8ff10897ff8f31331794a6968b213bab4d89ddca
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwNone_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr1;
85     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     real *           vdwioffsetptr2;
87     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     real *           vdwioffsetptr3;
89     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119
120     vftab            = kernel_data->table_elec->data;
121     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
126     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
127     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
160                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
161
162         fix1             = _mm256_setzero_pd();
163         fiy1             = _mm256_setzero_pd();
164         fiz1             = _mm256_setzero_pd();
165         fix2             = _mm256_setzero_pd();
166         fiy2             = _mm256_setzero_pd();
167         fiz2             = _mm256_setzero_pd();
168         fix3             = _mm256_setzero_pd();
169         fiy3             = _mm256_setzero_pd();
170         fiz3             = _mm256_setzero_pd();
171
172         /* Reset potential sums */
173         velecsum         = _mm256_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
191                                                  x+j_coord_offsetC,x+j_coord_offsetD,
192                                                  &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx10             = _mm256_sub_pd(ix1,jx0);
196             dy10             = _mm256_sub_pd(iy1,jy0);
197             dz10             = _mm256_sub_pd(iz1,jz0);
198             dx20             = _mm256_sub_pd(ix2,jx0);
199             dy20             = _mm256_sub_pd(iy2,jy0);
200             dz20             = _mm256_sub_pd(iz2,jz0);
201             dx30             = _mm256_sub_pd(ix3,jx0);
202             dy30             = _mm256_sub_pd(iy3,jy0);
203             dz30             = _mm256_sub_pd(iz3,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
207             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
208             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
209
210             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
211             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
212             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
216                                                                  charge+jnrC+0,charge+jnrD+0);
217
218             fjx0             = _mm256_setzero_pd();
219             fjy0             = _mm256_setzero_pd();
220             fjz0             = _mm256_setzero_pd();
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             r10              = _mm256_mul_pd(rsq10,rinv10);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq10             = _mm256_mul_pd(iq1,jq0);
230
231             /* Calculate table index by multiplying r with table scale and truncate to integer */
232             rt               = _mm256_mul_pd(r10,vftabscale);
233             vfitab           = _mm256_cvttpd_epi32(rt);
234             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
235             vfitab           = _mm_slli_epi32(vfitab,2);
236
237             /* CUBIC SPLINE TABLE ELECTROSTATICS */
238             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
239             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
240             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
241             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
242             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
243             Heps             = _mm256_mul_pd(vfeps,H);
244             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
245             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
246             velec            = _mm256_mul_pd(qq10,VV);
247             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
248             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velecsum         = _mm256_add_pd(velecsum,velec);
252
253             fscal            = felec;
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm256_mul_pd(fscal,dx10);
257             ty               = _mm256_mul_pd(fscal,dy10);
258             tz               = _mm256_mul_pd(fscal,dz10);
259
260             /* Update vectorial force */
261             fix1             = _mm256_add_pd(fix1,tx);
262             fiy1             = _mm256_add_pd(fiy1,ty);
263             fiz1             = _mm256_add_pd(fiz1,tz);
264
265             fjx0             = _mm256_add_pd(fjx0,tx);
266             fjy0             = _mm256_add_pd(fjy0,ty);
267             fjz0             = _mm256_add_pd(fjz0,tz);
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             r20              = _mm256_mul_pd(rsq20,rinv20);
274
275             /* Compute parameters for interactions between i and j atoms */
276             qq20             = _mm256_mul_pd(iq2,jq0);
277
278             /* Calculate table index by multiplying r with table scale and truncate to integer */
279             rt               = _mm256_mul_pd(r20,vftabscale);
280             vfitab           = _mm256_cvttpd_epi32(rt);
281             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
282             vfitab           = _mm_slli_epi32(vfitab,2);
283
284             /* CUBIC SPLINE TABLE ELECTROSTATICS */
