Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwNone_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m256d          dummy_mask,cutoff_mask;
88     __m128           tmpmask0,tmpmask1;
89     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
90     __m256d          one     = _mm256_set1_pd(1.0);
91     __m256d          two     = _mm256_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm256_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105
106     vftab            = kernel_data->table_elec->data;
107     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
108
109     /* Setup water-specific parameters */
110     inr              = nlist->iinr[0];
111     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
112     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
113     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = jnrC = jnrD = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119     j_coord_offsetC = 0;
120     j_coord_offsetD = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     for(iidx=0;iidx<4*DIM;iidx++)
126     {
127         scratch[iidx] = 0.0;
128     }
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
146                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
147
148         fix0             = _mm256_setzero_pd();
149         fiy0             = _mm256_setzero_pd();
150         fiz0             = _mm256_setzero_pd();
151         fix1             = _mm256_setzero_pd();
152         fiy1             = _mm256_setzero_pd();
153         fiz1             = _mm256_setzero_pd();
154         fix2             = _mm256_setzero_pd();
155         fiy2             = _mm256_setzero_pd();
156         fiz2             = _mm256_setzero_pd();
157
158         /* Reset potential sums */
159         velecsum         = _mm256_setzero_pd();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             jnrC             = jjnr[jidx+2];
169             jnrD             = jjnr[jidx+3];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172             j_coord_offsetC  = DIM*jnrC;
173             j_coord_offsetD  = DIM*jnrD;
174
175             /* load j atom coordinates */
176             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
177                                                  x+j_coord_offsetC,x+j_coord_offsetD,
178                                                  &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm256_sub_pd(ix0,jx0);
182             dy00             = _mm256_sub_pd(iy0,jy0);
183             dz00             = _mm256_sub_pd(iz0,jz0);
184             dx10             = _mm256_sub_pd(ix1,jx0);
185             dy10             = _mm256_sub_pd(iy1,jy0);
186             dz10             = _mm256_sub_pd(iz1,jz0);
187             dx20             = _mm256_sub_pd(ix2,jx0);
188             dy20             = _mm256_sub_pd(iy2,jy0);
189             dz20             = _mm256_sub_pd(iz2,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
193             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
194             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
195
196             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
197             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
198             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
199
200             /* Load parameters for j particles */
201             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
202                                                                  charge+jnrC+0,charge+jnrD+0);
203
204             fjx0             = _mm256_setzero_pd();
205             fjy0             = _mm256_setzero_pd();
206             fjz0             = _mm256_setzero_pd();
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             r00              = _mm256_mul_pd(rsq00,rinv00);
213
214             /* Compute parameters for interactions between i and j atoms */
215             qq00             = _mm256_mul_pd(iq0,jq0);
216
217             /* Calculate table index by multiplying r with table scale and truncate to integer */
218             rt               = _mm256_mul_pd(r00,vftabscale);
219             vfitab           = _mm256_cvttpd_epi32(rt);
220             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
221             vfitab           = _mm_slli_epi32(vfitab,2);
222
223             /* CUBIC SPLINE TABLE ELECTROSTATICS */
224             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
225             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
226             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
227             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
228             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
229             Heps             = _mm256_mul_pd(vfeps,H);
230             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
231             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
232             velec            = _mm256_mul_pd(qq00,VV);
233             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
234             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
235
236             /* Update potential sum for this i atom from the interaction with this j atom. */
237             velecsum         = _mm256_add_pd(velecsum,velec);
238
