Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m256d          dummy_mask,cutoff_mask;
96     __m128           tmpmask0,tmpmask1;
97     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
98     __m256d          one     = _mm256_set1_pd(1.0);
99     __m256d          two     = _mm256_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm256_set1_pd(fr->epsfac);
112     charge           = mdatoms->chargeA;
113
114     vftab            = kernel_data->table_elec->data;
115     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = jnrC = jnrD = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121     j_coord_offsetC = 0;
122     j_coord_offsetD = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     for(iidx=0;iidx<4*DIM;iidx++)
128     {
129         scratch[iidx] = 0.0;
130     }
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148
149         fix0             = _mm256_setzero_pd();
150         fiy0             = _mm256_setzero_pd();
151         fiz0             = _mm256_setzero_pd();
152
153         /* Load parameters for i particles */
154         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
155
156         /* Reset potential sums */
157         velecsum         = _mm256_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             jnrC             = jjnr[jidx+2];
167             jnrD             = jjnr[jidx+3];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170             j_coord_offsetC  = DIM*jnrC;
171             j_coord_offsetD  = DIM*jnrD;
172
173             /* load j atom coordinates */
174             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                                  x+j_coord_offsetC,x+j_coord_offsetD,
176                                                  &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _mm256_sub_pd(ix0,jx0);
180             dy00             = _mm256_sub_pd(iy0,jy0);
181             dz00             = _mm256_sub_pd(iz0,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
185
186             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
187
188             /* Load parameters for j particles */
189             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
190                                                                  charge+jnrC+0,charge+jnrD+0);
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             r00              = _mm256_mul_pd(rsq00,rinv00);
197
198             /* Compute parameters for interactions between i and j atoms */
199             qq00             = _mm256_mul_pd(iq0,jq0);
200
201             /* Calculate table index by multiplying r with table scale and truncate to integer */
202             rt               = _mm256_mul_pd(r00,vftabscale);
203             vfitab           = _mm256_cvttpd_epi32(rt);
204             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
205             vfitab           = _mm_slli_epi32(vfitab,2);
206
207             /* CUBIC SPLINE TABLE ELECTROSTATICS */
208             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
209             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
210             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
211             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
212             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
213             Heps             = _mm256_mul_pd(vfeps,H);
214             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
215             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
216             velec            = _mm256_mul_pd(qq00,VV);
217             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
218             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
219
220             /* Update potential sum for this i atom from the interaction with this j atom. */
221             velecsum         = _mm256_add_pd(velecsum,velec);
222
223             fscal            = felec;
224
225             /* Calculate temporary vectorial force */
226             tx               = _mm256_mul_pd(fscal,dx00);
227             ty               = _mm256_mul_pd(fscal,dy00);
228             tz               = _mm256_mul_pd(fscal,dz00);
229
230             /* Update vectorial force */
231             fix0             = _mm256_add_pd(fix0,tx);
232             fiy0             = _mm256_add_pd(fiy0,ty);
233             fiz0             = _mm256_add_pd(fiz0,tz);
234
235             fjptrA             = f+j_coord_offsetA;
236             fjptrB             = f+j_coord_offsetB;
237             fjptrC             = f+j_coord_offsetC;
238             fjptrD             = f+j_coord_offsetD;
239             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
240
241             /* Inner loop uses 43 flops */
242         }
243
244         if(jidx<j_index_end)
245         {
246
247             /* Get j neighbor index, and coordinate index */
248             jnrlistA         = jjnr[jidx];
249             jnrlistB         = jjnr[jidx+1];
250             jnrlistC         = jjnr[jidx+2];
251             jnrlistD         = jjnr[jidx+3];
252             /* Sign of each element will be negative for non-real atoms.
