Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwNone_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            None
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121
122     vftab            = kernel_data->table_elec->data;
123     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
128     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
129     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
163
164         fix0             = _mm256_setzero_pd();
165         fiy0             = _mm256_setzero_pd();
166         fiz0             = _mm256_setzero_pd();
167         fix1             = _mm256_setzero_pd();
168         fiy1             = _mm256_setzero_pd();
169         fiz1             = _mm256_setzero_pd();
170         fix2             = _mm256_setzero_pd();
171         fiy2             = _mm256_setzero_pd();
172         fiz2             = _mm256_setzero_pd();
173
174         /* Reset potential sums */
175         velecsum         = _mm256_setzero_pd();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
193                                                  x+j_coord_offsetC,x+j_coord_offsetD,
194                                                  &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm256_sub_pd(ix0,jx0);
198             dy00             = _mm256_sub_pd(iy0,jy0);
199             dz00             = _mm256_sub_pd(iz0,jz0);
200             dx10             = _mm256_sub_pd(ix1,jx0);
201             dy10             = _mm256_sub_pd(iy1,jy0);
202             dz10             = _mm256_sub_pd(iz1,jz0);
203             dx20             = _mm256_sub_pd(ix2,jx0);
204             dy20             = _mm256_sub_pd(iy2,jy0);
205             dz20             = _mm256_sub_pd(iz2,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
209             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
211
212             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
213             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
214             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
218                                                                  charge+jnrC+0,charge+jnrD+0);
219
220             fjx0             = _mm256_setzero_pd();
221             fjy0             = _mm256_setzero_pd();
222             fjz0             = _mm256_setzero_pd();
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r00              = _mm256_mul_pd(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _mm256_mul_pd(iq0,jq0);
232
233             /* Calculate table index by multiplying r with table scale and truncate to integer */
234             rt               = _mm256_mul_pd(r00,vftabscale);
235             vfitab           = _mm256_cvttpd_epi32(rt);
236             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
237             vfitab           = _mm_slli_epi32(vfitab,2);
238
239             /* CUBIC SPLINE TABLE ELECTROSTATICS */
240             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
241             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
242             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
243             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
244             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
245             Heps             = _mm256_mul_pd(vfeps,H);
246             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
247             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
248             velec            = _mm256_mul_pd(qq00,VV);
249             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
250             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velecsum         = _mm256_add_pd(velecsum,velec);
254
255             fscal            = felec;
256
257             /* Calculate temporary vectorial force */
258             tx               = _mm256_mul_pd(fscal,dx00);
259             ty               = _mm256_mul_pd(fscal,dy00);
260             tz               = _mm256_mul_pd(fscal,dz00);
261
262             /* Update vectorial force */
263             fix0             = _mm256_add_pd(fix0,tx);
264             fiy0             = _mm256_add_pd(fiy0,ty);
265             fiz0             = _mm256_add_pd(fiz0,tz);
266
267             fjx0             = _mm256_add_pd(fjx0,tx);
268             fjy0             = _mm256_add_pd(fjy0,ty);
269             fjz0             = _mm256_add_pd(fjz0,tz);
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             r10              = _mm256_mul_pd(rsq10,rinv10);
276
277             /* Compute parameters for interactions between i and j atoms */
278             qq10             = _mm256_mul_pd(iq1,jq0);
279
280             /* Calculate table index by multiplying r with table scale and truncate to integer */
281             rt               = _mm256_mul_pd(r10,vftabscale);
282             vfitab           = _mm256_cvttpd_epi32(rt);
283             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
284             vfitab           = _mm_slli_epi32(vfitab,2);
285
286             /* CUBIC SPLINE TABLE ELECTROSTATICS */
287             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
288             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
289             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
290             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
291             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
