38bc56354e10e247795d69ea493be51af59562d3
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm256_setzero_pd();
159         fiy0             = _mm256_setzero_pd();
160         fiz0             = _mm256_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
164         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _mm256_setzero_pd();
168         vvdwsum          = _mm256_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm256_sub_pd(ix0,jx0);
191             dy00             = _mm256_sub_pd(iy0,jy0);
192             dz00             = _mm256_sub_pd(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
196
197             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
198
199             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
203                                                                  charge+jnrC+0,charge+jnrD+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206             vdwjidx0C        = 2*vdwtype[jnrC+0];
207             vdwjidx0D        = 2*vdwtype[jnrD+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             r00              = _mm256_mul_pd(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm256_mul_pd(iq0,jq0);
217             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
218                                             vdwioffsetptr0+vdwjidx0B,
219                                             vdwioffsetptr0+vdwjidx0C,
220                                             vdwioffsetptr0+vdwjidx0D,
221                                             &c6_00,&c12_00);
222
223             /* Calculate table index by multiplying r with table scale and truncate to integer */
224             rt               = _mm256_mul_pd(r00,vftabscale);
225             vfitab           = _mm256_cvttpd_epi32(rt);
226             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
227             vfitab           = _mm_slli_epi32(vfitab,3);
228
229             /* COULOMB ELECTROSTATICS */
230             velec            = _mm256_mul_pd(qq00,rinv00);
231             felec            = _mm256_mul_pd(velec,rinvsq00);
232
233             /* CUBIC SPLINE TABLE DISPERSION */
234             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
235             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
236             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
237             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
238             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
239             Heps             = _mm256_mul_pd(vfeps,H);
240             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
241             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
242             vvdw6            = _mm256_mul_pd(c6_00,VV);
243             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
244             fvdw6            = _mm256_mul_pd(c6_00,FF);
245
246             /* CUBIC SPLINE TABLE REPULSION */
247             vfitab           = _mm_add_epi32(vfitab,ifour);
248             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
249             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
250             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
251             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
252             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
253             Heps             = _mm256_mul_pd(vfeps,H);
254             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
255             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
256             vvdw12           = _mm256_mul_pd(c12_00,VV);
257             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
258             fvdw12           = _mm256_mul_pd(c12_00,FF);
259             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
260             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _mm256_add_pd(velecsum,velec);
264             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
265
266             fscal            = _mm256_add_pd(felec,fvdw);
267
268             /* Calculate temporary vectorial force */
269             tx               = _mm256_mul_pd(fscal,dx00);
270             ty               = _mm256_mul_pd(fscal,dy00);
271             tz               = _mm256_mul_pd(fscal,dz00);
272
273             /* Update vectorial force */
274             fix0             = _mm256_add_pd(fix0,tx);
275             fiy0             = _mm256_add_pd(fiy0,ty);
276             fiz0             = _mm256_add_pd(fiz0,tz);
277
278             fjptrA             = f+j_coord_offsetA;
279             fjptrB             = f+j_coord_offsetB;
280             fjptrC             = f+j_coord_offsetC;
281             fjptrD             = f+j_coord_offsetD;
282             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
283
284             /* Inner loop uses 62 flops */
285         }
286
287         if(jidx<j_index_end)
288         {
289
290             /* Get j neighbor index, and coordinate index */
291             jnrlistA         = jjnr[jidx];
292             jnrlistB         = jjnr[jidx+1];
293             jnrlistC         = jjnr[jidx+2];
294             jnrlistD         = jjnr[jidx+3];
295             /* Sign of each element will be negative for non-real atoms.
