Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
96     real             *vftab;
97     __m256d          dummy_mask,cutoff_mask;
98     __m128           tmpmask0,tmpmask1;
99     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
100     __m256d          one     = _mm256_set1_pd(1.0);
101     __m256d          two     = _mm256_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm256_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     vftab            = kernel_data->table_elec->data;
117     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     for(iidx=0;iidx<4*DIM;iidx++)
130     {
131         scratch[iidx] = 0.0;
132     }
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
150
151         fix0             = _mm256_setzero_pd();
152         fiy0             = _mm256_setzero_pd();
153         fiz0             = _mm256_setzero_pd();
154
155         /* Load parameters for i particles */
156         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
157
158         /* Reset potential sums */
159         velecsum         = _mm256_setzero_pd();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             jnrC             = jjnr[jidx+2];
169             jnrD             = jjnr[jidx+3];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172             j_coord_offsetC  = DIM*jnrC;
173             j_coord_offsetD  = DIM*jnrD;
174
175             /* load j atom coordinates */
176             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
177                                                  x+j_coord_offsetC,x+j_coord_offsetD,
178                                                  &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm256_sub_pd(ix0,jx0);
182             dy00             = _mm256_sub_pd(iy0,jy0);
183             dz00             = _mm256_sub_pd(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
187
188             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
189
190             /* Load parameters for j particles */
191             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
192                                                                  charge+jnrC+0,charge+jnrD+0);
193
194             /**************************
195              * CALCULATE INTERACTIONS *
196              **************************/
197
198             r00              = _mm256_mul_pd(rsq00,rinv00);
199
200             /* Compute parameters for interactions between i and j atoms */
201             qq00             = _mm256_mul_pd(iq0,jq0);
202
203             /* Calculate table index by multiplying r with table scale and truncate to integer */
204             rt               = _mm256_mul_pd(r00,vftabscale);
205             vfitab           = _mm256_cvttpd_epi32(rt);
206             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
207             vfitab           = _mm_slli_epi32(vfitab,2);
208
209             /* CUBIC SPLINE TABLE ELECTROSTATICS */
210             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
211             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
212             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
213             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
214             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
215             Heps             = _mm256_mul_pd(vfeps,H);
216             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
217             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
218             velec            = _mm256_mul_pd(qq00,VV);
219             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
220             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
221
222             /* Update potential sum for this i atom from the interaction with this j atom. */
223             velecsum         = _mm256_add_pd(velecsum,velec);
224
225             fscal            = felec;
226
227             /* Calculate temporary vectorial force */
228             tx               = _mm256_mul_pd(fscal,dx00);
229             ty               = _mm256_mul_pd(fscal,dy00);
230             tz               = _mm256_mul_pd(fscal,dz00);
231
232             /* Update vectorial force */
233             fix0             = _mm256_add_pd(fix0,tx);
234             fiy0             = _mm256_add_pd(fiy0,ty);
235             fiz0             = _mm256_add_pd(fiz0,tz);
236
237             fjptrA             = f+j_coord_offsetA;
238             fjptrB             = f+j_coord_offsetB;
239             fjptrC             = f+j_coord_offsetC;
240             fjptrD             = f+j_coord_offsetD;
241             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
242
243             /* Inner loop uses 43 flops */
244         }
245
246         if(jidx<j_index_end)
247         {
248
249             /* Get j neighbor index, and coordinate index */
250             jnrlistA         = jjnr[jidx];
251             jnrlistB         = jjnr[jidx+1];
252             jnrlistC         = jjnr[jidx+2];
253             jnrlistD         = jjnr[jidx+3];
254             /* Sign of each element will be negative for non-real atoms.