292             Heps             = _mm256_mul_pd(vfeps,H);
293             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
294             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
295             velec            = _mm256_mul_pd(qq10,VV);
296             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
297             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm256_add_pd(velecsum,velec);
301
302             fscal            = felec;
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm256_mul_pd(fscal,dx10);
306             ty               = _mm256_mul_pd(fscal,dy10);
307             tz               = _mm256_mul_pd(fscal,dz10);
308
309             /* Update vectorial force */
310             fix1             = _mm256_add_pd(fix1,tx);
311             fiy1             = _mm256_add_pd(fiy1,ty);
312             fiz1             = _mm256_add_pd(fiz1,tz);
313
314             fjx0             = _mm256_add_pd(fjx0,tx);
315             fjy0             = _mm256_add_pd(fjy0,ty);
316             fjz0             = _mm256_add_pd(fjz0,tz);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             r20              = _mm256_mul_pd(rsq20,rinv20);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq20             = _mm256_mul_pd(iq2,jq0);
326
327             /* Calculate table index by multiplying r with table scale and truncate to integer */
328             rt               = _mm256_mul_pd(r20,vftabscale);
329             vfitab           = _mm256_cvttpd_epi32(rt);
330             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
331             vfitab           = _mm_slli_epi32(vfitab,2);
332
333             /* CUBIC SPLINE TABLE ELECTROSTATICS */
334             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
335             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
336             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
337             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
338             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
339             Heps             = _mm256_mul_pd(vfeps,H);
340             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
341             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
342             velec            = _mm256_mul_pd(qq20,VV);
343             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
344             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm256_add_pd(velecsum,velec);
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_pd(fscal,dx20);
353             ty               = _mm256_mul_pd(fscal,dy20);
354             tz               = _mm256_mul_pd(fscal,dz20);
355
356             /* Update vectorial force */
357             fix2             = _mm256_add_pd(fix2,tx);
358             fiy2             = _mm256_add_pd(fiy2,ty);
359             fiz2             = _mm256_add_pd(fiz2,tz);
360
361             fjx0             = _mm256_add_pd(fjx0,tx);
362             fjy0             = _mm256_add_pd(fjy0,ty);
363             fjz0             = _mm256_add_pd(fjz0,tz);
364
365             fjptrA             = f+j_coord_offsetA;
366             fjptrB             = f+j_coord_offsetB;
367             fjptrC             = f+j_coord_offsetC;
368             fjptrD             = f+j_coord_offsetD;
369
370             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
371
372             /* Inner loop uses 132 flops */
373         }
374
375         if(jidx<j_index_end)
376         {
377
378             /* Get j neighbor index, and coordinate index */
379             jnrlistA         = jjnr[jidx];
380             jnrlistB         = jjnr[jidx+1];
381             jnrlistC         = jjnr[jidx+2];
382             jnrlistD         = jjnr[jidx+3];
383             /* Sign of each element will be negative for non-real atoms.
384              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
385              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
386              */
387             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
388
389             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
390             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
391             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
392
393             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
394             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
395             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
396             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
397             j_coord_offsetA  = DIM*jnrA;
398             j_coord_offsetB  = DIM*jnrB;
399             j_coord_offsetC  = DIM*jnrC;
400             j_coord_offsetD  = DIM*jnrD;
401
402             /* load j atom coordinates */
403             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
404                                                  x+j_coord_offsetC,x+j_coord_offsetD,
405                                                  &jx0,&jy0,&jz0);
406
407             /* Calculate displacement vector */
408             dx00             = _mm256_sub_pd(ix0,jx0);
409             dy00             = _mm256_sub_pd(iy0,jy0);
410             dz00             = _mm256_sub_pd(iz0,jz0);
411             dx10             = _mm256_sub_pd(ix1,jx0);
412             dy10             = _mm256_sub_pd(iy1,jy0);
413             dz10             = _mm256_sub_pd(iz1,jz0);