285             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
286             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
287             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
288             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
289             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
290             Heps             = _mm256_mul_pd(vfeps,H);
291             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
292             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
293             velec            = _mm256_mul_pd(qq20,VV);
294             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
295             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm256_add_pd(velecsum,velec);
299
300             fscal            = felec;
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm256_mul_pd(fscal,dx20);
304             ty               = _mm256_mul_pd(fscal,dy20);
305             tz               = _mm256_mul_pd(fscal,dz20);
306
307             /* Update vectorial force */
308             fix2             = _mm256_add_pd(fix2,tx);
309             fiy2             = _mm256_add_pd(fiy2,ty);
310             fiz2             = _mm256_add_pd(fiz2,tz);
311
312             fjx0             = _mm256_add_pd(fjx0,tx);
313             fjy0             = _mm256_add_pd(fjy0,ty);
314             fjz0             = _mm256_add_pd(fjz0,tz);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r30              = _mm256_mul_pd(rsq30,rinv30);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq30             = _mm256_mul_pd(iq3,jq0);
324
325             /* Calculate table index by multiplying r with table scale and truncate to integer */
326             rt               = _mm256_mul_pd(r30,vftabscale);
327             vfitab           = _mm256_cvttpd_epi32(rt);
328             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
329             vfitab           = _mm_slli_epi32(vfitab,2);
330
331             /* CUBIC SPLINE TABLE ELECTROSTATICS */
332             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
333             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
334             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
335             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
336             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
337             Heps             = _mm256_mul_pd(vfeps,H);
338             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
339             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
340             velec            = _mm256_mul_pd(qq30,VV);
341             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
342             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm256_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm256_mul_pd(fscal,dx30);
351             ty               = _mm256_mul_pd(fscal,dy30);
352             tz               = _mm256_mul_pd(fscal,dz30);
353
354             /* Update vectorial force */
355             fix3             = _mm256_add_pd(fix3,tx);
356             fiy3             = _mm256_add_pd(fiy3,ty);
357             fiz3             = _mm256_add_pd(fiz3,tz);
358
359             fjx0             = _mm256_add_pd(fjx0,tx);
360             fjy0             = _mm256_add_pd(fjy0,ty);
361             fjz0             = _mm256_add_pd(fjz0,tz);
362
363             fjptrA             = f+j_coord_offsetA;
364             fjptrB             = f+j_coord_offsetB;
365             fjptrC             = f+j_coord_offsetC;
366             fjptrD             = f+j_coord_offsetD;
367
368             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
369
370             /* Inner loop uses 132 flops */
371         }
372
373         if(jidx<j_index_end)
374         {
375
376             /* Get j neighbor index, and coordinate index */
377             jnrlistA         = jjnr[jidx];
378             jnrlistB         = jjnr[jidx+1];
379             jnrlistC         = jjnr[jidx+2];
380             jnrlistD         = jjnr[jidx+3];
381             /* Sign of each element will be negative for non-real atoms.
382              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
383              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
384              */
385             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
386
387             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
388             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
389             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
390
391             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
392             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
393             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
394             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
395             j_coord_offsetA  = DIM*jnrA;
396             j_coord_offsetB  = DIM*jnrB;
397             j_coord_offsetC  = DIM*jnrC;
398             j_coord_offsetD  = DIM*jnrD;
399
400             /* load j atom coordinates */
401             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
402                                                  x+j_coord_offsetC,x+j_coord_offsetD,
403                                                  &jx0,&jy0,&jz0);
404
405             /* Calculate displacement vector */
406             dx10             = _mm256_sub_pd(ix1,jx0);
407             dy10             = _mm256_sub_pd(iy1,jy0);