296              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
297              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
298              */
299             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
300
301             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
302             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
303             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
304
305             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
306             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
307             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
308             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
309             j_coord_offsetA  = DIM*jnrA;
310             j_coord_offsetB  = DIM*jnrB;
311             j_coord_offsetC  = DIM*jnrC;
312             j_coord_offsetD  = DIM*jnrD;
313
314             /* load j atom coordinates */
315             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
316                                                  x+j_coord_offsetC,x+j_coord_offsetD,
317                                                  &jx0,&jy0,&jz0);
318
319             /* Calculate displacement vector */
320             dx00             = _mm256_sub_pd(ix0,jx0);
321             dy00             = _mm256_sub_pd(iy0,jy0);
322             dz00             = _mm256_sub_pd(iz0,jz0);
323
324             /* Calculate squared distance and things based on it */
325             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
326
327             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
328
329             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
330
331             /* Load parameters for j particles */
332             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
333                                                                  charge+jnrC+0,charge+jnrD+0);
334             vdwjidx0A        = 2*vdwtype[jnrA+0];
335             vdwjidx0B        = 2*vdwtype[jnrB+0];
336             vdwjidx0C        = 2*vdwtype[jnrC+0];
337             vdwjidx0D        = 2*vdwtype[jnrD+0];
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r00              = _mm256_mul_pd(rsq00,rinv00);
344             r00              = _mm256_andnot_pd(dummy_mask,r00);
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq00             = _mm256_mul_pd(iq0,jq0);
348             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
349                                             vdwioffsetptr0+vdwjidx0B,
350                                             vdwioffsetptr0+vdwjidx0C,
351                                             vdwioffsetptr0+vdwjidx0D,
352                                             &c6_00,&c12_00);
353
354             /* Calculate table index by multiplying r with table scale and truncate to integer */
355             rt               = _mm256_mul_pd(r00,vftabscale);
356             vfitab           = _mm256_cvttpd_epi32(rt);
357             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
358             vfitab           = _mm_slli_epi32(vfitab,3);
359
360             /* COULOMB ELECTROSTATICS */
361             velec            = _mm256_mul_pd(qq00,rinv00);
362             felec            = _mm256_mul_pd(velec,rinvsq00);
363
364             /* CUBIC SPLINE TABLE DISPERSION */
365             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
366             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
367             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
368             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
369             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
370             Heps             = _mm256_mul_pd(vfeps,H);
371             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
372             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
373             vvdw6            = _mm256_mul_pd(c6_00,VV);
374             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
375             fvdw6            = _mm256_mul_pd(c6_00,FF);
376
377             /* CUBIC SPLINE TABLE REPULSION */
378             vfitab           = _mm_add_epi32(vfitab,ifour);
379             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
380             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
381             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
382             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
383             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
384             Heps             = _mm256_mul_pd(vfeps,H);
385             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
386             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
387             vvdw12           = _mm256_mul_pd(c12_00,VV);
388             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
389             fvdw12           = _mm256_mul_pd(c12_00,FF);
390             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
391             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velec            = _mm256_andnot_pd(dummy_mask,velec);
395             velecsum         = _mm256_add_pd(velecsum,velec);
396             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
397             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
398
399             fscal            = _mm256_add_pd(felec,fvdw);
400
401             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
402
403             /* Calculate temporary vectorial force */
404             tx               = _mm256_mul_pd(fscal,dx00);
405             ty               = _mm256_mul_pd(fscal,dy00);
406             tz               = _mm256_mul_pd(fscal,dz00);
407
408             /* Update vectorial force */
409             fix0             = _mm256_add_pd(fix0,tx);
410             fiy0             = _mm256_add_pd(fiy0,ty);
411             fiz0             = _mm256_add_pd(fiz0,tz);
412
413             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
414             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
415             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
416             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
417             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
418
419             /* Inner loop uses 63 flops */
420         }
421
422         /* End of innermost loop */
423
424         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
425                                                  f+i_coord_offset,fshift+i_shift_offset);
426
427         ggid                        = gid[iidx];
428         /* Update potential energies */
429         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
430         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
431
432         /* Increment number of inner iterations */
433         inneriter                  += j_index_end - j_index_start;
434
435         /* Outer loop uses 9 flops */
436     }
437
438     /* Increment number of outer iterations */
439     outeriter        += nri;
440
441     /* Update outer/inner flops */
442
443     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*63);
444 }
445 /*
446  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_256_double
447  * Electrostatics interaction: Coulomb
448  * VdW interaction:            CubicSplineTable
449  * Geometry:                   Particle-Particle
450  * Calculate force/pot:        Force
451  */
452 void
453 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_256_double
454                     (t_nblist                    * gmx_restrict       nlist,
455                      rvec                        * gmx_restrict          xx,
456                      rvec                        * gmx_restrict          ff,
457                      t_forcerec                  * gmx_restrict          fr,
458                      t_mdatoms                   * gmx_restrict     mdatoms,
459                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
460                      t_nrnb                      * gmx_restrict        nrnb)
461 {
462     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
463      * just 0 for non-waters.
