Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          vfitab;
91     __m128i          ifour       = _mm_set1_epi32(4);
92     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
93     real             *vftab;
94     __m256d          dummy_mask,cutoff_mask;
95     __m128           tmpmask0,tmpmask1;
96     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
97     __m256d          one     = _mm256_set1_pd(1.0);
98     __m256d          two     = _mm256_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm256_set1_pd(fr->ic->epsfac);
111     charge           = mdatoms->chargeA;
112
113     vftab            = kernel_data->table_elec->data;
114     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = jnrC = jnrD = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120     j_coord_offsetC = 0;
121     j_coord_offsetD = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     for(iidx=0;iidx<4*DIM;iidx++)
127     {
128         scratch[iidx] = 0.0;
129     }
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
147
148         fix0             = _mm256_setzero_pd();
149         fiy0             = _mm256_setzero_pd();
150         fiz0             = _mm256_setzero_pd();
151
152         /* Load parameters for i particles */
153         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
154
155         /* Reset potential sums */
156         velecsum         = _mm256_setzero_pd();
157
158         /* Start inner kernel loop */
159         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
160         {
161
162             /* Get j neighbor index, and coordinate index */
163             jnrA             = jjnr[jidx];
164             jnrB             = jjnr[jidx+1];
165             jnrC             = jjnr[jidx+2];
166             jnrD             = jjnr[jidx+3];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169             j_coord_offsetC  = DIM*jnrC;
170             j_coord_offsetD  = DIM*jnrD;
171
172             /* load j atom coordinates */
173             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
174                                                  x+j_coord_offsetC,x+j_coord_offsetD,
175                                                  &jx0,&jy0,&jz0);
176
177             /* Calculate displacement vector */
178             dx00             = _mm256_sub_pd(ix0,jx0);
179             dy00             = _mm256_sub_pd(iy0,jy0);
180             dz00             = _mm256_sub_pd(iz0,jz0);
181
182             /* Calculate squared distance and things based on it */
183             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
184
185             rinv00           = avx256_invsqrt_d(rsq00);
186
187             /* Load parameters for j particles */
188             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
189                                                                  charge+jnrC+0,charge+jnrD+0);
190
191             /**************************
192              * CALCULATE INTERACTIONS *
193              **************************/
194
195             r00              = _mm256_mul_pd(rsq00,rinv00);
196
197             /* Compute parameters for interactions between i and j atoms */
198             qq00             = _mm256_mul_pd(iq0,jq0);
199
200             /* Calculate table index by multiplying r with table scale and truncate to integer */
201             rt               = _mm256_mul_pd(r00,vftabscale);
202             vfitab           = _mm256_cvttpd_epi32(rt);
203             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
204             vfitab           = _mm_slli_epi32(vfitab,2);
205
206             /* CUBIC SPLINE TABLE ELECTROSTATICS */
207             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
208             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
209             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
210             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
211             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
212             Heps             = _mm256_mul_pd(vfeps,H);
213             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
214             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
215             velec            = _mm256_mul_pd(qq00,VV);
216             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
217             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
218
219             /* Update potential sum for this i atom from the interaction with this j atom. */
220             velecsum         = _mm256_add_pd(velecsum,velec);
221
222             fscal            = felec;
223
224             /* Calculate temporary vectorial force */
225             tx               = _mm256_mul_pd(fscal,dx00);
226             ty               = _mm256_mul_pd(fscal,dy00);
227             tz               = _mm256_mul_pd(fscal,dz00);
228
229             /* Update vectorial force */
230             fix0             = _mm256_add_pd(fix0,tx);
231             fiy0             = _mm256_add_pd(fiy0,ty);
232             fiz0             = _mm256_add_pd(fiz0,tz);
233
234             fjptrA             = f+j_coord_offsetA;
235             fjptrB             = f+j_coord_offsetB;
236             fjptrC             = f+j_coord_offsetC;
237             fjptrD             = f+j_coord_offsetD;
238             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
239
240             /* Inner loop uses 43 flops */
241         }
242
243         if(jidx<j_index_end)
244         {
245
246             /* Get j neighbor index, and coordinate index */
247             jnrlistA         = jjnr[jidx];
248             jnrlistB         = jjnr[jidx+1];
249             jnrlistC         = jjnr[jidx+2];
250             jnrlistD         = jjnr[jidx+3];
251             /* Sign of each element will be negative for non-real atoms.