408             dz10             = _mm256_sub_pd(iz1,jz0);
409             dx20             = _mm256_sub_pd(ix2,jx0);
410             dy20             = _mm256_sub_pd(iy2,jy0);
411             dz20             = _mm256_sub_pd(iz2,jz0);
412             dx30             = _mm256_sub_pd(ix3,jx0);
413             dy30             = _mm256_sub_pd(iy3,jy0);
414             dz30             = _mm256_sub_pd(iz3,jz0);
415
416             /* Calculate squared distance and things based on it */
417             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
418             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
419             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
420
421             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
422             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
423             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
424
425             /* Load parameters for j particles */
426             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
427                                                                  charge+jnrC+0,charge+jnrD+0);
428
429             fjx0             = _mm256_setzero_pd();
430             fjy0             = _mm256_setzero_pd();
431             fjz0             = _mm256_setzero_pd();
432
433             /**************************
434              * CALCULATE INTERACTIONS *
435              **************************/
436
437             r10              = _mm256_mul_pd(rsq10,rinv10);
438             r10              = _mm256_andnot_pd(dummy_mask,r10);
439
440             /* Compute parameters for interactions between i and j atoms */
441             qq10             = _mm256_mul_pd(iq1,jq0);
442
443             /* Calculate table index by multiplying r with table scale and truncate to integer */
444             rt               = _mm256_mul_pd(r10,vftabscale);
445             vfitab           = _mm256_cvttpd_epi32(rt);
446             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
447             vfitab           = _mm_slli_epi32(vfitab,2);
448
449             /* CUBIC SPLINE TABLE ELECTROSTATICS */
450             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
451             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
452             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
453             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
454             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
455             Heps             = _mm256_mul_pd(vfeps,H);
456             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
457             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
458             velec            = _mm256_mul_pd(qq10,VV);
459             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
460             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
461
462             /* Update potential sum for this i atom from the interaction with this j atom. */
463             velec            = _mm256_andnot_pd(dummy_mask,velec);
464             velecsum         = _mm256_add_pd(velecsum,velec);
465
466             fscal            = felec;
467
468             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm256_mul_pd(fscal,dx10);
472             ty               = _mm256_mul_pd(fscal,dy10);
473             tz               = _mm256_mul_pd(fscal,dz10);
474
475             /* Update vectorial force */
476             fix1             = _mm256_add_pd(fix1,tx);
477             fiy1             = _mm256_add_pd(fiy1,ty);
478             fiz1             = _mm256_add_pd(fiz1,tz);
479
480             fjx0             = _mm256_add_pd(fjx0,tx);
481             fjy0             = _mm256_add_pd(fjy0,ty);
482             fjz0             = _mm256_add_pd(fjz0,tz);
483
484             /**************************
485              * CALCULATE INTERACTIONS *
486              **************************/
487
488             r20              = _mm256_mul_pd(rsq20,rinv20);
489             r20              = _mm256_andnot_pd(dummy_mask,r20);
490
491             /* Compute parameters for interactions between i and j atoms */
492             qq20             = _mm256_mul_pd(iq2,jq0);
493
494             /* Calculate table index by multiplying r with table scale and truncate to integer */
495             rt               = _mm256_mul_pd(r20,vftabscale);
496             vfitab           = _mm256_cvttpd_epi32(rt);
497             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
498             vfitab           = _mm_slli_epi32(vfitab,2);
499
500             /* CUBIC SPLINE TABLE ELECTROSTATICS */
501             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
502             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
503             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
504             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
505             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
506             Heps             = _mm256_mul_pd(vfeps,H);
507             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
508             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
509             velec            = _mm256_mul_pd(qq20,VV);
510             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
511             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
512
513             /* Update potential sum for this i atom from the interaction with this j atom. */