464      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
465      * jnr indices corresponding to data put in the four positions in the SIMD register.
466      */
467     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
468     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
469     int              jnrA,jnrB,jnrC,jnrD;
470     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
471     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
472     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
473     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
474     real             rcutoff_scalar;
475     real             *shiftvec,*fshift,*x,*f;
476     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
477     real             scratch[4*DIM];
478     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
479     real *           vdwioffsetptr0;
480     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
481     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
482     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
483     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
484     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
485     real             *charge;
486     int              nvdwtype;
487     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
488     int              *vdwtype;
489     real             *vdwparam;
490     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
491     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
492     __m128i          vfitab;
493     __m128i          ifour       = _mm_set1_epi32(4);
494     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
495     real             *vftab;
496     __m256d          dummy_mask,cutoff_mask;
497     __m128           tmpmask0,tmpmask1;
498     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
499     __m256d          one     = _mm256_set1_pd(1.0);
500     __m256d          two     = _mm256_set1_pd(2.0);
501     x                = xx[0];
502     f                = ff[0];
503
504     nri              = nlist->nri;
505     iinr             = nlist->iinr;
506     jindex           = nlist->jindex;
507     jjnr             = nlist->jjnr;
508     shiftidx         = nlist->shift;
509     gid              = nlist->gid;
510     shiftvec         = fr->shift_vec[0];
511     fshift           = fr->fshift[0];
512     facel            = _mm256_set1_pd(fr->epsfac);
513     charge           = mdatoms->chargeA;
514     nvdwtype         = fr->ntype;
515     vdwparam         = fr->nbfp;
516     vdwtype          = mdatoms->typeA;
517
518     vftab            = kernel_data->table_vdw->data;
519     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
520
521     /* Avoid stupid compiler warnings */
522     jnrA = jnrB = jnrC = jnrD = 0;
523     j_coord_offsetA = 0;
524     j_coord_offsetB = 0;
525     j_coord_offsetC = 0;
526     j_coord_offsetD = 0;
527
528     outeriter        = 0;
529     inneriter        = 0;
530
531     for(iidx=0;iidx<4*DIM;iidx++)
532     {
533         scratch[iidx] = 0.0;
534     }
535
536     /* Start outer loop over neighborlists */
537     for(iidx=0; iidx<nri; iidx++)
538     {
539         /* Load shift vector for this list */
540         i_shift_offset   = DIM*shiftidx[iidx];
541
542         /* Load limits for loop over neighbors */
543         j_index_start    = jindex[iidx];
544         j_index_end      = jindex[iidx+1];
545
546         /* Get outer coordinate index */
547         inr              = iinr[iidx];
548         i_coord_offset   = DIM*inr;
549
550         /* Load i particle coords and add shift vector */
551         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
552
553         fix0             = _mm256_setzero_pd();
554         fiy0             = _mm256_setzero_pd();
555         fiz0             = _mm256_setzero_pd();
556
557         /* Load parameters for i particles */
558         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
559         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
560
561         /* Start inner kernel loop */
562         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
563         {
564
565             /* Get j neighbor index, and coordinate index */
566             jnrA             = jjnr[jidx];
567             jnrB             = jjnr[jidx+1];
568             jnrC             = jjnr[jidx+2];
569             jnrD             = jjnr[jidx+3];
570             j_coord_offsetA  = DIM*jnrA;
571             j_coord_offsetB  = DIM*jnrB;
572             j_coord_offsetC  = DIM*jnrC;
573             j_coord_offsetD  = DIM*jnrD;
574
575             /* load j atom coordinates */
576             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
577                                                  x+j_coord_offsetC,x+j_coord_offsetD,