239             fscal            = felec;
240
241             /* Calculate temporary vectorial force */
242             tx               = _mm256_mul_pd(fscal,dx00);
243             ty               = _mm256_mul_pd(fscal,dy00);
244             tz               = _mm256_mul_pd(fscal,dz00);
245
246             /* Update vectorial force */
247             fix0             = _mm256_add_pd(fix0,tx);
248             fiy0             = _mm256_add_pd(fiy0,ty);
249             fiz0             = _mm256_add_pd(fiz0,tz);
250
251             fjx0             = _mm256_add_pd(fjx0,tx);
252             fjy0             = _mm256_add_pd(fjy0,ty);
253             fjz0             = _mm256_add_pd(fjz0,tz);
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             r10              = _mm256_mul_pd(rsq10,rinv10);
260
261             /* Compute parameters for interactions between i and j atoms */
262             qq10             = _mm256_mul_pd(iq1,jq0);
263
264             /* Calculate table index by multiplying r with table scale and truncate to integer */
265             rt               = _mm256_mul_pd(r10,vftabscale);
266             vfitab           = _mm256_cvttpd_epi32(rt);
267             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
268             vfitab           = _mm_slli_epi32(vfitab,2);
269
270             /* CUBIC SPLINE TABLE ELECTROSTATICS */
271             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
275             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
276             Heps             = _mm256_mul_pd(vfeps,H);
277             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
278             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
279             velec            = _mm256_mul_pd(qq10,VV);
280             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
281             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velecsum         = _mm256_add_pd(velecsum,velec);
285
286             fscal            = felec;
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm256_mul_pd(fscal,dx10);
290             ty               = _mm256_mul_pd(fscal,dy10);
291             tz               = _mm256_mul_pd(fscal,dz10);
292
293             /* Update vectorial force */
294             fix1             = _mm256_add_pd(fix1,tx);
295             fiy1             = _mm256_add_pd(fiy1,ty);
296             fiz1             = _mm256_add_pd(fiz1,tz);
297
298             fjx0             = _mm256_add_pd(fjx0,tx);
299             fjy0             = _mm256_add_pd(fjy0,ty);
300             fjz0             = _mm256_add_pd(fjz0,tz);
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r20              = _mm256_mul_pd(rsq20,rinv20);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq20             = _mm256_mul_pd(iq2,jq0);
310
311             /* Calculate table index by multiplying r with table scale and truncate to integer */
312             rt               = _mm256_mul_pd(r20,vftabscale);
313             vfitab           = _mm256_cvttpd_epi32(rt);
314             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
315             vfitab           = _mm_slli_epi32(vfitab,2);
316
317             /* CUBIC SPLINE TABLE ELECTROSTATICS */
318             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
319             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
320             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
321             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
322             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
323             Heps             = _mm256_mul_pd(vfeps,H);
324             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
325             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
326             velec            = _mm256_mul_pd(qq20,VV);
327             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
328             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm256_add_pd(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm256_mul_pd(fscal,dx20);
337             ty               = _mm256_mul_pd(fscal,dy20);
338             tz               = _mm256_mul_pd(fscal,dz20);
339
340             /* Update vectorial force */
341             fix2             = _mm256_add_pd(fix2,tx);
342             fiy2             = _mm256_add_pd(fiy2,ty);
343             fiz2             = _mm256_add_pd(fiz2,tz);
344
345             fjx0             = _mm256_add_pd(fjx0,tx);
346             fjy0             = _mm256_add_pd(fjy0,ty);
347             fjz0             = _mm256_add_pd(fjz0,tz);
348
349             fjptrA             = f+j_coord_offsetA;
350             fjptrB             = f+j_coord_offsetB;
351             fjptrC             = f+j_coord_offsetC;
352             fjptrD             = f+j_coord_offsetD;
353
354             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
355
356             /* Inner loop uses 132 flops */
357         }
358
359         if(jidx<j_index_end)
360         {
361
362             /* Get j neighbor index, and coordinate index */
363             jnrlistA         = jjnr[jidx];
364             jnrlistB         = jjnr[jidx+1];
365             jnrlistC         = jjnr[jidx+2];
366             jnrlistD         = jjnr[jidx+3];
367             /* Sign of each element will be negative for non-real atoms.