414             dx20             = _mm256_sub_pd(ix2,jx0);
415             dy20             = _mm256_sub_pd(iy2,jy0);
416             dz20             = _mm256_sub_pd(iz2,jz0);
417
418             /* Calculate squared distance and things based on it */
419             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
420             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
421             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
422
423             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
424             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
425             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
426
427             /* Load parameters for j particles */
428             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
429                                                                  charge+jnrC+0,charge+jnrD+0);
430
431             fjx0             = _mm256_setzero_pd();
432             fjy0             = _mm256_setzero_pd();
433             fjz0             = _mm256_setzero_pd();
434
435             /**************************
436              * CALCULATE INTERACTIONS *
437              **************************/
438
439             r00              = _mm256_mul_pd(rsq00,rinv00);
440             r00              = _mm256_andnot_pd(dummy_mask,r00);
441
442             /* Compute parameters for interactions between i and j atoms */
443             qq00             = _mm256_mul_pd(iq0,jq0);
444
445             /* Calculate table index by multiplying r with table scale and truncate to integer */
446             rt               = _mm256_mul_pd(r00,vftabscale);
447             vfitab           = _mm256_cvttpd_epi32(rt);
448             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
449             vfitab           = _mm_slli_epi32(vfitab,2);
450
451             /* CUBIC SPLINE TABLE ELECTROSTATICS */
452             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
453             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
454             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
455             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
456             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
457             Heps             = _mm256_mul_pd(vfeps,H);
458             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
459             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
460             velec            = _mm256_mul_pd(qq00,VV);
461             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
462             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
463
464             /* Update potential sum for this i atom from the interaction with this j atom. */
465             velec            = _mm256_andnot_pd(dummy_mask,velec);
466             velecsum         = _mm256_add_pd(velecsum,velec);
467
468             fscal            = felec;
469
470             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
471
472             /* Calculate temporary vectorial force */
473             tx               = _mm256_mul_pd(fscal,dx00);
474             ty               = _mm256_mul_pd(fscal,dy00);
475             tz               = _mm256_mul_pd(fscal,dz00);
476
477             /* Update vectorial force */
478             fix0             = _mm256_add_pd(fix0,tx);
479             fiy0             = _mm256_add_pd(fiy0,ty);
480             fiz0             = _mm256_add_pd(fiz0,tz);
481
482             fjx0             = _mm256_add_pd(fjx0,tx);
483             fjy0             = _mm256_add_pd(fjy0,ty);
484             fjz0             = _mm256_add_pd(fjz0,tz);
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             r10              = _mm256_mul_pd(rsq10,rinv10);
491             r10              = _mm256_andnot_pd(dummy_mask,r10);
492
493             /* Compute parameters for interactions between i and j atoms */
494             qq10             = _mm256_mul_pd(iq1,jq0);
495
496             /* Calculate table index by multiplying r with table scale and truncate to integer */
497             rt               = _mm256_mul_pd(r10,vftabscale);
498             vfitab           = _mm256_cvttpd_epi32(rt);
499             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
500             vfitab           = _mm_slli_epi32(vfitab,2);
501
502             /* CUBIC SPLINE TABLE ELECTROSTATICS */
503             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
504             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
505             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
506             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
507             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
508             Heps             = _mm256_mul_pd(vfeps,H);
509             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
510             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
511             velec            = _mm256_mul_pd(qq10,VV);
512             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
513             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
514
515             /* Update potential sum for this i atom from the interaction with this j atom. */
516             velec            = _mm256_andnot_pd(dummy_mask,velec);
517             velecsum         = _mm256_add_pd(velecsum,velec);
518
519             fscal            = felec;
520