578                                                  &jx0,&jy0,&jz0);
579
580             /* Calculate displacement vector */
581             dx00             = _mm256_sub_pd(ix0,jx0);
582             dy00             = _mm256_sub_pd(iy0,jy0);
583             dz00             = _mm256_sub_pd(iz0,jz0);
584
585             /* Calculate squared distance and things based on it */
586             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
587
588             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
589
590             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
591
592             /* Load parameters for j particles */
593             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
594                                                                  charge+jnrC+0,charge+jnrD+0);
595             vdwjidx0A        = 2*vdwtype[jnrA+0];
596             vdwjidx0B        = 2*vdwtype[jnrB+0];
597             vdwjidx0C        = 2*vdwtype[jnrC+0];
598             vdwjidx0D        = 2*vdwtype[jnrD+0];
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             r00              = _mm256_mul_pd(rsq00,rinv00);
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq00             = _mm256_mul_pd(iq0,jq0);
608             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
609                                             vdwioffsetptr0+vdwjidx0B,
610                                             vdwioffsetptr0+vdwjidx0C,
611                                             vdwioffsetptr0+vdwjidx0D,
612                                             &c6_00,&c12_00);
613
614             /* Calculate table index by multiplying r with table scale and truncate to integer */
615             rt               = _mm256_mul_pd(r00,vftabscale);
616             vfitab           = _mm256_cvttpd_epi32(rt);
617             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
618             vfitab           = _mm_slli_epi32(vfitab,3);
619
620             /* COULOMB ELECTROSTATICS */
621             velec            = _mm256_mul_pd(qq00,rinv00);
622             felec            = _mm256_mul_pd(velec,rinvsq00);
623
624             /* CUBIC SPLINE TABLE DISPERSION */
625             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
626             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
627             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
628             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
629             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
630             Heps             = _mm256_mul_pd(vfeps,H);
631             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
632             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
633             fvdw6            = _mm256_mul_pd(c6_00,FF);
634
635             /* CUBIC SPLINE TABLE REPULSION */
636             vfitab           = _mm_add_epi32(vfitab,ifour);
637             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
638             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
639             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
640             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
641             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
642             Heps             = _mm256_mul_pd(vfeps,H);
643             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
644             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
645             fvdw12           = _mm256_mul_pd(c12_00,FF);
646             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
647
648             fscal            = _mm256_add_pd(felec,fvdw);
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm256_mul_pd(fscal,dx00);
652             ty               = _mm256_mul_pd(fscal,dy00);
653             tz               = _mm256_mul_pd(fscal,dz00);
654
655             /* Update vectorial force */
656             fix0             = _mm256_add_pd(fix0,tx);
657             fiy0             = _mm256_add_pd(fiy0,ty);
658             fiz0             = _mm256_add_pd(fiz0,tz);
659
660             fjptrA             = f+j_coord_offsetA;
661             fjptrB             = f+j_coord_offsetB;
662             fjptrC             = f+j_coord_offsetC;
663             fjptrD             = f+j_coord_offsetD;
664             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
665
666             /* Inner loop uses 53 flops */
667         }
668
669         if(jidx<j_index_end)
670         {
671
672             /* Get j neighbor index, and coordinate index */
673             jnrlistA         = jjnr[jidx];
674             jnrlistB         = jjnr[jidx+1];
675             jnrlistC         = jjnr[jidx+2];
676             jnrlistD         = jjnr[jidx+3];
677             /* Sign of each element will be negative for non-real atoms.