255              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
256              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
257              */
258             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
259
260             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
261             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
262             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
263
264             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
265             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
266             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
267             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
268             j_coord_offsetA  = DIM*jnrA;
269             j_coord_offsetB  = DIM*jnrB;
270             j_coord_offsetC  = DIM*jnrC;
271             j_coord_offsetD  = DIM*jnrD;
272
273             /* load j atom coordinates */
274             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
275                                                  x+j_coord_offsetC,x+j_coord_offsetD,
276                                                  &jx0,&jy0,&jz0);
277
278             /* Calculate displacement vector */
279             dx00             = _mm256_sub_pd(ix0,jx0);
280             dy00             = _mm256_sub_pd(iy0,jy0);
281             dz00             = _mm256_sub_pd(iz0,jz0);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
285
286             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
287
288             /* Load parameters for j particles */
289             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
290                                                                  charge+jnrC+0,charge+jnrD+0);
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             r00              = _mm256_mul_pd(rsq00,rinv00);
297             r00              = _mm256_andnot_pd(dummy_mask,r00);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq00             = _mm256_mul_pd(iq0,jq0);
301
302             /* Calculate table index by multiplying r with table scale and truncate to integer */
303             rt               = _mm256_mul_pd(r00,vftabscale);
304             vfitab           = _mm256_cvttpd_epi32(rt);
305             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
306             vfitab           = _mm_slli_epi32(vfitab,2);
307
308             /* CUBIC SPLINE TABLE ELECTROSTATICS */
309             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
310             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
311             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
312             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
313             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
314             Heps             = _mm256_mul_pd(vfeps,H);
315             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
316             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
317             velec            = _mm256_mul_pd(qq00,VV);
318             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
319             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velec            = _mm256_andnot_pd(dummy_mask,velec);
323             velecsum         = _mm256_add_pd(velecsum,velec);
324
325             fscal            = felec;
326
327             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm256_mul_pd(fscal,dx00);
331             ty               = _mm256_mul_pd(fscal,dy00);
332             tz               = _mm256_mul_pd(fscal,dz00);
333
334             /* Update vectorial force */
335             fix0             = _mm256_add_pd(fix0,tx);
336             fiy0             = _mm256_add_pd(fiy0,ty);
337             fiz0             = _mm256_add_pd(fiz0,tz);
338
339             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
340             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
341             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
342             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
343             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
344
345             /* Inner loop uses 44 flops */
346         }
347
348         /* End of innermost loop */
349
350         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
351                                                  f+i_coord_offset,fshift+i_shift_offset);
352
353         ggid                        = gid[iidx];
354         /* Update potential energies */
355         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
356
357         /* Increment number of inner iterations */
358         inneriter                  += j_index_end - j_index_start;
359
360         /* Outer loop uses 8 flops */
361     }
362
363     /* Increment number of outer iterations */
364     outeriter        += nri;
365
366     /* Update outer/inner flops */
367
368     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
369 }
370 /*
371  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_double
372  * Electrostatics interaction: CubicSplineTable
373  * VdW interaction:            None
374  * Geometry:                   Particle-Particle
375  * Calculate force/pot:        Force
376  */
377 void
378 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_double
379                     (t_nblist                    * gmx_restrict       nlist,
380                      rvec                        * gmx_restrict          xx,
381                      rvec                        * gmx_restrict          ff,
382                      t_forcerec                  * gmx_restrict          fr,
383                      t_mdatoms                   * gmx_restrict     mdatoms,
384                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
385                      t_nrnb                      * gmx_restrict        nrnb)
386 {
387     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
388      * just 0 for non-waters.
389      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
390      * jnr indices corresponding to data put in the four positions in the SIMD register.