521             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
522
523             /* Calculate temporary vectorial force */
524             tx               = _mm256_mul_pd(fscal,dx10);
525             ty               = _mm256_mul_pd(fscal,dy10);
526             tz               = _mm256_mul_pd(fscal,dz10);
527
528             /* Update vectorial force */
529             fix1             = _mm256_add_pd(fix1,tx);
530             fiy1             = _mm256_add_pd(fiy1,ty);
531             fiz1             = _mm256_add_pd(fiz1,tz);
532
533             fjx0             = _mm256_add_pd(fjx0,tx);
534             fjy0             = _mm256_add_pd(fjy0,ty);
535             fjz0             = _mm256_add_pd(fjz0,tz);
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             r20              = _mm256_mul_pd(rsq20,rinv20);
542             r20              = _mm256_andnot_pd(dummy_mask,r20);
543
544             /* Compute parameters for interactions between i and j atoms */
545             qq20             = _mm256_mul_pd(iq2,jq0);
546
547             /* Calculate table index by multiplying r with table scale and truncate to integer */
548             rt               = _mm256_mul_pd(r20,vftabscale);
549             vfitab           = _mm256_cvttpd_epi32(rt);
550             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
551             vfitab           = _mm_slli_epi32(vfitab,2);
552
553             /* CUBIC SPLINE TABLE ELECTROSTATICS */
554             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
555             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
556             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
557             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
558             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
559             Heps             = _mm256_mul_pd(vfeps,H);
560             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
561             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
562             velec            = _mm256_mul_pd(qq20,VV);
563             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
564             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
565
566             /* Update potential sum for this i atom from the interaction with this j atom. */
567             velec            = _mm256_andnot_pd(dummy_mask,velec);
568             velecsum         = _mm256_add_pd(velecsum,velec);
569
570             fscal            = felec;
571
572             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm256_mul_pd(fscal,dx20);
576             ty               = _mm256_mul_pd(fscal,dy20);
577             tz               = _mm256_mul_pd(fscal,dz20);
578
579             /* Update vectorial force */
580             fix2             = _mm256_add_pd(fix2,tx);
581             fiy2             = _mm256_add_pd(fiy2,ty);
582             fiz2             = _mm256_add_pd(fiz2,tz);
583
584             fjx0             = _mm256_add_pd(fjx0,tx);
585             fjy0             = _mm256_add_pd(fjy0,ty);
586             fjz0             = _mm256_add_pd(fjz0,tz);
587
588             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
589             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
590             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
591             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
592
593             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
594
595             /* Inner loop uses 135 flops */
596         }
597
598         /* End of innermost loop */
599
600         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
601                                                  f+i_coord_offset,fshift+i_shift_offset);
602
603         ggid                        = gid[iidx];
604         /* Update potential energies */
605         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
606
607         /* Increment number of inner iterations */
608         inneriter                  += j_index_end - j_index_start;
609
610         /* Outer loop uses 19 flops */
611     }
612
613     /* Increment number of outer iterations */
614     outeriter        += nri;
615
616     /* Update outer/inner flops */
617
618     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*135);
619 }
620 /*
621  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_256_double
622  * Electrostatics interaction: CubicSplineTable
623  * VdW interaction:            None
624  * Geometry:                   Water3-Particle
625  * Calculate force/pot:        Force
626  */
627 void
628 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_256_double
629                     (t_nblist                    * gmx_restrict       nlist,
630                      rvec                        * gmx_restrict          xx,
631                      rvec                        * gmx_restrict          ff,
632                      t_forcerec                  * gmx_restrict          fr,
633                      t_mdatoms                   * gmx_restrict     mdatoms,
634                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
635                      t_nrnb                      * gmx_restrict        nrnb)
636 {
637     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
638      * just 0 for non-waters.
639      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
640      * jnr indices corresponding to data put in the four positions in the SIMD register.