368              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
369              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
370              */
371             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
372
373             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
374             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
375             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
376
377             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
378             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
379             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
380             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
381             j_coord_offsetA  = DIM*jnrA;
382             j_coord_offsetB  = DIM*jnrB;
383             j_coord_offsetC  = DIM*jnrC;
384             j_coord_offsetD  = DIM*jnrD;
385
386             /* load j atom coordinates */
387             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
388                                                  x+j_coord_offsetC,x+j_coord_offsetD,
389                                                  &jx0,&jy0,&jz0);
390
391             /* Calculate displacement vector */
392             dx00             = _mm256_sub_pd(ix0,jx0);
393             dy00             = _mm256_sub_pd(iy0,jy0);
394             dz00             = _mm256_sub_pd(iz0,jz0);
395             dx10             = _mm256_sub_pd(ix1,jx0);
396             dy10             = _mm256_sub_pd(iy1,jy0);
397             dz10             = _mm256_sub_pd(iz1,jz0);
398             dx20             = _mm256_sub_pd(ix2,jx0);
399             dy20             = _mm256_sub_pd(iy2,jy0);
400             dz20             = _mm256_sub_pd(iz2,jz0);
401
402             /* Calculate squared distance and things based on it */
403             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
404             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
405             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
406
407             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
408             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
409             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
410
411             /* Load parameters for j particles */
412             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
413                                                                  charge+jnrC+0,charge+jnrD+0);
414
415             fjx0             = _mm256_setzero_pd();
416             fjy0             = _mm256_setzero_pd();
417             fjz0             = _mm256_setzero_pd();
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             r00              = _mm256_mul_pd(rsq00,rinv00);
424             r00              = _mm256_andnot_pd(dummy_mask,r00);
425
426             /* Compute parameters for interactions between i and j atoms */
427             qq00             = _mm256_mul_pd(iq0,jq0);
428
429             /* Calculate table index by multiplying r with table scale and truncate to integer */
430             rt               = _mm256_mul_pd(r00,vftabscale);
431             vfitab           = _mm256_cvttpd_epi32(rt);
432             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
433             vfitab           = _mm_slli_epi32(vfitab,2);
434
435             /* CUBIC SPLINE TABLE ELECTROSTATICS */
436             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
437             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
438             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
439             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
440             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
441             Heps             = _mm256_mul_pd(vfeps,H);
442             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
443             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
444             velec            = _mm256_mul_pd(qq00,VV);
445             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
446             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
447
448             /* Update potential sum for this i atom from the interaction with this j atom. */
449             velec            = _mm256_andnot_pd(dummy_mask,velec);
450             velecsum         = _mm256_add_pd(velecsum,velec);
451
452             fscal            = felec;
453
454             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
455
456             /* Calculate temporary vectorial force */
457             tx               = _mm256_mul_pd(fscal,dx00);
458             ty               = _mm256_mul_pd(fscal,dy00);
459             tz               = _mm256_mul_pd(fscal,dz00);
460
461             /* Update vectorial force */
462             fix0             = _mm256_add_pd(fix0,tx);
463             fiy0             = _mm256_add_pd(fiy0,ty);
464             fiz0             = _mm256_add_pd(fiz0,tz);
465
466             fjx0             = _mm256_add_pd(fjx0,tx);
467             fjy0             = _mm256_add_pd(fjy0,ty);
468             fjz0             = _mm256_add_pd(fjz0,tz);
469
470             /**************************
471              * CALCULATE INTERACTIONS *
472              **************************/
473
474             r10              = _mm256_mul_pd(rsq10,rinv10);
475             r10              = _mm256_andnot_pd(dummy_mask,r10);
476
477             /* Compute parameters for interactions between i and j atoms */
478             qq10             = _mm256_mul_pd(iq1,jq0);
479
480             /* Calculate table index by multiplying r with table scale and truncate to integer */
481             rt               = _mm256_mul_pd(r10,vftabscale);
482             vfitab           = _mm256_cvttpd_epi32(rt);
483             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
484             vfitab           = _mm_slli_epi32(vfitab,2);
485
486             /* CUBIC SPLINE TABLE ELECTROSTATICS */
487             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
488             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
489             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
490             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