514             velec            = _mm256_andnot_pd(dummy_mask,velec);
515             velecsum         = _mm256_add_pd(velecsum,velec);
516
517             fscal            = felec;
518
519             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm256_mul_pd(fscal,dx20);
523             ty               = _mm256_mul_pd(fscal,dy20);
524             tz               = _mm256_mul_pd(fscal,dz20);
525
526             /* Update vectorial force */
527             fix2             = _mm256_add_pd(fix2,tx);
528             fiy2             = _mm256_add_pd(fiy2,ty);
529             fiz2             = _mm256_add_pd(fiz2,tz);
530
531             fjx0             = _mm256_add_pd(fjx0,tx);
532             fjy0             = _mm256_add_pd(fjy0,ty);
533             fjz0             = _mm256_add_pd(fjz0,tz);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             r30              = _mm256_mul_pd(rsq30,rinv30);
540             r30              = _mm256_andnot_pd(dummy_mask,r30);
541
542             /* Compute parameters for interactions between i and j atoms */
543             qq30             = _mm256_mul_pd(iq3,jq0);
544
545             /* Calculate table index by multiplying r with table scale and truncate to integer */
546             rt               = _mm256_mul_pd(r30,vftabscale);
547             vfitab           = _mm256_cvttpd_epi32(rt);
548             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
549             vfitab           = _mm_slli_epi32(vfitab,2);
550
551             /* CUBIC SPLINE TABLE ELECTROSTATICS */
552             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
553             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
554             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
555             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
556             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
557             Heps             = _mm256_mul_pd(vfeps,H);
558             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
559             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
560             velec            = _mm256_mul_pd(qq30,VV);
561             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
562             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             velec            = _mm256_andnot_pd(dummy_mask,velec);
566             velecsum         = _mm256_add_pd(velecsum,velec);
567
568             fscal            = felec;
569
570             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
571
572             /* Calculate temporary vectorial force */
573             tx               = _mm256_mul_pd(fscal,dx30);
574             ty               = _mm256_mul_pd(fscal,dy30);
575             tz               = _mm256_mul_pd(fscal,dz30);
576
577             /* Update vectorial force */
578             fix3             = _mm256_add_pd(fix3,tx);
579             fiy3             = _mm256_add_pd(fiy3,ty);
580             fiz3             = _mm256_add_pd(fiz3,tz);
581
582             fjx0             = _mm256_add_pd(fjx0,tx);
583             fjy0             = _mm256_add_pd(fjy0,ty);
584             fjz0             = _mm256_add_pd(fjz0,tz);
585
586             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
587             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
588             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
589             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
590
591             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
592
593             /* Inner loop uses 135 flops */
594         }
595
596         /* End of innermost loop */
597
598         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
599                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
600
601         ggid                        = gid[iidx];
602         /* Update potential energies */
603         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
604
605         /* Increment number of inner iterations */
606         inneriter                  += j_index_end - j_index_start;
607
608         /* Outer loop uses 19 flops */
609     }
610
611     /* Increment number of outer iterations */
612     outeriter        += nri;
613
614     /* Update outer/inner flops */
615
616     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*135);
617 }
618 /*
619  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_avx_256_double
620  * Electrostatics interaction: CubicSplineTable
621  * VdW interaction:            None
622  * Geometry:                   Water4-Particle
623  * Calculate force/pot:        Force
624  */
625 void
626 nb_kernel_ElecCSTab_VdwNone_GeomW4P1_F_avx_256_double
627                     (t_nblist                    * gmx_restrict       nlist,
628                      rvec                        * gmx_restrict          xx,
629                      rvec                        * gmx_restrict          ff,
630                      t_forcerec                  * gmx_restrict          fr,
631                      t_mdatoms                   * gmx_restrict     mdatoms,
632                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
633                      t_nrnb                      * gmx_restrict        nrnb)
634 {
635     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
636      * just 0 for non-waters.
637      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
638      * jnr indices corresponding to data put in the four positions in the SIMD register.
