Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     vftab            = kernel_data->table_vdw->data;
126     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     for(iidx=0;iidx<4*DIM;iidx++)
139     {
140         scratch[iidx] = 0.0;
141     }
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
159
160         fix0             = _mm256_setzero_pd();
161         fiy0             = _mm256_setzero_pd();
162         fiz0             = _mm256_setzero_pd();
163
164         /* Load parameters for i particles */
165         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
166         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
167
168         /* Reset potential sums */
169         velecsum         = _mm256_setzero_pd();
170         vvdwsum          = _mm256_setzero_pd();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             jnrC             = jjnr[jidx+2];
180             jnrD             = jjnr[jidx+3];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183             j_coord_offsetC  = DIM*jnrC;
184             j_coord_offsetD  = DIM*jnrD;
185
186             /* load j atom coordinates */
187             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                                  x+j_coord_offsetC,x+j_coord_offsetD,
189                                                  &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm256_sub_pd(ix0,jx0);
193             dy00             = _mm256_sub_pd(iy0,jy0);
194             dz00             = _mm256_sub_pd(iz0,jz0);
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
198
199             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
200
201             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
205                                                                  charge+jnrC+0,charge+jnrD+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208             vdwjidx0C        = 2*vdwtype[jnrC+0];
209             vdwjidx0D        = 2*vdwtype[jnrD+0];
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             r00              = _mm256_mul_pd(rsq00,rinv00);
216
217             /* Compute parameters for interactions between i and j atoms */
218             qq00             = _mm256_mul_pd(iq0,jq0);
219             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
220                                             vdwioffsetptr0+vdwjidx0B,
221                                             vdwioffsetptr0+vdwjidx0C,
222                                             vdwioffsetptr0+vdwjidx0D,
223                                             &c6_00,&c12_00);
224
225             /* Calculate table index by multiplying r with table scale and truncate to integer */
226             rt               = _mm256_mul_pd(r00,vftabscale);
227             vfitab           = _mm256_cvttpd_epi32(rt);
228             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
229             vfitab           = _mm_slli_epi32(vfitab,3);
230
231             /* COULOMB ELECTROSTATICS */
232             velec            = _mm256_mul_pd(qq00,rinv00);
233             felec            = _mm256_mul_pd(velec,rinvsq00);
234
235             /* CUBIC SPLINE TABLE DISPERSION */
236             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
237             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
238             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
239             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
240             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
241             Heps             = _mm256_mul_pd(vfeps,H);
242             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
243             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
244             vvdw6            = _mm256_mul_pd(c6_00,VV);
245             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
246             fvdw6            = _mm256_mul_pd(c6_00,FF);
247
248             /* CUBIC SPLINE TABLE REPULSION */
249             vfitab           = _mm_add_epi32(vfitab,ifour);
250             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
251             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
252             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
253             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
254             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
255             Heps             = _mm256_mul_pd(vfeps,H);
256             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
257             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
258             vvdw12           = _mm256_mul_pd(c12_00,VV);
259             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
260             fvdw12           = _mm256_mul_pd(c12_00,FF);
261             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
262             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velecsum         = _mm256_add_pd(velecsum,velec);
266             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
267
268             fscal            = _mm256_add_pd(felec,fvdw);
269
270             /* Calculate temporary vectorial force */
271             tx               = _mm256_mul_pd(fscal,dx00);
272             ty               = _mm256_mul_pd(fscal,dy00);
273             tz               = _mm256_mul_pd(fscal,dz00);
274
275             /* Update vectorial force */
276             fix0             = _mm256_add_pd(fix0,tx);
277             fiy0             = _mm256_add_pd(fiy0,ty);
278             fiz0             = _mm256_add_pd(fiz0,tz);
279
280             fjptrA             = f+j_coord_offsetA;
281             fjptrB             = f+j_coord_offsetB;
282             fjptrC             = f+j_coord_offsetC;
283             fjptrD             = f+j_coord_offsetD;
284             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
285
286             /* Inner loop uses 62 flops */
287         }
288
289         if(jidx<j_index_end)
290         {
291
292             /* Get j neighbor index, and coordinate index */
293             jnrlistA         = jjnr[jidx];
294             jnrlistB         = jjnr[jidx+1];
295             jnrlistC         = jjnr[jidx+2];
296             jnrlistD         = jjnr[jidx+3];
297             /* Sign of each element will be negative for non-real atoms.