491             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
492             Heps             = _mm256_mul_pd(vfeps,H);
493             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
494             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
495             velec            = _mm256_mul_pd(qq10,VV);
496             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
497             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
498
499             /* Update potential sum for this i atom from the interaction with this j atom. */
500             velec            = _mm256_andnot_pd(dummy_mask,velec);
501             velecsum         = _mm256_add_pd(velecsum,velec);
502
503             fscal            = felec;
504
505             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
506
507             /* Calculate temporary vectorial force */
508             tx               = _mm256_mul_pd(fscal,dx10);
509             ty               = _mm256_mul_pd(fscal,dy10);
510             tz               = _mm256_mul_pd(fscal,dz10);
511
512             /* Update vectorial force */
513             fix1             = _mm256_add_pd(fix1,tx);
514             fiy1             = _mm256_add_pd(fiy1,ty);
515             fiz1             = _mm256_add_pd(fiz1,tz);
516
517             fjx0             = _mm256_add_pd(fjx0,tx);
518             fjy0             = _mm256_add_pd(fjy0,ty);
519             fjz0             = _mm256_add_pd(fjz0,tz);
520
521             /**************************
522              * CALCULATE INTERACTIONS *
523              **************************/
524
525             r20              = _mm256_mul_pd(rsq20,rinv20);
526             r20              = _mm256_andnot_pd(dummy_mask,r20);
527
528             /* Compute parameters for interactions between i and j atoms */
529             qq20             = _mm256_mul_pd(iq2,jq0);
530
531             /* Calculate table index by multiplying r with table scale and truncate to integer */
532             rt               = _mm256_mul_pd(r20,vftabscale);
533             vfitab           = _mm256_cvttpd_epi32(rt);
534             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
535             vfitab           = _mm_slli_epi32(vfitab,2);
536
537             /* CUBIC SPLINE TABLE ELECTROSTATICS */
538             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
539             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
540             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
541             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
542             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
543             Heps             = _mm256_mul_pd(vfeps,H);
544             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
545             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
546             velec            = _mm256_mul_pd(qq20,VV);
547             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
548             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm256_andnot_pd(dummy_mask,velec);
552             velecsum         = _mm256_add_pd(velecsum,velec);
553
554             fscal            = felec;
555
556             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
557
558             /* Calculate temporary vectorial force */
559             tx               = _mm256_mul_pd(fscal,dx20);
560             ty               = _mm256_mul_pd(fscal,dy20);
561             tz               = _mm256_mul_pd(fscal,dz20);
562
563             /* Update vectorial force */
564             fix2             = _mm256_add_pd(fix2,tx);
565             fiy2             = _mm256_add_pd(fiy2,ty);
566             fiz2             = _mm256_add_pd(fiz2,tz);
567
568             fjx0             = _mm256_add_pd(fjx0,tx);
569             fjy0             = _mm256_add_pd(fjy0,ty);
570             fjz0             = _mm256_add_pd(fjz0,tz);
571
572             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
573             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
574             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
575             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
576
577             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
578
579             /* Inner loop uses 135 flops */
580         }
581
582         /* End of innermost loop */
583
584         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
585                                                  f+i_coord_offset,fshift+i_shift_offset);
586
587         ggid                        = gid[iidx];
588         /* Update potential energies */
589         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
590
591         /* Increment number of inner iterations */
592         inneriter                  += j_index_end - j_index_start;
593
594         /* Outer loop uses 19 flops */
595     }
596
597     /* Increment number of outer iterations */
598     outeriter        += nri;
599
600     /* Update outer/inner flops */
601
602     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*135);
603 }
604 /*
605  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_256_double
606  * Electrostatics interaction: CubicSplineTable
607  * VdW interaction:            None
608  * Geometry:                   Water3-Particle
609  * Calculate force/pot:        Force
610  */
611 void
612 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_256_double
613                     (t_nblist * gmx_restrict                nlist,
614                      rvec * gmx_restrict                    xx,
615                      rvec * gmx_restrict                    ff,
616                      t_forcerec * gmx_restrict              fr,
617                      t_mdatoms * gmx_restrict               mdatoms,
618                      nb_kernel_data_t * gmx_restrict        kernel_data,
619                      t_nrnb * gmx_restrict                  nrnb)
620 {
621     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
622      * just 0 for non-waters.
623      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
624      * jnr indices corresponding to data put in the four positions in the SIMD register.