391      */
392     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
393     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
394     int              jnrA,jnrB,jnrC,jnrD;
395     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
396     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
397     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
398     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
399     real             rcutoff_scalar;
400     real             *shiftvec,*fshift,*x,*f;
401     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
402     real             scratch[4*DIM];
403     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
404     real *           vdwioffsetptr0;
405     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
406     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
407     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
408     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
409     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
410     real             *charge;
411     __m128i          vfitab;
412     __m128i          ifour       = _mm_set1_epi32(4);
413     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
414     real             *vftab;
415     __m256d          dummy_mask,cutoff_mask;
416     __m128           tmpmask0,tmpmask1;
417     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
418     __m256d          one     = _mm256_set1_pd(1.0);
419     __m256d          two     = _mm256_set1_pd(2.0);
420     x                = xx[0];
421     f                = ff[0];
422
423     nri              = nlist->nri;
424     iinr             = nlist->iinr;
425     jindex           = nlist->jindex;
426     jjnr             = nlist->jjnr;
427     shiftidx         = nlist->shift;
428     gid              = nlist->gid;
429     shiftvec         = fr->shift_vec[0];
430     fshift           = fr->fshift[0];
431     facel            = _mm256_set1_pd(fr->epsfac);
432     charge           = mdatoms->chargeA;
433
434     vftab            = kernel_data->table_elec->data;
435     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
436
437     /* Avoid stupid compiler warnings */
438     jnrA = jnrB = jnrC = jnrD = 0;
439     j_coord_offsetA = 0;
440     j_coord_offsetB = 0;
441     j_coord_offsetC = 0;
442     j_coord_offsetD = 0;
443
444     outeriter        = 0;
445     inneriter        = 0;
446
447     for(iidx=0;iidx<4*DIM;iidx++)
448     {
449         scratch[iidx] = 0.0;
450     }
451
452     /* Start outer loop over neighborlists */
453     for(iidx=0; iidx<nri; iidx++)
454     {
455         /* Load shift vector for this list */
456         i_shift_offset   = DIM*shiftidx[iidx];
457
458         /* Load limits for loop over neighbors */
459         j_index_start    = jindex[iidx];
460         j_index_end      = jindex[iidx+1];
461
462         /* Get outer coordinate index */
463         inr              = iinr[iidx];
464         i_coord_offset   = DIM*inr;
465
466         /* Load i particle coords and add shift vector */
467         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
468
469         fix0             = _mm256_setzero_pd();
470         fiy0             = _mm256_setzero_pd();
471         fiz0             = _mm256_setzero_pd();
472
473         /* Load parameters for i particles */
474         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
475
476         /* Start inner kernel loop */
477         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
478         {
479
480             /* Get j neighbor index, and coordinate index */
481             jnrA             = jjnr[jidx];
482             jnrB             = jjnr[jidx+1];
483             jnrC             = jjnr[jidx+2];
484             jnrD             = jjnr[jidx+3];
485             j_coord_offsetA  = DIM*jnrA;
486             j_coord_offsetB  = DIM*jnrB;
487             j_coord_offsetC  = DIM*jnrC;
488             j_coord_offsetD  = DIM*jnrD;
489
490             /* load j atom coordinates */
491             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
492                                                  x+j_coord_offsetC,x+j_coord_offsetD,
493                                                  &jx0,&jy0,&jz0);
494
495             /* Calculate displacement vector */
496             dx00             = _mm256_sub_pd(ix0,jx0);
497             dy00             = _mm256_sub_pd(iy0,jy0);
498             dz00             = _mm256_sub_pd(iz0,jz0);
499
500             /* Calculate squared distance and things based on it */
501             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
502
503             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
504
505             /* Load parameters for j particles */
506             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
507                                                                  charge+jnrC+0,charge+jnrD+0);
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             r00              = _mm256_mul_pd(rsq00,rinv00);
514
515             /* Compute parameters for interactions between i and j atoms */
516             qq00             = _mm256_mul_pd(iq0,jq0);
517
518             /* Calculate table index by multiplying r with table scale and truncate to integer */
519             rt               = _mm256_mul_pd(r00,vftabscale);
520             vfitab           = _mm256_cvttpd_epi32(rt);
521             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
522             vfitab           = _mm_slli_epi32(vfitab,2);
523
524             /* CUBIC SPLINE TABLE ELECTROSTATICS */
525             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
526             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
527             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
528             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
529             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
530             Heps             = _mm256_mul_pd(vfeps,H);
531             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