253              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
254              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
255              */
256             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
257
258             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
259             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
260             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
261
262             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
263             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
264             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
265             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
266             j_coord_offsetA  = DIM*jnrA;
267             j_coord_offsetB  = DIM*jnrB;
268             j_coord_offsetC  = DIM*jnrC;
269             j_coord_offsetD  = DIM*jnrD;
270
271             /* load j atom coordinates */
272             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
273                                                  x+j_coord_offsetC,x+j_coord_offsetD,
274                                                  &jx0,&jy0,&jz0);
275
276             /* Calculate displacement vector */
277             dx00             = _mm256_sub_pd(ix0,jx0);
278             dy00             = _mm256_sub_pd(iy0,jy0);
279             dz00             = _mm256_sub_pd(iz0,jz0);
280
281             /* Calculate squared distance and things based on it */
282             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
283
284             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
285
286             /* Load parameters for j particles */
287             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
288                                                                  charge+jnrC+0,charge+jnrD+0);
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             r00              = _mm256_mul_pd(rsq00,rinv00);
295             r00              = _mm256_andnot_pd(dummy_mask,r00);
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq00             = _mm256_mul_pd(iq0,jq0);
299
300             /* Calculate table index by multiplying r with table scale and truncate to integer */
301             rt               = _mm256_mul_pd(r00,vftabscale);
302             vfitab           = _mm256_cvttpd_epi32(rt);
303             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
304             vfitab           = _mm_slli_epi32(vfitab,2);
305
306             /* CUBIC SPLINE TABLE ELECTROSTATICS */
307             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
308             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
309             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
310             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
311             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
312             Heps             = _mm256_mul_pd(vfeps,H);
313             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
314             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
315             velec            = _mm256_mul_pd(qq00,VV);
316             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
317             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velec            = _mm256_andnot_pd(dummy_mask,velec);
321             velecsum         = _mm256_add_pd(velecsum,velec);
322
323             fscal            = felec;
324
325             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm256_mul_pd(fscal,dx00);
329             ty               = _mm256_mul_pd(fscal,dy00);
330             tz               = _mm256_mul_pd(fscal,dz00);
331
332             /* Update vectorial force */
333             fix0             = _mm256_add_pd(fix0,tx);
334             fiy0             = _mm256_add_pd(fiy0,ty);
335             fiz0             = _mm256_add_pd(fiz0,tz);
336
337             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
338             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
339             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
340             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
341             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
342
343             /* Inner loop uses 44 flops */
344         }
345
346         /* End of innermost loop */
347
348         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
349                                                  f+i_coord_offset,fshift+i_shift_offset);
350
351         ggid                        = gid[iidx];
352         /* Update potential energies */
353         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
354
355         /* Increment number of inner iterations */
356         inneriter                  += j_index_end - j_index_start;
357
358         /* Outer loop uses 8 flops */
359     }
360
361     /* Increment number of outer iterations */
362     outeriter        += nri;
363
364     /* Update outer/inner flops */
365
366     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
367 }
368 /*
369  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_double
370  * Electrostatics interaction: CubicSplineTable
371  * VdW interaction:            None
372  * Geometry:                   Particle-Particle
373  * Calculate force/pot:        Force
374  */
375 void
376 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_double
377                     (t_nblist                    * gmx_restrict       nlist,
378                      rvec                        * gmx_restrict          xx,
379                      rvec                        * gmx_restrict          ff,
380                      t_forcerec                  * gmx_restrict          fr,
381                      t_mdatoms                   * gmx_restrict     mdatoms,
382                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
383                      t_nrnb                      * gmx_restrict        nrnb)
384 {
385     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
386      * just 0 for non-waters.
387      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
388      * jnr indices corresponding to data put in the four positions in the SIMD register.