625      */
626     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
627     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
628     int              jnrA,jnrB,jnrC,jnrD;
629     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
630     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
631     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
632     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
633     real             rcutoff_scalar;
634     real             *shiftvec,*fshift,*x,*f;
635     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
636     real             scratch[4*DIM];
637     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
638     real *           vdwioffsetptr0;
639     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
640     real *           vdwioffsetptr1;
641     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
642     real *           vdwioffsetptr2;
643     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
644     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
645     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
646     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
647     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
648     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
649     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
650     real             *charge;
651     __m128i          vfitab;
652     __m128i          ifour       = _mm_set1_epi32(4);
653     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
654     real             *vftab;
655     __m256d          dummy_mask,cutoff_mask;
656     __m128           tmpmask0,tmpmask1;
657     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
658     __m256d          one     = _mm256_set1_pd(1.0);
659     __m256d          two     = _mm256_set1_pd(2.0);
660     x                = xx[0];
661     f                = ff[0];
662
663     nri              = nlist->nri;
664     iinr             = nlist->iinr;
665     jindex           = nlist->jindex;
666     jjnr             = nlist->jjnr;
667     shiftidx         = nlist->shift;
668     gid              = nlist->gid;
669     shiftvec         = fr->shift_vec[0];
670     fshift           = fr->fshift[0];
671     facel            = _mm256_set1_pd(fr->epsfac);
672     charge           = mdatoms->chargeA;
673
674     vftab            = kernel_data->table_elec->data;
675     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
676
677     /* Setup water-specific parameters */
678     inr              = nlist->iinr[0];
679     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
680     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
681     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
682
683     /* Avoid stupid compiler warnings */
684     jnrA = jnrB = jnrC = jnrD = 0;
685     j_coord_offsetA = 0;
686     j_coord_offsetB = 0;
687     j_coord_offsetC = 0;
688     j_coord_offsetD = 0;
689
690     outeriter        = 0;
691     inneriter        = 0;
692
693     for(iidx=0;iidx<4*DIM;iidx++)
694     {
695         scratch[iidx] = 0.0;
696     }
697
698     /* Start outer loop over neighborlists */
699     for(iidx=0; iidx<nri; iidx++)
700     {
701         /* Load shift vector for this list */
702         i_shift_offset   = DIM*shiftidx[iidx];
703
704         /* Load limits for loop over neighbors */
705         j_index_start    = jindex[iidx];
706         j_index_end      = jindex[iidx+1];
707
708         /* Get outer coordinate index */
709         inr              = iinr[iidx];
710         i_coord_offset   = DIM*inr;
711
712         /* Load i particle coords and add shift vector */
713         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
714                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
715
716         fix0             = _mm256_setzero_pd();
717         fiy0             = _mm256_setzero_pd();
718         fiz0             = _mm256_setzero_pd();
719         fix1             = _mm256_setzero_pd();
720         fiy1             = _mm256_setzero_pd();
721         fiz1             = _mm256_setzero_pd();
722         fix2             = _mm256_setzero_pd();
723         fiy2             = _mm256_setzero_pd();
724         fiz2             = _mm256_setzero_pd();
725
726         /* Start inner kernel loop */
727         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
728         {
729
730             /* Get j neighbor index, and coordinate index */
731             jnrA             = jjnr[jidx];
732             jnrB             = jjnr[jidx+1];
733             jnrC             = jjnr[jidx+2];
734             jnrD             = jjnr[jidx+3];
735             j_coord_offsetA  = DIM*jnrA;
736             j_coord_offsetB  = DIM*jnrB;
737             j_coord_offsetC  = DIM*jnrC;
738             j_coord_offsetD  = DIM*jnrD;
739
740             /* load j atom coordinates */
741             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
742                                                  x+j_coord_offsetC,x+j_coord_offsetD,
743                                                  &jx0,&jy0,&jz0);
744
745             /* Calculate displacement vector */
746             dx00             = _mm256_sub_pd(ix0,jx0);
747             dy00             = _mm256_sub_pd(iy0,jy0);
748             dz00             = _mm256_sub_pd(iz0,jz0);
749             dx10             = _mm256_sub_pd(ix1,jx0);
750             dy10             = _mm256_sub_pd(iy1,jy0);
751             dz10             = _mm256_sub_pd(iz1,jz0);
752             dx20             = _mm256_sub_pd(ix2,jx0);
753             dy20             = _mm256_sub_pd(iy2,jy0);
754             dz20             = _mm256_sub_pd(iz2,jz0);
755
756             /* Calculate squared distance and things based on it */
757             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
758             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