641      */
642     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
643     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
644     int              jnrA,jnrB,jnrC,jnrD;
645     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
646     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
647     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
648     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
649     real             rcutoff_scalar;
650     real             *shiftvec,*fshift,*x,*f;
651     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
652     real             scratch[4*DIM];
653     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
654     real *           vdwioffsetptr0;
655     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
656     real *           vdwioffsetptr1;
657     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
658     real *           vdwioffsetptr2;
659     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
660     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
661     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
662     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
663     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
664     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
665     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
666     real             *charge;
667     __m128i          vfitab;
668     __m128i          ifour       = _mm_set1_epi32(4);
669     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
670     real             *vftab;
671     __m256d          dummy_mask,cutoff_mask;
672     __m128           tmpmask0,tmpmask1;
673     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
674     __m256d          one     = _mm256_set1_pd(1.0);
675     __m256d          two     = _mm256_set1_pd(2.0);
676     x                = xx[0];
677     f                = ff[0];
678
679     nri              = nlist->nri;
680     iinr             = nlist->iinr;
681     jindex           = nlist->jindex;
682     jjnr             = nlist->jjnr;
683     shiftidx         = nlist->shift;
684     gid              = nlist->gid;
685     shiftvec         = fr->shift_vec[0];
686     fshift           = fr->fshift[0];
687     facel            = _mm256_set1_pd(fr->epsfac);
688     charge           = mdatoms->chargeA;
689
690     vftab            = kernel_data->table_elec->data;
691     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
692
693     /* Setup water-specific parameters */
694     inr              = nlist->iinr[0];
695     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
696     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
697     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
698
699     /* Avoid stupid compiler warnings */
700     jnrA = jnrB = jnrC = jnrD = 0;
701     j_coord_offsetA = 0;
702     j_coord_offsetB = 0;
703     j_coord_offsetC = 0;
704     j_coord_offsetD = 0;
705
706     outeriter        = 0;
707     inneriter        = 0;
708
709     for(iidx=0;iidx<4*DIM;iidx++)
710     {
711         scratch[iidx] = 0.0;
712     }
713
714     /* Start outer loop over neighborlists */
715     for(iidx=0; iidx<nri; iidx++)
716     {
717         /* Load shift vector for this list */
718         i_shift_offset   = DIM*shiftidx[iidx];
719
720         /* Load limits for loop over neighbors */
721         j_index_start    = jindex[iidx];
722         j_index_end      = jindex[iidx+1];
723
724         /* Get outer coordinate index */
725         inr              = iinr[iidx];
726         i_coord_offset   = DIM*inr;
727
728         /* Load i particle coords and add shift vector */
729         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
730                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
731
732         fix0             = _mm256_setzero_pd();
733         fiy0             = _mm256_setzero_pd();
734         fiz0             = _mm256_setzero_pd();
735         fix1             = _mm256_setzero_pd();
736         fiy1             = _mm256_setzero_pd();
737         fiz1             = _mm256_setzero_pd();
738         fix2             = _mm256_setzero_pd();
739         fiy2             = _mm256_setzero_pd();
740         fiz2             = _mm256_setzero_pd();
741
742         /* Start inner kernel loop */
743         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
744         {
745
746             /* Get j neighbor index, and coordinate index */
747             jnrA             = jjnr[jidx];
748             jnrB             = jjnr[jidx+1];
749             jnrC             = jjnr[jidx+2];
750             jnrD             = jjnr[jidx+3];
751             j_coord_offsetA  = DIM*jnrA;
752             j_coord_offsetB  = DIM*jnrB;
753             j_coord_offsetC  = DIM*jnrC;
754             j_coord_offsetD  = DIM*jnrD;
755
756             /* load j atom coordinates */
757             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
758                                                  x+j_coord_offsetC,x+j_coord_offsetD,
759                                                  &jx0,&jy0,&jz0);
760
761             /* Calculate displacement vector */
762             dx00             = _mm256_sub_pd(ix0,jx0);
763             dy00             = _mm256_sub_pd(iy0,jy0);
764             dz00             = _mm256_sub_pd(iz0,jz0);
765             dx10             = _mm256_sub_pd(ix1,jx0);
766             dy10             = _mm256_sub_pd(iy1,jy0);
767             dz10             = _mm256_sub_pd(iz1,jz0);
768             dx20             = _mm256_sub_pd(ix2,jx0);
769             dy20             = _mm256_sub_pd(iy2,jy0);
770             dz20             = _mm256_sub_pd(iz2,jz0);
771
772             /* Calculate squared distance and things based on it */
773             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
774             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
775             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
776
777             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
778             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
779             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
780
781             /* Load parameters for j particles */
782             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
783                                                                  charge+jnrC+0,charge+jnrD+0);
784
785             fjx0             = _mm256_setzero_pd();
786             fjy0             = _mm256_setzero_pd();
787             fjz0             = _mm256_setzero_pd();
788
789             /**************************
790              * CALCULATE INTERACTIONS *
791              **************************/
792
793             r00              = _mm256_mul_pd(rsq00,rinv00);
794