252              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
253              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
254              */
255             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
256
257             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
258             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
259             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
260
261             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
262             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
263             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
264             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
265             j_coord_offsetA  = DIM*jnrA;
266             j_coord_offsetB  = DIM*jnrB;
267             j_coord_offsetC  = DIM*jnrC;
268             j_coord_offsetD  = DIM*jnrD;
269
270             /* load j atom coordinates */
271             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
272                                                  x+j_coord_offsetC,x+j_coord_offsetD,
273                                                  &jx0,&jy0,&jz0);
274
275             /* Calculate displacement vector */
276             dx00             = _mm256_sub_pd(ix0,jx0);
277             dy00             = _mm256_sub_pd(iy0,jy0);
278             dz00             = _mm256_sub_pd(iz0,jz0);
279
280             /* Calculate squared distance and things based on it */
281             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
282
283             rinv00           = avx256_invsqrt_d(rsq00);
284
285             /* Load parameters for j particles */
286             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
287                                                                  charge+jnrC+0,charge+jnrD+0);
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             r00              = _mm256_mul_pd(rsq00,rinv00);
294             r00              = _mm256_andnot_pd(dummy_mask,r00);
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq00             = _mm256_mul_pd(iq0,jq0);
298
299             /* Calculate table index by multiplying r with table scale and truncate to integer */
300             rt               = _mm256_mul_pd(r00,vftabscale);
301             vfitab           = _mm256_cvttpd_epi32(rt);
302             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
303             vfitab           = _mm_slli_epi32(vfitab,2);
304
305             /* CUBIC SPLINE TABLE ELECTROSTATICS */
306             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
307             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
308             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
309             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
310             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
311             Heps             = _mm256_mul_pd(vfeps,H);
312             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
313             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
314             velec            = _mm256_mul_pd(qq00,VV);
315             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
316             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velec            = _mm256_andnot_pd(dummy_mask,velec);
320             velecsum         = _mm256_add_pd(velecsum,velec);
321
322             fscal            = felec;
323
324             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm256_mul_pd(fscal,dx00);
328             ty               = _mm256_mul_pd(fscal,dy00);
329             tz               = _mm256_mul_pd(fscal,dz00);
330
331             /* Update vectorial force */
332             fix0             = _mm256_add_pd(fix0,tx);
333             fiy0             = _mm256_add_pd(fiy0,ty);
334             fiz0             = _mm256_add_pd(fiz0,tz);
335
336             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
337             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
338             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
339             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
340             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
341
342             /* Inner loop uses 44 flops */
343         }
344
345         /* End of innermost loop */
346
347         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
348                                                  f+i_coord_offset,fshift+i_shift_offset);
349
350         ggid                        = gid[iidx];
351         /* Update potential energies */
352         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
353
354         /* Increment number of inner iterations */
355         inneriter                  += j_index_end - j_index_start;
356
357         /* Outer loop uses 8 flops */
358     }
359
360     /* Increment number of outer iterations */
361     outeriter        += nri;
362
363     /* Update outer/inner flops */
364
365     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
366 }
367 /*
368  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_double
369  * Electrostatics interaction: CubicSplineTable
370  * VdW interaction:            None
371  * Geometry:                   Particle-Particle
372  * Calculate force/pot:        Force
373  */
374 void
375 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_double
376                     (t_nblist                    * gmx_restrict       nlist,
377                      rvec                        * gmx_restrict          xx,
378                      rvec                        * gmx_restrict          ff,
379                      struct t_forcerec           * gmx_restrict          fr,
380                      t_mdatoms                   * gmx_restrict     mdatoms,
381                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
382                      t_nrnb                      * gmx_restrict        nrnb)
383 {
384     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
385      * just 0 for non-waters.
386      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
387      * jnr indices corresponding to data put in the four positions in the SIMD register.