759             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
760
761             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
762             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
763             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
764
765             /* Load parameters for j particles */
766             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
767                                                                  charge+jnrC+0,charge+jnrD+0);
768
769             fjx0             = _mm256_setzero_pd();
770             fjy0             = _mm256_setzero_pd();
771             fjz0             = _mm256_setzero_pd();
772
773             /**************************
774              * CALCULATE INTERACTIONS *
775              **************************/
776
777             r00              = _mm256_mul_pd(rsq00,rinv00);
778
779             /* Compute parameters for interactions between i and j atoms */
780             qq00             = _mm256_mul_pd(iq0,jq0);
781
782             /* Calculate table index by multiplying r with table scale and truncate to integer */
783             rt               = _mm256_mul_pd(r00,vftabscale);
784             vfitab           = _mm256_cvttpd_epi32(rt);
785             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
786             vfitab           = _mm_slli_epi32(vfitab,2);
787
788             /* CUBIC SPLINE TABLE ELECTROSTATICS */
789             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
790             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
791             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
792             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
793             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
794             Heps             = _mm256_mul_pd(vfeps,H);
795             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
796             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
797             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
798
799             fscal            = felec;
800
801             /* Calculate temporary vectorial force */
802             tx               = _mm256_mul_pd(fscal,dx00);
803             ty               = _mm256_mul_pd(fscal,dy00);
804             tz               = _mm256_mul_pd(fscal,dz00);
805
806             /* Update vectorial force */
807             fix0             = _mm256_add_pd(fix0,tx);
808             fiy0             = _mm256_add_pd(fiy0,ty);
809             fiz0             = _mm256_add_pd(fiz0,tz);
810
811             fjx0             = _mm256_add_pd(fjx0,tx);
812             fjy0             = _mm256_add_pd(fjy0,ty);
813             fjz0             = _mm256_add_pd(fjz0,tz);
814
815             /**************************
816              * CALCULATE INTERACTIONS *
817              **************************/
818
819             r10              = _mm256_mul_pd(rsq10,rinv10);
820
821             /* Compute parameters for interactions between i and j atoms */
822             qq10             = _mm256_mul_pd(iq1,jq0);
823
824             /* Calculate table index by multiplying r with table scale and truncate to integer */
825             rt               = _mm256_mul_pd(r10,vftabscale);
826             vfitab           = _mm256_cvttpd_epi32(rt);
827             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
828             vfitab           = _mm_slli_epi32(vfitab,2);
829
830             /* CUBIC SPLINE TABLE ELECTROSTATICS */
831             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
832             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
833             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
834             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
835             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
836             Heps             = _mm256_mul_pd(vfeps,H);
837             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
838             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
839             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
840
841             fscal            = felec;
842
843             /* Calculate temporary vectorial force */
844             tx               = _mm256_mul_pd(fscal,dx10);
845             ty               = _mm256_mul_pd(fscal,dy10);
846             tz               = _mm256_mul_pd(fscal,dz10);
847
848             /* Update vectorial force */
849             fix1             = _mm256_add_pd(fix1,tx);
850             fiy1             = _mm256_add_pd(fiy1,ty);
851             fiz1             = _mm256_add_pd(fiz1,tz);
852
853             fjx0             = _mm256_add_pd(fjx0,tx);
854             fjy0             = _mm256_add_pd(fjy0,ty);
855             fjz0             = _mm256_add_pd(fjz0,tz);
856
857             /**************************
858              * CALCULATE INTERACTIONS *
859              **************************/
860
861             r20              = _mm256_mul_pd(rsq20,rinv20);
862
863             /* Compute parameters for interactions between i and j atoms */
864             qq20             = _mm256_mul_pd(iq2,jq0);
865
866             /* Calculate table index by multiplying r with table scale and truncate to integer */
867             rt               = _mm256_mul_pd(r20,vftabscale);
868             vfitab           = _mm256_cvttpd_epi32(rt);
869             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
870             vfitab           = _mm_slli_epi32(vfitab,2);
871
872             /* CUBIC SPLINE TABLE ELECTROSTATICS */
873             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
874             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
875             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
876             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
877             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