639      */
640     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
641     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
642     int              jnrA,jnrB,jnrC,jnrD;
643     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
644     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
645     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
646     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
647     real             rcutoff_scalar;
648     real             *shiftvec,*fshift,*x,*f;
649     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
650     real             scratch[4*DIM];
651     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
652     real *           vdwioffsetptr1;
653     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
654     real *           vdwioffsetptr2;
655     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
656     real *           vdwioffsetptr3;
657     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
658     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
659     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
660     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
661     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
662     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
663     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
664     real             *charge;
665     __m128i          vfitab;
666     __m128i          ifour       = _mm_set1_epi32(4);
667     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
668     real             *vftab;
669     __m256d          dummy_mask,cutoff_mask;
670     __m128           tmpmask0,tmpmask1;
671     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
672     __m256d          one     = _mm256_set1_pd(1.0);
673     __m256d          two     = _mm256_set1_pd(2.0);
674     x                = xx[0];
675     f                = ff[0];
676
677     nri              = nlist->nri;
678     iinr             = nlist->iinr;
679     jindex           = nlist->jindex;
680     jjnr             = nlist->jjnr;
681     shiftidx         = nlist->shift;
682     gid              = nlist->gid;
683     shiftvec         = fr->shift_vec[0];
684     fshift           = fr->fshift[0];
685     facel            = _mm256_set1_pd(fr->epsfac);
686     charge           = mdatoms->chargeA;
687
688     vftab            = kernel_data->table_elec->data;
689     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
690
691     /* Setup water-specific parameters */
692     inr              = nlist->iinr[0];
693     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
694     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
695     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
696
697     /* Avoid stupid compiler warnings */
698     jnrA = jnrB = jnrC = jnrD = 0;
699     j_coord_offsetA = 0;
700     j_coord_offsetB = 0;
701     j_coord_offsetC = 0;
702     j_coord_offsetD = 0;
703
704     outeriter        = 0;
705     inneriter        = 0;
706
707     for(iidx=0;iidx<4*DIM;iidx++)
708     {
709         scratch[iidx] = 0.0;
710     }
711
712     /* Start outer loop over neighborlists */
713     for(iidx=0; iidx<nri; iidx++)
714     {
715         /* Load shift vector for this list */
716         i_shift_offset   = DIM*shiftidx[iidx];
717
718         /* Load limits for loop over neighbors */
719         j_index_start    = jindex[iidx];
720         j_index_end      = jindex[iidx+1];
721
722         /* Get outer coordinate index */
723         inr              = iinr[iidx];
724         i_coord_offset   = DIM*inr;
725
726         /* Load i particle coords and add shift vector */
727         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
728                                                     &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
729
730         fix1             = _mm256_setzero_pd();
731         fiy1             = _mm256_setzero_pd();
732         fiz1             = _mm256_setzero_pd();
733         fix2             = _mm256_setzero_pd();
734         fiy2             = _mm256_setzero_pd();
735         fiz2             = _mm256_setzero_pd();
736         fix3             = _mm256_setzero_pd();
737         fiy3             = _mm256_setzero_pd();
738         fiz3             = _mm256_setzero_pd();
739
740         /* Start inner kernel loop */
741         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
742         {
743
744             /* Get j neighbor index, and coordinate index */
745             jnrA             = jjnr[jidx];
746             jnrB             = jjnr[jidx+1];
747             jnrC             = jjnr[jidx+2];
748             jnrD             = jjnr[jidx+3];
749             j_coord_offsetA  = DIM*jnrA;
750             j_coord_offsetB  = DIM*jnrB;
751             j_coord_offsetC  = DIM*jnrC;
752             j_coord_offsetD  = DIM*jnrD;
753
754             /* load j atom coordinates */
755             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
756                                                  x+j_coord_offsetC,x+j_coord_offsetD,
757                                                  &jx0,&jy0,&jz0);
758
759             /* Calculate displacement vector */
760             dx10             = _mm256_sub_pd(ix1,jx0);
761             dy10             = _mm256_sub_pd(iy1,jy0);
762             dz10             = _mm256_sub_pd(iz1,jz0);
763             dx20             = _mm256_sub_pd(ix2,jx0);
764             dy20             = _mm256_sub_pd(iy2,jy0);
765             dz20             = _mm256_sub_pd(iz2,jz0);
766             dx30             = _mm256_sub_pd(ix3,jx0);
767             dy30             = _mm256_sub_pd(iy3,jy0);
768             dz30             = _mm256_sub_pd(iz3,jz0);
769
770             /* Calculate squared distance and things based on it */
771             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
772             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