678              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
679              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
680              */
681             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
682
683             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
684             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
685             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
686
687             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
688             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
689             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
690             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
691             j_coord_offsetA  = DIM*jnrA;
692             j_coord_offsetB  = DIM*jnrB;
693             j_coord_offsetC  = DIM*jnrC;
694             j_coord_offsetD  = DIM*jnrD;
695
696             /* load j atom coordinates */
697             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
698                                                  x+j_coord_offsetC,x+j_coord_offsetD,
699                                                  &jx0,&jy0,&jz0);
700
701             /* Calculate displacement vector */
702             dx00             = _mm256_sub_pd(ix0,jx0);
703             dy00             = _mm256_sub_pd(iy0,jy0);
704             dz00             = _mm256_sub_pd(iz0,jz0);
705
706             /* Calculate squared distance and things based on it */
707             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
708
709             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
710
711             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
712
713             /* Load parameters for j particles */
714             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
715                                                                  charge+jnrC+0,charge+jnrD+0);
716             vdwjidx0A        = 2*vdwtype[jnrA+0];
717             vdwjidx0B        = 2*vdwtype[jnrB+0];
718             vdwjidx0C        = 2*vdwtype[jnrC+0];
719             vdwjidx0D        = 2*vdwtype[jnrD+0];
720
721             /**************************
722              * CALCULATE INTERACTIONS *
723              **************************/
724
725             r00              = _mm256_mul_pd(rsq00,rinv00);
726             r00              = _mm256_andnot_pd(dummy_mask,r00);
727
728             /* Compute parameters for interactions between i and j atoms */
729             qq00             = _mm256_mul_pd(iq0,jq0);
730             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
731                                             vdwioffsetptr0+vdwjidx0B,
732                                             vdwioffsetptr0+vdwjidx0C,
733                                             vdwioffsetptr0+vdwjidx0D,
734                                             &c6_00,&c12_00);
735
736             /* Calculate table index by multiplying r with table scale and truncate to integer */
737             rt               = _mm256_mul_pd(r00,vftabscale);
738             vfitab           = _mm256_cvttpd_epi32(rt);
739             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
740             vfitab           = _mm_slli_epi32(vfitab,3);
741
742             /* COULOMB ELECTROSTATICS */
743             velec            = _mm256_mul_pd(qq00,rinv00);
744             felec            = _mm256_mul_pd(velec,rinvsq00);
745
746             /* CUBIC SPLINE TABLE DISPERSION */
747             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
748             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
749             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
750             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
751             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
752             Heps             = _mm256_mul_pd(vfeps,H);
753             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
754             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
755             fvdw6            = _mm256_mul_pd(c6_00,FF);
756
757             /* CUBIC SPLINE TABLE REPULSION */
758             vfitab           = _mm_add_epi32(vfitab,ifour);
759             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
760             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
761             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
762             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
763             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
764             Heps             = _mm256_mul_pd(vfeps,H);
765             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
766             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
767             fvdw12           = _mm256_mul_pd(c12_00,FF);
768             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
769
770             fscal            = _mm256_add_pd(felec,fvdw);
771
772             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
773
774             /* Calculate temporary vectorial force */
775             tx               = _mm256_mul_pd(fscal,dx00);
776             ty               = _mm256_mul_pd(fscal,dy00);
777             tz               = _mm256_mul_pd(fscal,dz00);
778
779             /* Update vectorial force */
780             fix0             = _mm256_add_pd(fix0,tx);
781             fiy0             = _mm256_add_pd(fiy0,ty);
782             fiz0             = _mm256_add_pd(fiz0,tz);
783
784             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
785             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
786             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
787             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
788             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
789
790             /* Inner loop uses 54 flops */
791         }
792
793         /* End of innermost loop */
794
795         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
796                                                  f+i_coord_offset,fshift+i_shift_offset);
797
798         /* Increment number of inner iterations */
799         inneriter                  += j_index_end - j_index_start;
800
801         /* Outer loop uses 7 flops */
802     }
803
804     /* Increment number of outer iterations */
805     outeriter        += nri;
806
807     /* Update outer/inner flops */
808
809     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*54);
810 }