fshift,*x,*f;
662     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
663     real             scratch[4*DIM];
664     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
665     real *           vdwioffsetptr0;
666     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
667     real *           vdwioffsetptr1;
668     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
669     real *           vdwioffsetptr2;
670     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
671     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
672     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
673     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
674     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
675     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
676     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
677     real             *charge;
678     int              nvdwtype;
679     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
680     int              *vdwtype;
681     real             *vdwparam;
682     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
683     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
684     __m128i          vfitab;
685     __m128i          ifour       = _mm_set1_epi32(4);
686     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
687     real             *vftab;
688     __m256d          dummy_mask,cutoff_mask;
689     __m128           tmpmask0,tmpmask1;
690     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
691     __m256d          one     = _mm256_set1_pd(1.0);
692     __m256d          two     = _mm256_set1_pd(2.0);
693     x                = xx[0];
694     f                = ff[0];
695
696     nri              = nlist->nri;
697     iinr             = nlist->iinr;
698     jindex           = nlist->jindex;
699     jjnr             = nlist->jjnr;
700     shiftidx         = nlist->shift;
701     gid              = nlist->gid;
702     shiftvec         = fr->shift_vec[0];
703     fshift           = fr->fshift[0];
704     facel            = _mm256_set1_pd(fr->epsfac);
705     charge           = mdatoms->chargeA;
706     nvdwtype         = fr->ntype;
707     vdwparam         = fr->nbfp;
708     vdwtype          = mdatoms->typeA;
709
710     vftab            = kernel_data->table_vdw->data;
711     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
712
713     /* Setup water-specific parameters */
714     inr              = nlist->iinr[0];
715     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
716     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
717     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
718     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
719
720     /* Avoid stupid compiler warnings */
721     jnrA = jnrB = jnrC = jnrD = 0;
722     j_coord_offsetA = 0;
723     j_coord_offsetB = 0;
724     j_coord_offsetC = 0;
725     j_coord_offsetD = 0;
726
727     outeriter        = 0;
728     inneriter        = 0;
729
730     for(iidx=0;iidx<4*DIM;iidx++)
731     {
732         scratch[iidx] = 0.0;
733     }
734
735     /* Start outer loop over neighborlists */
736     for(iidx=0; iidx<nri; iidx++)
737     {
738         /* Load shift vector for this list */
739         i_shift_offset   = DIM*shiftidx[iidx];
740
741         /* Load limits for loop over neighbors */
742         j_index_start    = jindex[iidx];
743         j_index_end      = jindex[iidx+1];
744
745         /* Get outer coordinate index */
746         inr              = iinr[iidx];
747         i_coord_offset   = DIM*inr;
748
749         /* Load i particle coords and add shift vector */
750         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
751                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
752
753         fix0             = _mm256_setzero_pd();
754         fiy0             = _mm256_setzero_pd();
755         fiz0             = _mm256_setzero_pd();
756         fix1             = _mm256_setzero_pd();
757         fiy1             = _mm256_setzero_pd();
758         fiz1             = _mm256_setzero_pd();
759         fix2             = _mm256_setzero_pd();
760         fiy2             = _mm256_setzero_pd();
761         fiz2             = _mm256_setzero_pd();
762
763         /* Start inner kernel loop */
764         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
765         {
766
767             /* Get j neighbor index, and coordinate index */
768             jnrA             = jjnr[jidx];
769             jnrB             = jjnr[jidx+1];
770             jnrC             = jjnr[jidx+2];
771             jnrD             = jjnr[jidx+3];
772             j_coord_offsetA  = DIM*jnrA;
773             j_coord_offsetB  = DIM*jnrB;
774             j_coord_offsetC  = DIM*jnrC;
775             j_coord_offsetD  = DIM*jnrD;
776
777             /* load j atom coordinates */
778             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
779                                                  x+j_coord_offsetC,x+j_coord_offsetD,
780                                                  &jx0,&jy0,&jz0);
781
782             /* Calculate displacement vector */
783             dx00             = _mm256_sub_pd(ix0,jx0);
784             dy00             = _mm256_sub_pd(iy0,jy0);
785             dz00             = _mm256_sub_pd(iz0,jz0);
786             dx10             = _mm256_sub_pd(ix1,jx0);
787             dy10             = _mm256_sub_pd(iy1,jy0);
788             dz10             = _mm256_sub_pd(iz1,jz0);
789             dx20             = _mm256_sub_pd(ix2,jx0);
790             dy20             = _mm256_sub_pd(iy2,jy0);
791             dz20             = _mm256_sub_pd(iz2,jz0);
792
793             /* Calculate squared distance and things based on it */
794             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