795             /* Compute parameters for interactions between i and j atoms */
796             qq00             = _mm256_mul_pd(iq0,jq0);
797
798             /* Calculate table index by multiplying r with table scale and truncate to integer */
799             rt               = _mm256_mul_pd(r00,vftabscale);
800             vfitab           = _mm256_cvttpd_epi32(rt);
801             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
802             vfitab           = _mm_slli_epi32(vfitab,2);
803
804             /* CUBIC SPLINE TABLE ELECTROSTATICS */
805             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
806             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
807             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
808             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
809             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
810             Heps             = _mm256_mul_pd(vfeps,H);
811             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
812             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
813             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
814
815             fscal            = felec;
816
817             /* Calculate temporary vectorial force */
818             tx               = _mm256_mul_pd(fscal,dx00);
819             ty               = _mm256_mul_pd(fscal,dy00);
820             tz               = _mm256_mul_pd(fscal,dz00);
821
822             /* Update vectorial force */
823             fix0             = _mm256_add_pd(fix0,tx);
824             fiy0             = _mm256_add_pd(fiy0,ty);
825             fiz0             = _mm256_add_pd(fiz0,tz);
826
827             fjx0             = _mm256_add_pd(fjx0,tx);
828             fjy0             = _mm256_add_pd(fjy0,ty);
829             fjz0             = _mm256_add_pd(fjz0,tz);
830
831             /**************************
832              * CALCULATE INTERACTIONS *
833              **************************/
834
835             r10              = _mm256_mul_pd(rsq10,rinv10);
836
837             /* Compute parameters for interactions between i and j atoms */
838             qq10             = _mm256_mul_pd(iq1,jq0);
839
840             /* Calculate table index by multiplying r with table scale and truncate to integer */
841             rt               = _mm256_mul_pd(r10,vftabscale);
842             vfitab           = _mm256_cvttpd_epi32(rt);
843             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
844             vfitab           = _mm_slli_epi32(vfitab,2);
845
846             /* CUBIC SPLINE TABLE ELECTROSTATICS */
847             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
848             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
849             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
850             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
851             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
852             Heps             = _mm256_mul_pd(vfeps,H);
853             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
854             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
855             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
856
857             fscal            = felec;
858
859             /* Calculate temporary vectorial force */
860             tx               = _mm256_mul_pd(fscal,dx10);
861             ty               = _mm256_mul_pd(fscal,dy10);
862             tz               = _mm256_mul_pd(fscal,dz10);
863
864             /* Update vectorial force */
865             fix1             = _mm256_add_pd(fix1,tx);
866             fiy1             = _mm256_add_pd(fiy1,ty);
867             fiz1             = _mm256_add_pd(fiz1,tz);
868
869             fjx0             = _mm256_add_pd(fjx0,tx);
870             fjy0             = _mm256_add_pd(fjy0,ty);
871             fjz0             = _mm256_add_pd(fjz0,tz);
872
873             /**************************
874              * CALCULATE INTERACTIONS *
875              **************************/
876
877             r20              = _mm256_mul_pd(rsq20,rinv20);
878
879             /* Compute parameters for interactions between i and j atoms */
880             qq20             = _mm256_mul_pd(iq2,jq0);
881
882             /* Calculate table index by multiplying r with table scale and truncate to integer */
883             rt               = _mm256_mul_pd(r20,vftabscale);
884             vfitab           = _mm256_cvttpd_epi32(rt);
885             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
886             vfitab           = _mm_slli_epi32(vfitab,2);
887
888             /* CUBIC SPLINE TABLE ELECTROSTATICS */
889             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
890             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
891             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
892             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
893             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
894             Heps             = _mm256_mul_pd(vfeps,H);
895             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
896             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
897             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
898
899             fscal            = felec;
900
901             /* Calculate temporary vectorial force */
902             tx               = _mm256_mul_pd(fscal,dx20);
903             ty               = _mm256_mul_pd(fscal,dy20);
904             tz               = _mm256_mul_pd(fscal,dz20);
905
906             /* Update vectorial force */
907             fix2             = _mm256_add_pd(fix2,tx);
908             fiy2             = _mm256_add_pd(fiy2,ty);
909             fiz2             = _mm256_add_pd(fiz2,tz);
910
911             fjx0             = _mm256_add_pd(fjx0,tx);
912             fjy0             = _mm256_add_pd(fjy0,ty);
913             fjz0             = _mm256_add_pd(fjz0,tz);
914
915             fjptrA             = f+j_coord_offsetA;
916             fjptrB             = f+j_coord_offsetB;
917             fjptrC             = f+j_coord_offsetC;
918             fjptrD             = f+j_coord_offsetD;
919
920             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
921
922             /* Inner loop uses 120 flops */
923         }
924
925         if(jidx<j_index_end)
926         {
927
928             /* Get j neighbor index, and coordinate index */
929             jnrlistA         = jjnr[jidx];
930             jnrlistB         = jjnr[jidx+1];
931             jnrlistC         = jjnr[jidx+2];
932             jnrlistD         = jjnr[jidx+3];
933             /* Sign of each element will be negative for non-real atoms.