878             Heps             = _mm256_mul_pd(vfeps,H);
879             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
880             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
881             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
882
883             fscal            = felec;
884
885             /* Calculate temporary vectorial force */
886             tx               = _mm256_mul_pd(fscal,dx20);
887             ty               = _mm256_mul_pd(fscal,dy20);
888             tz               = _mm256_mul_pd(fscal,dz20);
889
890             /* Update vectorial force */
891             fix2             = _mm256_add_pd(fix2,tx);
892             fiy2             = _mm256_add_pd(fiy2,ty);
893             fiz2             = _mm256_add_pd(fiz2,tz);
894
895             fjx0             = _mm256_add_pd(fjx0,tx);
896             fjy0             = _mm256_add_pd(fjy0,ty);
897             fjz0             = _mm256_add_pd(fjz0,tz);
898
899             fjptrA             = f+j_coord_offsetA;
900             fjptrB             = f+j_coord_offsetB;
901             fjptrC             = f+j_coord_offsetC;
902             fjptrD             = f+j_coord_offsetD;
903
904             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
905
906             /* Inner loop uses 120 flops */
907         }
908
909         if(jidx<j_index_end)
910         {
911
912             /* Get j neighbor index, and coordinate index */
913             jnrlistA         = jjnr[jidx];
914             jnrlistB         = jjnr[jidx+1];
915             jnrlistC         = jjnr[jidx+2];
916             jnrlistD         = jjnr[jidx+3];
917             /* Sign of each element will be negative for non-real atoms.
918              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
919              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
920              */
921             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
922
923             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
924             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
925             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
926
927             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
928             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
929             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
930             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
931             j_coord_offsetA  = DIM*jnrA;
932             j_coord_offsetB  = DIM*jnrB;
933             j_coord_offsetC  = DIM*jnrC;
934             j_coord_offsetD  = DIM*jnrD;
935
936             /* load j atom coordinates */
937             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
938                                                  x+j_coord_offsetC,x+j_coord_offsetD,
939                                                  &jx0,&jy0,&jz0);
940
941             /* Calculate displacement vector */
942             dx00             = _mm256_sub_pd(ix0,jx0);
943             dy00             = _mm256_sub_pd(iy0,jy0);
944             dz00             = _mm256_sub_pd(iz0,jz0);
945             dx10             = _mm256_sub_pd(ix1,jx0);
946             dy10             = _mm256_sub_pd(iy1,jy0);
947             dz10             = _mm256_sub_pd(iz1,jz0);
948             dx20             = _mm256_sub_pd(ix2,jx0);
949             dy20             = _mm256_sub_pd(iy2,jy0);
950             dz20             = _mm256_sub_pd(iz2,jz0);
951
952             /* Calculate squared distance and things based on it */
953             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
954             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
955             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
956
957             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
958             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
959             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
960
961             /* Load parameters for j particles */
962             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
963                                                                  charge+jnrC+0,charge+jnrD+0);
964
965             fjx0             = _mm256_setzero_pd();
966             fjy0             = _mm256_setzero_pd();
967             fjz0             = _mm256_setzero_pd();
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             r00              = _mm256_mul_pd(rsq00,rinv00);
974             r00              = _mm256_andnot_pd(dummy_mask,r00);
975
976             /* Compute parameters for interactions between i and j atoms */
977             qq00             = _mm256_mul_pd(iq0,jq0);
978
979             /* Calculate table index by multiplying r with table scale and truncate to integer */
980             rt               = _mm256_mul_pd(r00,vftabscale);
981             vfitab           = _mm256_cvttpd_epi32(rt);
982             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
983             vfitab           = _mm_slli_epi32(vfitab,2);
984
985             /* CUBIC SPLINE TABLE ELECTROSTATICS */
986             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
987             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
988             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
989             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
990             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
991             Heps             = _mm256_mul_pd(vfeps,H);
992             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
993             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
994             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
995
996             fscal            = felec;
997
998             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
999
1000             /* Calculate temporary vectorial force */