773             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
774
775             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
776             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
777             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
778
779             /* Load parameters for j particles */
780             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
781                                                                  charge+jnrC+0,charge+jnrD+0);
782
783             fjx0             = _mm256_setzero_pd();
784             fjy0             = _mm256_setzero_pd();
785             fjz0             = _mm256_setzero_pd();
786
787             /**************************
788              * CALCULATE INTERACTIONS *
789              **************************/
790
791             r10              = _mm256_mul_pd(rsq10,rinv10);
792
793             /* Compute parameters for interactions between i and j atoms */
794             qq10             = _mm256_mul_pd(iq1,jq0);
795
796             /* Calculate table index by multiplying r with table scale and truncate to integer */
797             rt               = _mm256_mul_pd(r10,vftabscale);
798             vfitab           = _mm256_cvttpd_epi32(rt);
799             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
800             vfitab           = _mm_slli_epi32(vfitab,2);
801
802             /* CUBIC SPLINE TABLE ELECTROSTATICS */
803             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
804             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
805             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
806             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
807             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
808             Heps             = _mm256_mul_pd(vfeps,H);
809             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
810             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
811             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
812
813             fscal            = felec;
814
815             /* Calculate temporary vectorial force */
816             tx               = _mm256_mul_pd(fscal,dx10);
817             ty               = _mm256_mul_pd(fscal,dy10);
818             tz               = _mm256_mul_pd(fscal,dz10);
819
820             /* Update vectorial force */
821             fix1             = _mm256_add_pd(fix1,tx);
822             fiy1             = _mm256_add_pd(fiy1,ty);
823             fiz1             = _mm256_add_pd(fiz1,tz);
824
825             fjx0             = _mm256_add_pd(fjx0,tx);
826             fjy0             = _mm256_add_pd(fjy0,ty);
827             fjz0             = _mm256_add_pd(fjz0,tz);
828
829             /**************************
830              * CALCULATE INTERACTIONS *
831              **************************/
832
833             r20              = _mm256_mul_pd(rsq20,rinv20);
834
835             /* Compute parameters for interactions between i and j atoms */
836             qq20             = _mm256_mul_pd(iq2,jq0);
837
838             /* Calculate table index by multiplying r with table scale and truncate to integer */
839             rt               = _mm256_mul_pd(r20,vftabscale);
840             vfitab           = _mm256_cvttpd_epi32(rt);
841             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
842             vfitab           = _mm_slli_epi32(vfitab,2);
843
844             /* CUBIC SPLINE TABLE ELECTROSTATICS */
845             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
846             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
847             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
848             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
849             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
850             Heps             = _mm256_mul_pd(vfeps,H);
851             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
852             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
853             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
854
855             fscal            = felec;
856
857             /* Calculate temporary vectorial force */
858             tx               = _mm256_mul_pd(fscal,dx20);
859             ty               = _mm256_mul_pd(fscal,dy20);
860             tz               = _mm256_mul_pd(fscal,dz20);
861
862             /* Update vectorial force */
863             fix2             = _mm256_add_pd(fix2,tx);
864             fiy2             = _mm256_add_pd(fiy2,ty);
865             fiz2             = _mm256_add_pd(fiz2,tz);
866
867             fjx0             = _mm256_add_pd(fjx0,tx);
868             fjy0             = _mm256_add_pd(fjy0,ty);
869             fjz0             = _mm256_add_pd(fjz0,tz);
870
871             /**************************
872              * CALCULATE INTERACTIONS *
873              **************************/
874
875             r30              = _mm256_mul_pd(rsq30,rinv30);
876
877             /* Compute parameters for interactions between i and j atoms */
878             qq30             = _mm256_mul_pd(iq3,jq0);
879
880             /* Calculate table index by multiplying r with table scale and truncate to integer */
881             rt               = _mm256_mul_pd(r30,vftabscale);
882             vfitab           = _mm256_cvttpd_epi32(rt);
883             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
884             vfitab           = _mm_slli_epi32(vfitab,2);
885
886             /* CUBIC SPLINE TABLE ELECTROSTATICS */
887             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
888             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
889             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
890             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
891             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