388      */
389     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
390     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
391     int              jnrA,jnrB,jnrC,jnrD;
392     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
393     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
394     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
395     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
396     real             rcutoff_scalar;
397     real             *shiftvec,*fshift,*x,*f;
398     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
399     real             scratch[4*DIM];
400     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
401     real *           vdwioffsetptr0;
402     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
403     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
404     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
405     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
406     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
407     real             *charge;
408     __m128i          vfitab;
409     __m128i          ifour       = _mm_set1_epi32(4);
410     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
411     real             *vftab;
412     __m256d          dummy_mask,cutoff_mask;
413     __m128           tmpmask0,tmpmask1;
414     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
415     __m256d          one     = _mm256_set1_pd(1.0);
416     __m256d          two     = _mm256_set1_pd(2.0);
417     x                = xx[0];
418     f                = ff[0];
419
420     nri              = nlist->nri;
421     iinr             = nlist->iinr;
422     jindex           = nlist->jindex;
423     jjnr             = nlist->jjnr;
424     shiftidx         = nlist->shift;
425     gid              = nlist->gid;
426     shiftvec         = fr->shift_vec[0];
427     fshift           = fr->fshift[0];
428     facel            = _mm256_set1_pd(fr->ic->epsfac);
429     charge           = mdatoms->chargeA;
430
431     vftab            = kernel_data->table_elec->data;
432     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
433
434     /* Avoid stupid compiler warnings */
435     jnrA = jnrB = jnrC = jnrD = 0;
436     j_coord_offsetA = 0;
437     j_coord_offsetB = 0;
438     j_coord_offsetC = 0;
439     j_coord_offsetD = 0;
440
441     outeriter        = 0;
442     inneriter        = 0;
443
444     for(iidx=0;iidx<4*DIM;iidx++)
445     {
446         scratch[iidx] = 0.0;
447     }
448
449     /* Start outer loop over neighborlists */
450     for(iidx=0; iidx<nri; iidx++)
451     {
452         /* Load shift vector for this list */
453         i_shift_offset   = DIM*shiftidx[iidx];
454
455         /* Load limits for loop over neighbors */
456         j_index_start    = jindex[iidx];
457         j_index_end      = jindex[iidx+1];
458
459         /* Get outer coordinate index */
460         inr              = iinr[iidx];
461         i_coord_offset   = DIM*inr;
462
463         /* Load i particle coords and add shift vector */
464         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
465
466         fix0             = _mm256_setzero_pd();
467         fiy0             = _mm256_setzero_pd();
468         fiz0             = _mm256_setzero_pd();
469
470         /* Load parameters for i particles */
471         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
472
473         /* Start inner kernel loop */
474         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
475         {
476
477             /* Get j neighbor index, and coordinate index */
478             jnrA             = jjnr[jidx];
479             jnrB             = jjnr[jidx+1];
480             jnrC             = jjnr[jidx+2];
481             jnrD             = jjnr[jidx+3];
482             j_coord_offsetA  = DIM*jnrA;
483             j_coord_offsetB  = DIM*jnrB;
484             j_coord_offsetC  = DIM*jnrC;
485             j_coord_offsetD  = DIM*jnrD;
486
487             /* load j atom coordinates */
488             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
489                                                  x+j_coord_offsetC,x+j_coord_offsetD,
490                                                  &jx0,&jy0,&jz0);
491
492             /* Calculate displacement vector */
493             dx00             = _mm256_sub_pd(ix0,jx0);
494             dy00             = _mm256_sub_pd(iy0,jy0);
495             dz00             = _mm256_sub_pd(iz0,jz0);
496
497             /* Calculate squared distance and things based on it */
498             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
499
500             rinv00           = avx256_invsqrt_d(rsq00);
501
502             /* Load parameters for j particles */
503             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
504                                                                  charge+jnrC+0,charge+jnrD+0);
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             r00              = _mm256_mul_pd(rsq00,rinv00);
511
512             /* Compute parameters for interactions between i and j atoms */
513             qq00             = _mm256_mul_pd(iq0,jq0);
514
515             /* Calculate table index by multiplying r with table scale and truncate to integer */
516             rt               = _mm256_mul_pd(r00,vftabscale);
517             vfitab           = _mm256_cvttpd_epi32(rt);
518             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
519             vfitab           = _mm_slli_epi32(vfitab,2);
520
521             /* CUBIC SPLINE TABLE ELECTROSTATICS */
522             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
523             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
524             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
525             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
526             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
527             Heps             = _mm256_mul_pd(vfeps,H);
528             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
529             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