298              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
299              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
300              */
301             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
302
303             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
304             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
305             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
306
307             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
308             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
309             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
310             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
311             j_coord_offsetA  = DIM*jnrA;
312             j_coord_offsetB  = DIM*jnrB;
313             j_coord_offsetC  = DIM*jnrC;
314             j_coord_offsetD  = DIM*jnrD;
315
316             /* load j atom coordinates */
317             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
318                                                  x+j_coord_offsetC,x+j_coord_offsetD,
319                                                  &jx0,&jy0,&jz0);
320
321             /* Calculate displacement vector */
322             dx00             = _mm256_sub_pd(ix0,jx0);
323             dy00             = _mm256_sub_pd(iy0,jy0);
324             dz00             = _mm256_sub_pd(iz0,jz0);
325
326             /* Calculate squared distance and things based on it */
327             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
328
329             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
330
331             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
332
333             /* Load parameters for j particles */
334             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
335                                                                  charge+jnrC+0,charge+jnrD+0);
336             vdwjidx0A        = 2*vdwtype[jnrA+0];
337             vdwjidx0B        = 2*vdwtype[jnrB+0];
338             vdwjidx0C        = 2*vdwtype[jnrC+0];
339             vdwjidx0D        = 2*vdwtype[jnrD+0];
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             r00              = _mm256_mul_pd(rsq00,rinv00);
346             r00              = _mm256_andnot_pd(dummy_mask,r00);
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq00             = _mm256_mul_pd(iq0,jq0);
350             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
351                                             vdwioffsetptr0+vdwjidx0B,
352                                             vdwioffsetptr0+vdwjidx0C,
353                                             vdwioffsetptr0+vdwjidx0D,
354                                             &c6_00,&c12_00);
355
356             /* Calculate table index by multiplying r with table scale and truncate to integer */
357             rt               = _mm256_mul_pd(r00,vftabscale);
358             vfitab           = _mm256_cvttpd_epi32(rt);
359             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
360             vfitab           = _mm_slli_epi32(vfitab,3);
361
362             /* COULOMB ELECTROSTATICS */
363             velec            = _mm256_mul_pd(qq00,rinv00);
364             felec            = _mm256_mul_pd(velec,rinvsq00);
365
366             /* CUBIC SPLINE TABLE DISPERSION */
367             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
368             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
369             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
370             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
371             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
372             Heps             = _mm256_mul_pd(vfeps,H);
373             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
374             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
375             vvdw6            = _mm256_mul_pd(c6_00,VV);
376             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
377             fvdw6            = _mm256_mul_pd(c6_00,FF);
378
379             /* CUBIC SPLINE TABLE REPULSION */
380             vfitab           = _mm_add_epi32(vfitab,ifour);
381             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
382             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
383             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
384             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
385             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
386             Heps             = _mm256_mul_pd(vfeps,H);
387             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
388             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
389             vvdw12           = _mm256_mul_pd(c12_00,VV);
390             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
391             fvdw12           = _mm256_mul_pd(c12_00,FF);
392             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
393             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velec            = _mm256_andnot_pd(dummy_mask,velec);
397             velecsum         = _mm256_add_pd(velecsum,velec);
398             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
399             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
400
401             fscal            = _mm256_add_pd(felec,fvdw);
402
403             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
404
405             /* Calculate temporary vectorial force */
406             tx               = _mm256_mul_pd(fscal,dx00);
407             ty               = _mm256_mul_pd(fscal,dy00);
408             tz               = _mm256_mul_pd(fscal,dz00);
409
410             /* Update vectorial force */
411             fix0             = _mm256_add_pd(fix0,tx);
412             fiy0             = _mm256_add_pd(fiy0,ty);
413             fiz0             = _mm256_add_pd(fiz0,tz);
414
415             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
416             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
417             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
418             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
419             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
420
421             /* Inner loop uses 63 flops */
422         }
423
424         /* End of innermost loop */
425
426         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
427                                                  f+i_coord_offset,fshift+i_shift_offset);
428
429         ggid                        = gid[iidx];
430         /* Update potential energies */
431         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
432         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
433
434         /* Increment number of inner iterations */
435         inneriter                  += j_index_end - j_index_start;
436
437         /* Outer loop uses 9 flops */
438     }
439
440     /* Increment number of outer iterations */
441     outeriter        += nri;
442
443     /* Update outer/inner flops */
444
445     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*63);
446 }
447 /*
448  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_256_double
449  * Electrostatics interaction: Coulomb
450  * VdW interaction:            CubicSplineTable
451  * Geometry:                   Particle-Particle
452  * Calculate force/pot:        Force
453  */
454 void
455 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_256_double
456                     (t_nblist                    * gmx_restrict       nlist,
457                      rvec                        * gmx_restrict          xx,
458                      rvec                        * gmx_restrict          ff,
459                      t_forcerec                  * gmx_restrict          fr,
460                      t_mdatoms                   * gmx_restrict     mdatoms,
461                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
462                      t_nrnb                      * gmx_restrict        nrnb)
463 {
464     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
465      * just 0 for non-waters.