892             Heps             = _mm256_mul_pd(vfeps,H);
893             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
894             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
895             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
896
897             fscal            = felec;
898
899             /* Calculate temporary vectorial force */
900             tx               = _mm256_mul_pd(fscal,dx30);
901             ty               = _mm256_mul_pd(fscal,dy30);
902             tz               = _mm256_mul_pd(fscal,dz30);
903
904             /* Update vectorial force */
905             fix3             = _mm256_add_pd(fix3,tx);
906             fiy3             = _mm256_add_pd(fiy3,ty);
907             fiz3             = _mm256_add_pd(fiz3,tz);
908
909             fjx0             = _mm256_add_pd(fjx0,tx);
910             fjy0             = _mm256_add_pd(fjy0,ty);
911             fjz0             = _mm256_add_pd(fjz0,tz);
912
913             fjptrA             = f+j_coord_offsetA;
914             fjptrB             = f+j_coord_offsetB;
915             fjptrC             = f+j_coord_offsetC;
916             fjptrD             = f+j_coord_offsetD;
917
918             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
919
920             /* Inner loop uses 120 flops */
921         }
922
923         if(jidx<j_index_end)
924         {
925
926             /* Get j neighbor index, and coordinate index */
927             jnrlistA         = jjnr[jidx];
928             jnrlistB         = jjnr[jidx+1];
929             jnrlistC         = jjnr[jidx+2];
930             jnrlistD         = jjnr[jidx+3];
931             /* Sign of each element will be negative for non-real atoms.
932              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
933              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
934              */
935             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
936
937             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
938             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
939             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
940
941             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
942             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
943             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
944             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
945             j_coord_offsetA  = DIM*jnrA;
946             j_coord_offsetB  = DIM*jnrB;
947             j_coord_offsetC  = DIM*jnrC;
948             j_coord_offsetD  = DIM*jnrD;
949
950             /* load j atom coordinates */
951             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
952                                                  x+j_coord_offsetC,x+j_coord_offsetD,
953                                                  &jx0,&jy0,&jz0);
954
955             /* Calculate displacement vector */
956             dx10             = _mm256_sub_pd(ix1,jx0);
957             dy10             = _mm256_sub_pd(iy1,jy0);
958             dz10             = _mm256_sub_pd(iz1,jz0);
959             dx20             = _mm256_sub_pd(ix2,jx0);
960             dy20             = _mm256_sub_pd(iy2,jy0);
961             dz20             = _mm256_sub_pd(iz2,jz0);
962             dx30             = _mm256_sub_pd(ix3,jx0);
963             dy30             = _mm256_sub_pd(iy3,jy0);
964             dz30             = _mm256_sub_pd(iz3,jz0);
965
966             /* Calculate squared distance and things based on it */
967             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
968             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
969             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
970
971             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
972             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
973             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
974
975             /* Load parameters for j particles */
976             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
977                                                                  charge+jnrC+0,charge+jnrD+0);
978
979             fjx0             = _mm256_setzero_pd();
980             fjy0             = _mm256_setzero_pd();
981             fjz0             = _mm256_setzero_pd();
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             r10              = _mm256_mul_pd(rsq10,rinv10);
988             r10              = _mm256_andnot_pd(dummy_mask,r10);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq10             = _mm256_mul_pd(iq1,jq0);
992
993             /* Calculate table index by multiplying r with table scale and truncate to integer */
994             rt               = _mm256_mul_pd(r10,vftabscale);
995             vfitab           = _mm256_cvttpd_epi32(rt);
996             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
997             vfitab           = _mm_slli_epi32(vfitab,2);
998
999             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1000             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1001             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1002             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1003             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1004             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1005             Heps             = _mm256_mul_pd(vfeps,H);
1006             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1007             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1008             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1009
1010             fscal            = felec;
1011
1012             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm256_mul_pd(fscal,dx10);
1016             ty               = _mm256_mul_pd(fscal,dy10);