389      */
390     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
391     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
392     int              jnrA,jnrB,jnrC,jnrD;
393     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
394     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
395     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
396     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
397     real             rcutoff_scalar;
398     real             *shiftvec,*fshift,*x,*f;
399     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
400     real             scratch[4*DIM];
401     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
402     real *           vdwioffsetptr0;
403     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
404     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
405     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
406     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
407     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
408     real             *charge;
409     __m128i          vfitab;
410     __m128i          ifour       = _mm_set1_epi32(4);
411     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
412     real             *vftab;
413     __m256d          dummy_mask,cutoff_mask;
414     __m128           tmpmask0,tmpmask1;
415     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
416     __m256d          one     = _mm256_set1_pd(1.0);
417     __m256d          two     = _mm256_set1_pd(2.0);
418     x                = xx[0];
419     f                = ff[0];
420
421     nri              = nlist->nri;
422     iinr             = nlist->iinr;
423     jindex           = nlist->jindex;
424     jjnr             = nlist->jjnr;
425     shiftidx         = nlist->shift;
426     gid              = nlist->gid;
427     shiftvec         = fr->shift_vec[0];
428     fshift           = fr->fshift[0];
429     facel            = _mm256_set1_pd(fr->epsfac);
430     charge           = mdatoms->chargeA;
431
432     vftab            = kernel_data->table_elec->data;
433     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
434
435     /* Avoid stupid compiler warnings */
436     jnrA = jnrB = jnrC = jnrD = 0;
437     j_coord_offsetA = 0;
438     j_coord_offsetB = 0;
439     j_coord_offsetC = 0;
440     j_coord_offsetD = 0;
441
442     outeriter        = 0;
443     inneriter        = 0;
444
445     for(iidx=0;iidx<4*DIM;iidx++)
446     {
447         scratch[iidx] = 0.0;
448     }
449
450     /* Start outer loop over neighborlists */
451     for(iidx=0; iidx<nri; iidx++)
452     {
453         /* Load shift vector for this list */
454         i_shift_offset   = DIM*shiftidx[iidx];
455
456         /* Load limits for loop over neighbors */
457         j_index_start    = jindex[iidx];
458         j_index_end      = jindex[iidx+1];
459
460         /* Get outer coordinate index */
461         inr              = iinr[iidx];
462         i_coord_offset   = DIM*inr;
463
464         /* Load i particle coords and add shift vector */
465         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
466
467         fix0             = _mm256_setzero_pd();
468         fiy0             = _mm256_setzero_pd();
469         fiz0             = _mm256_setzero_pd();
470
471         /* Load parameters for i particles */
472         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
473
474         /* Start inner kernel loop */
475         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
476         {
477
478             /* Get j neighbor index, and coordinate index */
479             jnrA             = jjnr[jidx];
480             jnrB             = jjnr[jidx+1];
481             jnrC             = jjnr[jidx+2];
482             jnrD             = jjnr[jidx+3];
483             j_coord_offsetA  = DIM*jnrA;
484             j_coord_offsetB  = DIM*jnrB;
485             j_coord_offsetC  = DIM*jnrC;
486             j_coord_offsetD  = DIM*jnrD;
487
488             /* load j atom coordinates */
489             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
490                                                  x+j_coord_offsetC,x+j_coord_offsetD,
491                                                  &jx0,&jy0,&jz0);
492
493             /* Calculate displacement vector */
494             dx00             = _mm256_sub_pd(ix0,jx0);
495             dy00             = _mm256_sub_pd(iy0,jy0);
496             dz00             = _mm256_sub_pd(iz0,jz0);
497
498             /* Calculate squared distance and things based on it */
499             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
500
501             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
502
503             /* Load parameters for j particles */
504             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
505                                                                  charge+jnrC+0,charge+jnrD+0);
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             r00              = _mm256_mul_pd(rsq00,rinv00);
512
513             /* Compute parameters for interactions between i and j atoms */
514             qq00             = _mm256_mul_pd(iq0,jq0);
515
516             /* Calculate table index by multiplying r with table scale and truncate to integer */
517             rt               = _mm256_mul_pd(r00,vftabscale);
518             vfitab           = _mm256_cvttpd_epi32(rt);
519             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
520             vfitab           = _mm_slli_epi32(vfitab,2);
521
522             /* CUBIC SPLINE TABLE ELECTROSTATICS */
523             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
524             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
525             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
526             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
527             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
528             Heps             = _mm256_mul_pd(vfeps,H);
529             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
530             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
531             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
532
533             fscal            = felec;
534
535             /* Calculate temporary vectorial force */
536             tx               = _mm256_mul_pd(fscal,dx00);
537             ty               = _mm256_mul_pd(fscal,dy00);
538             tz               = _mm256_mul_pd(fscal,dz00);
539
540             /* Update vectorial force */
541             fix0             = _mm256_add_pd(fix0,tx);
542             fiy0             = _mm256_add_pd(fiy0,ty);
543             fiz0             = _mm256_add_pd(fiz0,tz);
544
545             fjptrA             = f+j_coord_offsetA;
546             fjptrB             = f+j_coord_offsetB;
547             fjptrC             = f+j_coord_offsetC;
548             fjptrD             = f+j_coord_offsetD;
549             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
550
551             /* Inner loop uses 39 flops */
552         }
553
554         if(jidx<j_index_end)
555         {
556
557             /* Get j neighbor index, and coordinate index */
558             jnrlistA         = jjnr[jidx];
559             jnrlistB         = jjnr[jidx+1];
560             jnrlistC         = jjnr[jidx+2];
561             jnrlistD         = jjnr[jidx+3];
562             /* Sign of each element will be negative for non-real atoms.