466      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
467      * jnr indices corresponding to data put in the four positions in the SIMD register.
468      */
469     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
470     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
471     int              jnrA,jnrB,jnrC,jnrD;
472     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
473     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
474     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
475     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
476     real             rcutoff_scalar;
477     real             *shiftvec,*fshift,*x,*f;
478     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
479     real             scratch[4*DIM];
480     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
481     real *           vdwioffsetptr0;
482     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
483     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
484     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
485     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
486     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
487     real             *charge;
488     int              nvdwtype;
489     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
490     int              *vdwtype;
491     real             *vdwparam;
492     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
493     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
494     __m128i          vfitab;
495     __m128i          ifour       = _mm_set1_epi32(4);
496     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
497     real             *vftab;
498     __m256d          dummy_mask,cutoff_mask;
499     __m128           tmpmask0,tmpmask1;
500     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
501     __m256d          one     = _mm256_set1_pd(1.0);
502     __m256d          two     = _mm256_set1_pd(2.0);
503     x                = xx[0];
504     f                = ff[0];
505
506     nri              = nlist->nri;
507     iinr             = nlist->iinr;
508     jindex           = nlist->jindex;
509     jjnr             = nlist->jjnr;
510     shiftidx         = nlist->shift;
511     gid              = nlist->gid;
512     shiftvec         = fr->shift_vec[0];
513     fshift           = fr->fshift[0];
514     facel            = _mm256_set1_pd(fr->epsfac);
515     charge           = mdatoms->chargeA;
516     nvdwtype         = fr->ntype;
517     vdwparam         = fr->nbfp;
518     vdwtype          = mdatoms->typeA;
519
520     vftab            = kernel_data->table_vdw->data;
521     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
522
523     /* Avoid stupid compiler warnings */
524     jnrA = jnrB = jnrC = jnrD = 0;
525     j_coord_offsetA = 0;
526     j_coord_offsetB = 0;
527     j_coord_offsetC = 0;
528     j_coord_offsetD = 0;
529
530     outeriter        = 0;
531     inneriter        = 0;
532
533     for(iidx=0;iidx<4*DIM;iidx++)
534     {
535         scratch[iidx] = 0.0;
536     }
537
538     /* Start outer loop over neighborlists */
539     for(iidx=0; iidx<nri; iidx++)
540     {
541         /* Load shift vector for this list */
542         i_shift_offset   = DIM*shiftidx[iidx];
543
544         /* Load limits for loop over neighbors */
545         j_index_start    = jindex[iidx];
546         j_index_end      = jindex[iidx+1];
547
548         /* Get outer coordinate index */
549         inr              = iinr[iidx];
550         i_coord_offset   = DIM*inr;
551
552         /* Load i particle coords and add shift vector */
553         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
554
555         fix0             = _mm256_setzero_pd();
556         fiy0             = _mm256_setzero_pd();
557         fiz0             = _mm256_setzero_pd();
558
559         /* Load parameters for i particles */
560         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
561         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
562
563         /* Start inner kernel loop */
564         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
565         {
566
567             /* Get j neighbor index, and coordinate index */
568             jnrA             = jjnr[jidx];
569             jnrB             = jjnr[jidx+1];
570             jnrC             = jjnr[jidx+2];
571             jnrD             = jjnr[jidx+3];
572             j_coord_offsetA  = DIM*jnrA;
573             j_coord_offsetB  = DIM*jnrB;
574             j_coord_offsetC  = DIM*jnrC;
575             j_coord_offsetD  = DIM*jnrD;
576
577             /* load j atom coordinates */
578             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
579                                                  x+j_coord_offsetC,x+j_coord_offsetD,
580                                                  &jx0,&jy0,&jz0);