1017             tz               = _mm256_mul_pd(fscal,dz10);
1018
1019             /* Update vectorial force */
1020             fix1             = _mm256_add_pd(fix1,tx);
1021             fiy1             = _mm256_add_pd(fiy1,ty);
1022             fiz1             = _mm256_add_pd(fiz1,tz);
1023
1024             fjx0             = _mm256_add_pd(fjx0,tx);
1025             fjy0             = _mm256_add_pd(fjy0,ty);
1026             fjz0             = _mm256_add_pd(fjz0,tz);
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             r20              = _mm256_mul_pd(rsq20,rinv20);
1033             r20              = _mm256_andnot_pd(dummy_mask,r20);
1034
1035             /* Compute parameters for interactions between i and j atoms */
1036             qq20             = _mm256_mul_pd(iq2,jq0);
1037
1038             /* Calculate table index by multiplying r with table scale and truncate to integer */
1039             rt               = _mm256_mul_pd(r20,vftabscale);
1040             vfitab           = _mm256_cvttpd_epi32(rt);
1041             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1042             vfitab           = _mm_slli_epi32(vfitab,2);
1043
1044             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1045             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1046             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1047             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1048             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1049             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1050             Heps             = _mm256_mul_pd(vfeps,H);
1051             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1052             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1053             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1054
1055             fscal            = felec;
1056
1057             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1058
1059             /* Calculate temporary vectorial force */
1060             tx               = _mm256_mul_pd(fscal,dx20);
1061             ty               = _mm256_mul_pd(fscal,dy20);
1062             tz               = _mm256_mul_pd(fscal,dz20);
1063
1064             /* Update vectorial force */
1065             fix2             = _mm256_add_pd(fix2,tx);
1066             fiy2             = _mm256_add_pd(fiy2,ty);
1067             fiz2             = _mm256_add_pd(fiz2,tz);
1068
1069             fjx0             = _mm256_add_pd(fjx0,tx);
1070             fjy0             = _mm256_add_pd(fjy0,ty);
1071             fjz0             = _mm256_add_pd(fjz0,tz);
1072
1073             /**************************
1074              * CALCULATE INTERACTIONS *
1075              **************************/
1076
1077             r30              = _mm256_mul_pd(rsq30,rinv30);
1078             r30              = _mm256_andnot_pd(dummy_mask,r30);
1079
1080             /* Compute parameters for interactions between i and j atoms */
1081             qq30             = _mm256_mul_pd(iq3,jq0);
1082
1083             /* Calculate table index by multiplying r with table scale and truncate to integer */
1084             rt               = _mm256_mul_pd(r30,vftabscale);
1085             vfitab           = _mm256_cvttpd_epi32(rt);
1086             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1087             vfitab           = _mm_slli_epi32(vfitab,2);
1088
1089             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1090             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1091             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1092             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1093             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1094             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1095             Heps             = _mm256_mul_pd(vfeps,H);
1096             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1097             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1098             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
1099
1100             fscal            = felec;
1101
1102             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1103
1104             /* Calculate temporary vectorial force */
1105             tx               = _mm256_mul_pd(fscal,dx30);
1106             ty               = _mm256_mul_pd(fscal,dy30);
1107             tz               = _mm256_mul_pd(fscal,dz30);
1108
1109             /* Update vectorial force */
1110             fix3             = _mm256_add_pd(fix3,tx);
1111             fiy3             = _mm256_add_pd(fiy3,ty);
1112             fiz3             = _mm256_add_pd(fiz3,tz);
1113
1114             fjx0             = _mm256_add_pd(fjx0,tx);
1115             fjy0             = _mm256_add_pd(fjy0,ty);
1116             fjz0             = _mm256_add_pd(fjz0,tz);
1117
1118             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1119             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1120             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1121             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1122
1123             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1124
1125             /* Inner loop uses 123 flops */
1126         }
1127
1128         /* End of innermost loop */
1129
1130         gmx_mm256_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1131                                                  f+i_coord_offset+DIM,fshift+i_shift_offset);
1132
1133         /* Increment number of inner iterations */
1134         inneriter                  += j_index_end - j_index_start;
1135
1136         /* Outer loop uses 18 flops */
1137     }
1138
1139     /* Increment number of outer iterations */
1140     outeriter        += nri;
1141
1142     /* Update outer/inner flops */
1143
1144     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*123);
1145 }