563              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
564              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
565              */
566             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
567
568             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
569             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
570             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
571
572             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
573             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
574             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
575             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
576             j_coord_offsetA  = DIM*jnrA;
577             j_coord_offsetB  = DIM*jnrB;
578             j_coord_offsetC  = DIM*jnrC;
579             j_coord_offsetD  = DIM*jnrD;
580
581             /* load j atom coordinates */
582             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
583                                                  x+j_coord_offsetC,x+j_coord_offsetD,
584                                                  &jx0,&jy0,&jz0);
585
586             /* Calculate displacement vector */
587             dx00             = _mm256_sub_pd(ix0,jx0);
588             dy00             = _mm256_sub_pd(iy0,jy0);
589             dz00             = _mm256_sub_pd(iz0,jz0);
590
591             /* Calculate squared distance and things based on it */
592             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
593
594             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
595
596             /* Load parameters for j particles */
597             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
598                                                                  charge+jnrC+0,charge+jnrD+0);
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             r00              = _mm256_mul_pd(rsq00,rinv00);
605             r00              = _mm256_andnot_pd(dummy_mask,r00);
606
607             /* Compute parameters for interactions between i and j atoms */
608             qq00             = _mm256_mul_pd(iq0,jq0);
609
610             /* Calculate table index by multiplying r with table scale and truncate to integer */
611             rt               = _mm256_mul_pd(r00,vftabscale);
612             vfitab           = _mm256_cvttpd_epi32(rt);
613             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
614             vfitab           = _mm_slli_epi32(vfitab,2);
615
616             /* CUBIC SPLINE TABLE ELECTROSTATICS */
617             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
618             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
619             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
620             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
621             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
622             Heps             = _mm256_mul_pd(vfeps,H);
623             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
624             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
625             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
626
627             fscal            = felec;
628
629             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
630
631             /* Calculate temporary vectorial force */
632             tx               = _mm256_mul_pd(fscal,dx00);
633             ty               = _mm256_mul_pd(fscal,dy00);
634             tz               = _mm256_mul_pd(fscal,dz00);
635
636             /* Update vectorial force */
637             fix0             = _mm256_add_pd(fix0,tx);
638             fiy0             = _mm256_add_pd(fiy0,ty);
639             fiz0             = _mm256_add_pd(fiz0,tz);
640
641             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
642             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
643             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
644             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
645             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
646
647             /* Inner loop uses 40 flops */
648         }
649
650         /* End of innermost loop */
651
652         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
653                                                  f+i_coord_offset,fshift+i_shift_offset);
654
655         /* Increment number of inner iterations */
656         inneriter                  += j_index_end - j_index_start;
657
658         /* Outer loop uses 7 flops */
659     }
660
661     /* Increment number of outer iterations */
662     outeriter        += nri;
663
664     /* Update outer/inner flops */
665
666     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40);
667 }