530             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
531
532             fscal            = felec;
533
534             /* Calculate temporary vectorial force */
535             tx               = _mm256_mul_pd(fscal,dx00);
536             ty               = _mm256_mul_pd(fscal,dy00);
537             tz               = _mm256_mul_pd(fscal,dz00);
538
539             /* Update vectorial force */
540             fix0             = _mm256_add_pd(fix0,tx);
541             fiy0             = _mm256_add_pd(fiy0,ty);
542             fiz0             = _mm256_add_pd(fiz0,tz);
543
544             fjptrA             = f+j_coord_offsetA;
545             fjptrB             = f+j_coord_offsetB;
546             fjptrC             = f+j_coord_offsetC;
547             fjptrD             = f+j_coord_offsetD;
548             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
549
550             /* Inner loop uses 39 flops */
551         }
552
553         if(jidx<j_index_end)
554         {
555
556             /* Get j neighbor index, and coordinate index */
557             jnrlistA         = jjnr[jidx];
558             jnrlistB         = jjnr[jidx+1];
559             jnrlistC         = jjnr[jidx+2];
560             jnrlistD         = jjnr[jidx+3];
561             /* Sign of each element will be negative for non-real atoms.
562              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
563              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
564              */
565             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
566
567             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
568             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
569             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
570
571             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
572             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
573             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
574             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
575             j_coord_offsetA  = DIM*jnrA;
576             j_coord_offsetB  = DIM*jnrB;
577             j_coord_offsetC  = DIM*jnrC;
578             j_coord_offsetD  = DIM*jnrD;
579
580             /* load j atom coordinates */
581             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
582                                                  x+j_coord_offsetC,x+j_coord_offsetD,
583                                                  &jx0,&jy0,&jz0);
584
585             /* Calculate displacement vector */
586             dx00             = _mm256_sub_pd(ix0,jx0);
587             dy00             = _mm256_sub_pd(iy0,jy0);
588             dz00             = _mm256_sub_pd(iz0,jz0);
589
590             /* Calculate squared distance and things based on it */
591             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
592
593             rinv00           = avx256_invsqrt_d(rsq00);
594
595             /* Load parameters for j particles */
596             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
597                                                                  charge+jnrC+0,charge+jnrD+0);
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             r00              = _mm256_mul_pd(rsq00,rinv00);
604             r00              = _mm256_andnot_pd(dummy_mask,r00);
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq00             = _mm256_mul_pd(iq0,jq0);
608
609             /* Calculate table index by multiplying r with table scale and truncate to integer */
610             rt               = _mm256_mul_pd(r00,vftabscale);
611             vfitab           = _mm256_cvttpd_epi32(rt);
612             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
613             vfitab           = _mm_slli_epi32(vfitab,2);
614
615             /* CUBIC SPLINE TABLE ELECTROSTATICS */
616             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
617             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
618             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
619             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
620             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
621             Heps             = _mm256_mul_pd(vfeps,H);
622             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
623             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
624             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
625
626             fscal            = felec;
627
628             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
629
630             /* Calculate temporary vectorial force */
631             tx               = _mm256_mul_pd(fscal,dx00);
632             ty               = _mm256_mul_pd(fscal,dy00);
633             tz               = _mm256_mul_pd(fscal,dz00);
634
635             /* Update vectorial force */
636             fix0             = _mm256_add_pd(fix0,tx);
637             fiy0             = _mm256_add_pd(fiy0,ty);
638             fiz0             = _mm256_add_pd(fiz0,tz);
639
640             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
641             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
642             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
643             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
644             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
645
646             /* Inner loop uses 40 flops */
647         }
648
649         /* End of innermost loop */
650
651         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
652                                                  f+i_coord_offset,fshift+i_shift_offset);
653
654         /* Increment number of inner iterations */
655         inneriter                  += j_index_end - j_index_start;
656
657         /* Outer loop uses 7 flops */
658     }
659
660     /* Increment number of outer iterations */
661     outeriter        += nri;
662
663     /* Update outer/inner flops */
664
665     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40);
666 }