934              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
935              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
936              */
937             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
938
939             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
940             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
941             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
942
943             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
944             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
945             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
946             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
947             j_coord_offsetA  = DIM*jnrA;
948             j_coord_offsetB  = DIM*jnrB;
949             j_coord_offsetC  = DIM*jnrC;
950             j_coord_offsetD  = DIM*jnrD;
951
952             /* load j atom coordinates */
953             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
954                                                  x+j_coord_offsetC,x+j_coord_offsetD,
955                                                  &jx0,&jy0,&jz0);
956
957             /* Calculate displacement vector */
958             dx00             = _mm256_sub_pd(ix0,jx0);
959             dy00             = _mm256_sub_pd(iy0,jy0);
960             dz00             = _mm256_sub_pd(iz0,jz0);
961             dx10             = _mm256_sub_pd(ix1,jx0);
962             dy10             = _mm256_sub_pd(iy1,jy0);
963             dz10             = _mm256_sub_pd(iz1,jz0);
964             dx20             = _mm256_sub_pd(ix2,jx0);
965             dy20             = _mm256_sub_pd(iy2,jy0);
966             dz20             = _mm256_sub_pd(iz2,jz0);
967
968             /* Calculate squared distance and things based on it */
969             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
970             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
971             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
972
973             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
974             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
975             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
976
977             /* Load parameters for j particles */
978             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
979                                                                  charge+jnrC+0,charge+jnrD+0);
980
981             fjx0             = _mm256_setzero_pd();
982             fjy0             = _mm256_setzero_pd();
983             fjz0             = _mm256_setzero_pd();
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             r00              = _mm256_mul_pd(rsq00,rinv00);
990             r00              = _mm256_andnot_pd(dummy_mask,r00);
991
992             /* Compute parameters for interactions between i and j atoms */
993             qq00             = _mm256_mul_pd(iq0,jq0);
994
995             /* Calculate table index by multiplying r with table scale and truncate to integer */
996             rt               = _mm256_mul_pd(r00,vftabscale);
997             vfitab           = _mm256_cvttpd_epi32(rt);
998             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
999             vfitab           = _mm_slli_epi32(vfitab,2);
1000
1001             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1002             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1003             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1004             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1005             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1006             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1007             Heps             = _mm256_mul_pd(vfeps,H);
1008             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1009             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1010             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
1011
1012             fscal            = felec;
1013
1014             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1015
1016             /* Calculate temporary vectorial force */
1017             tx               = _mm256_mul_pd(fscal,dx00);
1018             ty               = _mm256_mul_pd(fscal,dy00);
1019             tz               = _mm256_mul_pd(fscal,dz00);
1020
1021             /* Update vectorial force */
1022             fix0             = _mm256_add_pd(fix0,tx);
1023             fiy0             = _mm256_add_pd(fiy0,ty);
1024             fiz0             = _mm256_add_pd(fiz0,tz);
1025
1026             fjx0             = _mm256_add_pd(fjx0,tx);
1027             fjy0             = _mm256_add_pd(fjy0,ty);
1028             fjz0             = _mm256_add_pd(fjz0,tz);
1029
1030             /**************************
1031              * CALCULATE INTERACTIONS *
1032              **************************/
1033
1034             r10              = _mm256_mul_pd(rsq10,rinv10);
1035             r10              = _mm256_andnot_pd(dummy_mask,r10);
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq10             = _mm256_mul_pd(iq1,jq0);