795             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
796             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
797
798             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
799             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
800             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
801
802             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
803             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
804             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
805
806             /* Load parameters for j particles */
807             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
808                                                                  charge+jnrC+0,charge+jnrD+0);
809             vdwjidx0A        = 2*vdwtype[jnrA+0];
810             vdwjidx0B        = 2*vdwtype[jnrB+0];
811             vdwjidx0C        = 2*vdwtype[jnrC+0];
812             vdwjidx0D        = 2*vdwtype[jnrD+0];
813
814             fjx0             = _mm256_setzero_pd();
815             fjy0             = _mm256_setzero_pd();
816             fjz0             = _mm256_setzero_pd();
817
818             /**************************
819              * CALCULATE INTERACTIONS *
820              **************************/
821
822             r00              = _mm256_mul_pd(rsq00,rinv00);
823
824             /* Compute parameters for interactions between i and j atoms */
825             qq00             = _mm256_mul_pd(iq0,jq0);
826             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
827                                             vdwioffsetptr0+vdwjidx0B,
828                                             vdwioffsetptr0+vdwjidx0C,
829                                             vdwioffsetptr0+vdwjidx0D,
830                                             &c6_00,&c12_00);
831
832             /* Calculate table index by multiplying r with table scale and truncate to integer */
833             rt               = _mm256_mul_pd(r00,vftabscale);
834             vfitab           = _mm256_cvttpd_epi32(rt);
835             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
836             vfitab           = _mm_slli_epi32(vfitab,3);
837
838             /* COULOMB ELECTROSTATICS */
839             velec            = _mm256_mul_pd(qq00,rinv00);
840             felec            = _mm256_mul_pd(velec,rinvsq00);
841
842             /* CUBIC SPLINE TABLE DISPERSION */
843             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
844             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
845             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
846             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
847             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
848             Heps             = _mm256_mul_pd(vfeps,H);
849             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
850             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
851             fvdw6            = _mm256_mul_pd(c6_00,FF);
852
853             /* CUBIC SPLINE TABLE REPULSION */
854             vfitab           = _mm_add_epi32(vfitab,ifour);
855             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
856             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
857             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
858             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
859             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
860             Heps             = _mm256_mul_pd(vfeps,H);
861             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
862             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
863             fvdw12           = _mm256_mul_pd(c12_00,FF);
864             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
865
866             fscal            = _mm256_add_pd(felec,fvdw);
867
868             /* Calculate temporary vectorial force */
869             tx               = _mm256_mul_pd(fscal,dx00);
870             ty               = _mm256_mul_pd(fscal,dy00);
871             tz               = _mm256_mul_pd(fscal,dz00);
872
873             /* Update vectorial force */
874             fix0             = _mm256_add_pd(fix0,tx);
875             fiy0             = _mm256_add_pd(fiy0,ty);
876             fiz0             = _mm256_add_pd(fiz0,tz);
877
878             fjx0             = _mm256_add_pd(fjx0,tx);
879             fjy0             = _mm256_add_pd(fjy0,ty);
880             fjz0             = _mm256_add_pd(fjz0,tz);
881
882             /**************************
883              * CALCULATE INTERACTIONS *
884              **************************/
885
886             /* Compute parameters for interactions between i and j atoms */
887             qq10             = _mm256_mul_pd(iq1,jq0);
888
889             /* COULOMB ELECTROSTATICS */
890             velec            = _mm256_mul_pd(qq10,rinv10);
891             felec            = _mm256_mul_pd(velec,rinvsq10);
892
893             fscal            = felec;
894
895             /* Calculate temporary vectorial force */
896             tx               = _mm256_mul_pd(fscal,dx10);
897             ty               = _mm256_mul_pd(fscal,dy10);
898             tz               = _mm256_mul_pd(fscal,dz10);
899
900             /* Update vectorial force */
901             fix1             = _mm256_add_pd(fix1,tx);
902             fiy1             = _mm256_add_pd(fiy1,ty);
903             fiz1             = _mm256_add_pd(fiz1,tz);
904
905             fjx0             = _mm256_add_pd(fjx0,tx);
906             fjy0             = _mm256_add_pd(fjy0,ty);
907             fjz0             = _mm256_add_pd(fjz0,tz);
908
909             /**************************