581
582             /* Calculate displacement vector */
583             dx00             = _mm256_sub_pd(ix0,jx0);
584             dy00             = _mm256_sub_pd(iy0,jy0);
585             dz00             = _mm256_sub_pd(iz0,jz0);
586
587             /* Calculate squared distance and things based on it */
588             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
589
590             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
591
592             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
593
594             /* Load parameters for j particles */
595             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
596                                                                  charge+jnrC+0,charge+jnrD+0);
597             vdwjidx0A        = 2*vdwtype[jnrA+0];
598             vdwjidx0B        = 2*vdwtype[jnrB+0];
599             vdwjidx0C        = 2*vdwtype[jnrC+0];
600             vdwjidx0D        = 2*vdwtype[jnrD+0];
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             r00              = _mm256_mul_pd(rsq00,rinv00);
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq00             = _mm256_mul_pd(iq0,jq0);
610             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
611                                             vdwioffsetptr0+vdwjidx0B,
612                                             vdwioffsetptr0+vdwjidx0C,
613                                             vdwioffsetptr0+vdwjidx0D,
614                                             &c6_00,&c12_00);
615
616             /* Calculate table index by multiplying r with table scale and truncate to integer */
617             rt               = _mm256_mul_pd(r00,vftabscale);
618             vfitab           = _mm256_cvttpd_epi32(rt);
619             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
620             vfitab           = _mm_slli_epi32(vfitab,3);
621
622             /* COULOMB ELECTROSTATICS */
623             velec            = _mm256_mul_pd(qq00,rinv00);
624             felec            = _mm256_mul_pd(velec,rinvsq00);
625
626             /* CUBIC SPLINE TABLE DISPERSION */
627             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
628             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
629             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
630             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
631             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
632             Heps             = _mm256_mul_pd(vfeps,H);
633             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
634             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
635             fvdw6            = _mm256_mul_pd(c6_00,FF);
636
637             /* CUBIC SPLINE TABLE REPULSION */
638             vfitab           = _mm_add_epi32(vfitab,ifour);
639             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
640             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
641             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
642             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
643             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
644             Heps             = _mm256_mul_pd(vfeps,H);
645             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
646             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
647             fvdw12           = _mm256_mul_pd(c12_00,FF);
648             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
649
650             fscal            = _mm256_add_pd(felec,fvdw);
651
652             /* Calculate temporary vectorial force */
653             tx               = _mm256_mul_pd(fscal,dx00);
654             ty               = _mm256_mul_pd(fscal,dy00);
655             tz               = _mm256_mul_pd(fscal,dz00);
656
657             /* Update vectorial force */
658             fix0             = _mm256_add_pd(fix0,tx);
659             fiy0             = _mm256_add_pd(fiy0,ty);
660             fiz0             = _mm256_add_pd(fiz0,tz);
661
662             fjptrA             = f+j_coord_offsetA;
663             fjptrB             = f+j_coord_offsetB;
664             fjptrC             = f+j_coord_offsetC;
665             fjptrD             = f+j_coord_offsetD;
666             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
667
668             /* Inner loop uses 53 flops */
669         }
670
671         if(jidx<j_index_end)
672         {
673
674             /* Get j neighbor index, and coordinate index */
675             jnrlistA         = jjnr[jidx];
676             jnrlistB         = jjnr[jidx+1];
677             jnrlistC         = jjnr[jidx+2];
678             jnrlistD         = jjnr[jidx+3];
679             /* Sign of each element will be negative for non-real atoms.