1039
1040             /* Calculate table index by multiplying r with table scale and truncate to integer */
1041             rt               = _mm256_mul_pd(r10,vftabscale);
1042             vfitab           = _mm256_cvttpd_epi32(rt);
1043             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1044             vfitab           = _mm_slli_epi32(vfitab,2);
1045
1046             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1047             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1048             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1049             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1050             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1051             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1052             Heps             = _mm256_mul_pd(vfeps,H);
1053             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1054             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1055             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1056
1057             fscal            = felec;
1058
1059             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1060
1061             /* Calculate temporary vectorial force */
1062             tx               = _mm256_mul_pd(fscal,dx10);
1063             ty               = _mm256_mul_pd(fscal,dy10);
1064             tz               = _mm256_mul_pd(fscal,dz10);
1065
1066             /* Update vectorial force */
1067             fix1             = _mm256_add_pd(fix1,tx);
1068             fiy1             = _mm256_add_pd(fiy1,ty);
1069             fiz1             = _mm256_add_pd(fiz1,tz);
1070
1071             fjx0             = _mm256_add_pd(fjx0,tx);
1072             fjy0             = _mm256_add_pd(fjy0,ty);
1073             fjz0             = _mm256_add_pd(fjz0,tz);
1074
1075             /**************************
1076              * CALCULATE INTERACTIONS *
1077              **************************/
1078
1079             r20              = _mm256_mul_pd(rsq20,rinv20);
1080             r20              = _mm256_andnot_pd(dummy_mask,r20);
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             qq20             = _mm256_mul_pd(iq2,jq0);
1084
1085             /* Calculate table index by multiplying r with table scale and truncate to integer */
1086             rt               = _mm256_mul_pd(r20,vftabscale);
1087             vfitab           = _mm256_cvttpd_epi32(rt);
1088             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1089             vfitab           = _mm_slli_epi32(vfitab,2);
1090
1091             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1092             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1093             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1094             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1095             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1096             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1097             Heps             = _mm256_mul_pd(vfeps,H);
1098             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1099             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1100             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1101
1102             fscal            = felec;
1103
1104             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1105
1106             /* Calculate temporary vectorial force */
1107             tx               = _mm256_mul_pd(fscal,dx20);
1108             ty               = _mm256_mul_pd(fscal,dy20);
1109             tz               = _mm256_mul_pd(fscal,dz20);
1110
1111             /* Update vectorial force */
1112             fix2             = _mm256_add_pd(fix2,tx);
1113             fiy2             = _mm256_add_pd(fiy2,ty);
1114             fiz2             = _mm256_add_pd(fiz2,tz);
1115
1116             fjx0             = _mm256_add_pd(fjx0,tx);
1117             fjy0             = _mm256_add_pd(fjy0,ty);
1118             fjz0             = _mm256_add_pd(fjz0,tz);
1119
1120             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1121             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1122             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1123             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1124
1125             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1126
1127             /* Inner loop uses 123 flops */
1128         }
1129
1130         /* End of innermost loop */
1131
1132         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1133                                                  f+i_coord_offset,fshift+i_shift_offset);
1134
1135         /* Increment number of inner iterations */
1136         inneriter                  += j_index_end - j_index_start;
1137
1138         /* Outer loop uses 18 flops */
1139     }
1140
1141     /* Increment number of outer iterations */
1142     outeriter        += nri;
1143
1144     /* Update outer/inner flops */
1145
1146     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*123);
1147 }