532             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
533             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
534
535             fscal            = felec;
536
537             /* Calculate temporary vectorial force */
538             tx               = _mm256_mul_pd(fscal,dx00);
539             ty               = _mm256_mul_pd(fscal,dy00);
540             tz               = _mm256_mul_pd(fscal,dz00);
541
542             /* Update vectorial force */
543             fix0             = _mm256_add_pd(fix0,tx);
544             fiy0             = _mm256_add_pd(fiy0,ty);
545             fiz0             = _mm256_add_pd(fiz0,tz);
546
547             fjptrA             = f+j_coord_offsetA;
548             fjptrB             = f+j_coord_offsetB;
549             fjptrC             = f+j_coord_offsetC;
550             fjptrD             = f+j_coord_offsetD;
551             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
552
553             /* Inner loop uses 39 flops */
554         }
555
556         if(jidx<j_index_end)
557         {
558
559             /* Get j neighbor index, and coordinate index */
560             jnrlistA         = jjnr[jidx];
561             jnrlistB         = jjnr[jidx+1];
562             jnrlistC         = jjnr[jidx+2];
563             jnrlistD         = jjnr[jidx+3];
564             /* Sign of each element will be negative for non-real atoms.
565              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
566              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
567              */
568             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
569
570             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
571             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
572             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
573
574             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
575             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
576             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
577             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
578             j_coord_offsetA  = DIM*jnrA;
579             j_coord_offsetB  = DIM*jnrB;
580             j_coord_offsetC  = DIM*jnrC;
581             j_coord_offsetD  = DIM*jnrD;
582
583             /* load j atom coordinates */
584             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
585                                                  x+j_coord_offsetC,x+j_coord_offsetD,
586                                                  &jx0,&jy0,&jz0);
587
588             /* Calculate displacement vector */
589             dx00             = _mm256_sub_pd(ix0,jx0);
590             dy00             = _mm256_sub_pd(iy0,jy0);
591             dz00             = _mm256_sub_pd(iz0,jz0);
592
593             /* Calculate squared distance and things based on it */
594             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
595
596             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
597
598             /* Load parameters for j particles */
599             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
600                                                                  charge+jnrC+0,charge+jnrD+0);
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             r00              = _mm256_mul_pd(rsq00,rinv00);
607             r00              = _mm256_andnot_pd(dummy_mask,r00);
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq00             = _mm256_mul_pd(iq0,jq0);
611
612             /* Calculate table index by multiplying r with table scale and truncate to integer */
613             rt               = _mm256_mul_pd(r00,vftabscale);
614             vfitab           = _mm256_cvttpd_epi32(rt);
615             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
616             vfitab           = _mm_slli_epi32(vfitab,2);
617
618             /* CUBIC SPLINE TABLE ELECTROSTATICS */
619             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
620             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
621             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
622             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
623             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
624             Heps             = _mm256_mul_pd(vfeps,H);
625             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
626             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
627             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
628
629             fscal            = felec;
630
631             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm256_mul_pd(fscal,dx00);
635             ty               = _mm256_mul_pd(fscal,dy00);
636             tz               = _mm256_mul_pd(fscal,dz00);
637
638             /* Update vectorial force */
639             fix0             = _mm256_add_pd(fix0,tx);
640             fiy0             = _mm256_add_pd(fiy0,ty);
641             fiz0             = _mm256_add_pd(fiz0,tz);
642
643             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
644             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
645             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
646             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
647             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
648
649             /* Inner loop uses 40 flops */
650         }
651
652         /* End of innermost loop */
653
654         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
655                                                  f+i_coord_offset,fshift+i_shift_offset);
656
657         /* Increment number of inner iterations */
658         inneriter                  += j_index_end - j_index_start;
659
660         /* Outer loop uses 7 flops */
661     }
662
663     /* Increment number of outer iterations */
664     outeriter        += nri;
665
666     /* Update outer/inner flops */
667
668     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40);
669 }