680              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
681              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
682              */
683             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
684
685             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
686             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
687             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
688
689             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
690             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
691             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
692             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
693             j_coord_offsetA  = DIM*jnrA;
694             j_coord_offsetB  = DIM*jnrB;
695             j_coord_offsetC  = DIM*jnrC;
696             j_coord_offsetD  = DIM*jnrD;
697
698             /* load j atom coordinates */
699             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
700                                                  x+j_coord_offsetC,x+j_coord_offsetD,
701                                                  &jx0,&jy0,&jz0);
702
703             /* Calculate displacement vector */
704             dx00             = _mm256_sub_pd(ix0,jx0);
705             dy00             = _mm256_sub_pd(iy0,jy0);
706             dz00             = _mm256_sub_pd(iz0,jz0);
707
708             /* Calculate squared distance and things based on it */
709             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
710
711             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
712
713             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
714
715             /* Load parameters for j particles */
716             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
717                                                                  charge+jnrC+0,charge+jnrD+0);
718             vdwjidx0A        = 2*vdwtype[jnrA+0];
719             vdwjidx0B        = 2*vdwtype[jnrB+0];
720             vdwjidx0C        = 2*vdwtype[jnrC+0];
721             vdwjidx0D        = 2*vdwtype[jnrD+0];
722
723             /**************************
724              * CALCULATE INTERACTIONS *
725              **************************/
726
727             r00              = _mm256_mul_pd(rsq00,rinv00);
728             r00              = _mm256_andnot_pd(dummy_mask,r00);
729
730             /* Compute parameters for interactions between i and j atoms */
731             qq00             = _mm256_mul_pd(iq0,jq0);
732             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
733                                             vdwioffsetptr0+vdwjidx0B,
734                                             vdwioffsetptr0+vdwjidx0C,
735                                             vdwioffsetptr0+vdwjidx0D,
736                                             &c6_00,&c12_00);
737
738             /* Calculate table index by multiplying r with table scale and truncate to integer */
739             rt               = _mm256_mul_pd(r00,vftabscale);
740             vfitab           = _mm256_cvttpd_epi32(rt);
741             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
742             vfitab           = _mm_slli_epi32(vfitab,3);
743
744             /* COULOMB ELECTROSTATICS */
745             velec            = _mm256_mul_pd(qq00,rinv00);
746             felec            = _mm256_mul_pd(velec,rinvsq00);
747
748             /* CUBIC SPLINE TABLE DISPERSION */
749             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
750             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
751             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
752             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
753             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
754             Heps             = _mm256_mul_pd(vfeps,H);
755             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
756             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
757             fvdw6            = _mm256_mul_pd(c6_00,FF);
758
759             /* CUBIC SPLINE TABLE REPULSION */
760             vfitab           = _mm_add_epi32(vfitab,ifour);
761             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
762             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
763             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
764             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
765             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
766             Heps             = _mm256_mul_pd(vfeps,H);
767             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
768             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
769             fvdw12           = _mm256_mul_pd(c12_00,FF);
770             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
771
772             fscal            = _mm256_add_pd(felec,fvdw);
773
774             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
775
776             /* Calculate temporary vectorial force */
777             tx               = _mm256_mul_pd(fscal,dx00);
778             ty               = _mm256_mul_pd(fscal,dy00);
779             tz               = _mm256_mul_pd(fscal,dz00);
780
781             /* Update vectorial force */
782             fix0             = _mm256_add_pd(fix0,tx);
783             fiy0             = _mm256_add_pd(fiy0,ty);
784             fiz0             = _mm256_add_pd(fiz0,tz);
785
786             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
787             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
788             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
789             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
790             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
791
792             /* Inner loop uses 54 flops */
793         }
794
795         /* End of innermost loop */
796
797         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
798                                                  f+i_coord_offset,fshift+i_shift_offset);
799
800         /* Increment number of inner iterations */
801         inneriter                  += j_index_end - j_index_start;
802
803         /* Outer loop uses 7 flops */
804     }
805
806     /* Increment number of outer iterations */
807     outeriter        += nri;
808
809     /* Update outer/inner flops */
810
811     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*54);
812 }