910              * CALCULATE INTERACTIONS *
911              **************************/
912
913             /* Compute parameters for interactions between i and j atoms */
914             qq20             = _mm256_mul_pd(iq2,jq0);
915
916             /* COULOMB ELECTROSTATICS */
917             velec            = _mm256_mul_pd(qq20,rinv20);
918             felec            = _mm256_mul_pd(velec,rinvsq20);
919
920             fscal            = felec;
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm256_mul_pd(fscal,dx20);
924             ty               = _mm256_mul_pd(fscal,dy20);
925             tz               = _mm256_mul_pd(fscal,dz20);
926
927             /* Update vectorial force */
928             fix2             = _mm256_add_pd(fix2,tx);
929             fiy2             = _mm256_add_pd(fiy2,ty);
930             fiz2             = _mm256_add_pd(fiz2,tz);
931
932             fjx0             = _mm256_add_pd(fjx0,tx);
933             fjy0             = _mm256_add_pd(fjy0,ty);
934             fjz0             = _mm256_add_pd(fjz0,tz);
935
936             fjptrA             = f+j_coord_offsetA;
937             fjptrB             = f+j_coord_offsetB;
938             fjptrC             = f+j_coord_offsetC;
939             fjptrD             = f+j_coord_offsetD;
940
941             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
942
943             /* Inner loop uses 108 flops */
944         }
945
946         if(jidx<j_index_end)
947         {
948
949             /* Get j neighbor index, and coordinate index */
950             jnrlistA         = jjnr[jidx];
951             jnrlistB         = jjnr[jidx+1];
952             jnrlistC         = jjnr[jidx+2];
953             jnrlistD         = jjnr[jidx+3];
954             /* Sign of each element will be negative for non-real atoms.
955              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
956              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
957              */
958             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
959
960             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
961             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
962             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
963
964             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
965             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
966             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
967             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
968             j_coord_offsetA  = DIM*jnrA;
969             j_coord_offsetB  = DIM*jnrB;
970             j_coord_offsetC  = DIM*jnrC;
971             j_coord_offsetD  = DIM*jnrD;
972
973             /* load j atom coordinates */
974             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
975                                                  x+j_coord_offsetC,x+j_coord_offsetD,
976                                                  &jx0,&jy0,&jz0);
977
978             /* Calculate displacement vector */
979             dx00             = _mm256_sub_pd(ix0,jx0);
980             dy00             = _mm256_sub_pd(iy0,jy0);
981             dz00             = _mm256_sub_pd(iz0,jz0);
982             dx10             = _mm256_sub_pd(ix1,jx0);
983             dy10             = _mm256_sub_pd(iy1,jy0);
984             dz10             = _mm256_sub_pd(iz1,jz0);
985             dx20             = _mm256_sub_pd(ix2,jx0);
986             dy20             = _mm256_sub_pd(iy2,jy0);
987             dz20             = _mm256_sub_pd(iz2,jz0);
988
989             /* Calculate squared distance and things based on it */
990             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
991             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
992             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
993
994             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
995             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
996             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
997
998             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
999             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1000             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1001
1002             /* Load parameters for j particles */
1003             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1004                                                                  charge+jnrC+0,charge+jnrD+0);
1005             vdwjidx0A        = 2*vdwtype[jnrA+0];
1006             vdwjidx0B        = 2*vdwtype[jnrB+0];
1007             vdwjidx0C        = 2*vdwtype[jnrC+0];
1008             vdwjidx0D        = 2*vdwtype[jnrD+0];
1009
1010             fjx0             = _mm256_setzero_pd();
1011             fjy0             = _mm256_setzero_pd();
1012             fjz0             = _mm256_setzero_pd();
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             r00              = _mm256_mul_pd(rsq00,rinv00);
1019             r00              = _mm256_andnot_pd(dummy_mask,r00);
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq00             = _mm256_mul_pd(iq0,jq0);
1023             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1024                                             vdwioffsetptr0+vdwjidx0B,
1025                                             vdwioffsetptr0+vdwjidx0C,
1026                                             vdwioffsetptr0+vdwjidx0D,
1027                                             &c6_00,&c12_00);
1028
1029             /* Calculate table index by multiplying r with table scale and truncate to integer */
1030             rt               = _mm256_mul_pd(r00,vftabscale);
1031             vfitab           = _mm256_cvttpd_epi32(rt);