1001             tx               = _mm256_mul_pd(fscal,dx00);
1002             ty               = _mm256_mul_pd(fscal,dy00);
1003             tz               = _mm256_mul_pd(fscal,dz00);
1004
1005             /* Update vectorial force */
1006             fix0             = _mm256_add_pd(fix0,tx);
1007             fiy0             = _mm256_add_pd(fiy0,ty);
1008             fiz0             = _mm256_add_pd(fiz0,tz);
1009
1010             fjx0             = _mm256_add_pd(fjx0,tx);
1011             fjy0             = _mm256_add_pd(fjy0,ty);
1012             fjz0             = _mm256_add_pd(fjz0,tz);
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             r10              = _mm256_mul_pd(rsq10,rinv10);
1019             r10              = _mm256_andnot_pd(dummy_mask,r10);
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq10             = _mm256_mul_pd(iq1,jq0);
1023
1024             /* Calculate table index by multiplying r with table scale and truncate to integer */
1025             rt               = _mm256_mul_pd(r10,vftabscale);
1026             vfitab           = _mm256_cvttpd_epi32(rt);
1027             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1028             vfitab           = _mm_slli_epi32(vfitab,2);
1029
1030             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1031             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1032             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1033             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1034             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1035             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1036             Heps             = _mm256_mul_pd(vfeps,H);
1037             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1038             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1039             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1040
1041             fscal            = felec;
1042
1043             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm256_mul_pd(fscal,dx10);
1047             ty               = _mm256_mul_pd(fscal,dy10);
1048             tz               = _mm256_mul_pd(fscal,dz10);
1049
1050             /* Update vectorial force */
1051             fix1             = _mm256_add_pd(fix1,tx);
1052             fiy1             = _mm256_add_pd(fiy1,ty);
1053             fiz1             = _mm256_add_pd(fiz1,tz);
1054
1055             fjx0             = _mm256_add_pd(fjx0,tx);
1056             fjy0             = _mm256_add_pd(fjy0,ty);
1057             fjz0             = _mm256_add_pd(fjz0,tz);
1058
1059             /**************************
1060              * CALCULATE INTERACTIONS *
1061              **************************/
1062
1063             r20              = _mm256_mul_pd(rsq20,rinv20);
1064             r20              = _mm256_andnot_pd(dummy_mask,r20);
1065
1066             /* Compute parameters for interactions between i and j atoms */
1067             qq20             = _mm256_mul_pd(iq2,jq0);
1068
1069             /* Calculate table index by multiplying r with table scale and truncate to integer */
1070             rt               = _mm256_mul_pd(r20,vftabscale);
1071             vfitab           = _mm256_cvttpd_epi32(rt);
1072             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1073             vfitab           = _mm_slli_epi32(vfitab,2);
1074
1075             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1076             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1077             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1078             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1079             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1080             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1081             Heps             = _mm256_mul_pd(vfeps,H);
1082             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1083             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1084             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1085
1086             fscal            = felec;
1087
1088             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1089
1090             /* Calculate temporary vectorial force */
1091             tx               = _mm256_mul_pd(fscal,dx20);
1092             ty               = _mm256_mul_pd(fscal,dy20);
1093             tz               = _mm256_mul_pd(fscal,dz20);
1094
1095             /* Update vectorial force */
1096             fix2             = _mm256_add_pd(fix2,tx);
1097             fiy2             = _mm256_add_pd(fiy2,ty);
1098             fiz2             = _mm256_add_pd(fiz2,tz);
1099
1100             fjx0             = _mm256_add_pd(fjx0,tx);
1101             fjy0             = _mm256_add_pd(fjy0,ty);
1102             fjz0             = _mm256_add_pd(fjz0,tz);
1103
1104             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1105             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1106             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1107             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1108
1109             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1110
1111             /* Inner loop uses 123 flops */
1112         }
1113
1114         /* End of innermost loop */
1115
1116         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1117                                                  f+i_coord_offset,fshift+i_shift_offset);
1118
1119         /* Increment number of inner iterations */
1120         inneriter                  += j_index_end - j_index_start;
1121
1122         /* Outer loop uses 18 flops */
1123     }
1124
1125     /* Increment number of outer iterations */
1126     outeriter        += nri;
1127
1128     /* Update outer/inner flops */
1129
1130     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*123);
1131 }