1032             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1033             vfitab           = _mm_slli_epi32(vfitab,3);
1034
1035             /* COULOMB ELECTROSTATICS */
1036             velec            = _mm256_mul_pd(qq00,rinv00);
1037             felec            = _mm256_mul_pd(velec,rinvsq00);
1038
1039             /* CUBIC SPLINE TABLE DISPERSION */
1040             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1041             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1042             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1043             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1044             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1045             Heps             = _mm256_mul_pd(vfeps,H);
1046             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1047             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1048             fvdw6            = _mm256_mul_pd(c6_00,FF);
1049
1050             /* CUBIC SPLINE TABLE REPULSION */
1051             vfitab           = _mm_add_epi32(vfitab,ifour);
1052             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1053             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1054             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1055             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1056             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1057             Heps             = _mm256_mul_pd(vfeps,H);
1058             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1059             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1060             fvdw12           = _mm256_mul_pd(c12_00,FF);
1061             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1062
1063             fscal            = _mm256_add_pd(felec,fvdw);
1064
1065             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1066
1067             /* Calculate temporary vectorial force */
1068             tx               = _mm256_mul_pd(fscal,dx00);
1069             ty               = _mm256_mul_pd(fscal,dy00);
1070             tz               = _mm256_mul_pd(fscal,dz00);
1071
1072             /* Update vectorial force */
1073             fix0             = _mm256_add_pd(fix0,tx);
1074             fiy0             = _mm256_add_pd(fiy0,ty);
1075             fiz0             = _mm256_add_pd(fiz0,tz);
1076
1077             fjx0             = _mm256_add_pd(fjx0,tx);
1078             fjy0             = _mm256_add_pd(fjy0,ty);
1079             fjz0             = _mm256_add_pd(fjz0,tz);
1080
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             qq10             = _mm256_mul_pd(iq1,jq0);
1087
1088             /* COULOMB ELECTROSTATICS */
1089             velec            = _mm256_mul_pd(qq10,rinv10);
1090             felec            = _mm256_mul_pd(velec,rinvsq10);
1091
1092             fscal            = felec;
1093
1094             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1095
1096             /* Calculate temporary vectorial force */
1097             tx               = _mm256_mul_pd(fscal,dx10);
1098             ty               = _mm256_mul_pd(fscal,dy10);
1099             tz               = _mm256_mul_pd(fscal,dz10);
1100
1101             /* Update vectorial force */
1102             fix1             = _mm256_add_pd(fix1,tx);
1103             fiy1             = _mm256_add_pd(fiy1,ty);
1104             fiz1             = _mm256_add_pd(fiz1,tz);
1105
1106             fjx0             = _mm256_add_pd(fjx0,tx);
1107             fjy0             = _mm256_add_pd(fjy0,ty);
1108             fjz0             = _mm256_add_pd(fjz0,tz);
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             /* Compute parameters for interactions between i and j atoms */
1115             qq20             = _mm256_mul_pd(iq2,jq0);
1116
1117             /* COULOMB ELECTROSTATICS */
1118             velec            = _mm256_mul_pd(qq20,rinv20);
1119             felec            = _mm256_mul_pd(velec,rinvsq20);
1120
1121             fscal            = felec;
1122
1123             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = _mm256_mul_pd(fscal,dx20);
1127             ty               = _mm256_mul_pd(fscal,dy20);
1128             tz               = _mm256_mul_pd(fscal,dz20);
1129
1130             /* Update vectorial force */
1131             fix2             = _mm256_add_pd(fix2,tx);
1132             fiy2             = _mm256_add_pd(fiy2,ty);
1133             fiz2             = _mm256_add_pd(fiz2,tz);
1134
1135             fjx0             = _mm256_add_pd(fjx0,tx);
1136             fjy0             = _mm256_add_pd(fjy0,ty);
1137             fjz0             = _mm256_add_pd(fjz0,tz);
1138
1139             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1140             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1141             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1142             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1143
1144             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1145
1146             /* Inner loop uses 109 flops */
1147         }
1148
1149         /* End of innermost loop */
1150
1151         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1152                                                  f+i_coord_offset,fshift+i_shift_offset);
1153
1154         /* Increment number of inner iterations */
1155         inneriter                  += j_index_end - j_index_start;
1156
1157         /* Outer loop uses 18 flops */
1158     }
1159
1160     /* Increment number of outer iterations */
1161     outeriter        += nri;
1162
1163     /* Update outer/inner flops */
1164
1165     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1166 }