Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m128i          vfitab;
78     __m128i          ifour       = _mm_set1_epi32(4);
79     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
80     real             *vftab;
81     __m256d          dummy_mask,cutoff_mask;
82     __m128           tmpmask0,tmpmask1;
83     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
84     __m256d          one     = _mm256_set1_pd(1.0);
85     __m256d          two     = _mm256_set1_pd(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm256_set1_pd(fr->epsfac);
98     charge           = mdatoms->chargeA;
99
100     vftab            = kernel_data->table_elec->data;
101     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
102
103     /* Avoid stupid compiler warnings */
104     jnrA = jnrB = jnrC = jnrD = 0;
105     j_coord_offsetA = 0;
106     j_coord_offsetB = 0;
107     j_coord_offsetC = 0;
108     j_coord_offsetD = 0;
109
110     outeriter        = 0;
111     inneriter        = 0;
112
113     for(iidx=0;iidx<4*DIM;iidx++)
114     {
115         scratch[iidx] = 0.0;
116     }
117
118     /* Start outer loop over neighborlists */
119     for(iidx=0; iidx<nri; iidx++)
120     {
121         /* Load shift vector for this list */
122         i_shift_offset   = DIM*shiftidx[iidx];
123
124         /* Load limits for loop over neighbors */
125         j_index_start    = jindex[iidx];
126         j_index_end      = jindex[iidx+1];
127
128         /* Get outer coordinate index */
129         inr              = iinr[iidx];
130         i_coord_offset   = DIM*inr;
131
132         /* Load i particle coords and add shift vector */
133         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
134
135         fix0             = _mm256_setzero_pd();
136         fiy0             = _mm256_setzero_pd();
137         fiz0             = _mm256_setzero_pd();
138
139         /* Load parameters for i particles */
140         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
141
142         /* Reset potential sums */
143         velecsum         = _mm256_setzero_pd();
144
145         /* Start inner kernel loop */
146         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
147         {
148
149             /* Get j neighbor index, and coordinate index */
150             jnrA             = jjnr[jidx];
151             jnrB             = jjnr[jidx+1];
152             jnrC             = jjnr[jidx+2];
153             jnrD             = jjnr[jidx+3];
154             j_coord_offsetA  = DIM*jnrA;
155             j_coord_offsetB  = DIM*jnrB;
156             j_coord_offsetC  = DIM*jnrC;
157             j_coord_offsetD  = DIM*jnrD;
158
159             /* load j atom coordinates */
160             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
161                                                  x+j_coord_offsetC,x+j_coord_offsetD,
162                                                  &jx0,&jy0,&jz0);
163
164             /* Calculate displacement vector */
165             dx00             = _mm256_sub_pd(ix0,jx0);
166             dy00             = _mm256_sub_pd(iy0,jy0);
167             dz00             = _mm256_sub_pd(iz0,jz0);
168
169             /* Calculate squared distance and things based on it */
170             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
171
172             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
173
174             /* Load parameters for j particles */
175             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
176                                                                  charge+jnrC+0,charge+jnrD+0);
177
178             /**************************
179              * CALCULATE INTERACTIONS *
180              **************************/
181
182             r00              = _mm256_mul_pd(rsq00,rinv00);
183
184             /* Compute parameters for interactions between i and j atoms */
185             qq00             = _mm256_mul_pd(iq0,jq0);
186
187             /* Calculate table index by multiplying r with table scale and truncate to integer */
188             rt               = _mm256_mul_pd(r00,vftabscale);
189             vfitab           = _mm256_cvttpd_epi32(rt);
190             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
191             vfitab           = _mm_slli_epi32(vfitab,2);
192
193             /* CUBIC SPLINE TABLE ELECTROSTATICS */
194             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
195             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
196             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
197             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
198             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
199             Heps             = _mm256_mul_pd(vfeps,H);
200             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
201             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
202             velec            = _mm256_mul_pd(qq00,VV);
203             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
204             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
205
206             /* Update potential sum for this i atom from the interaction with this j atom. */
207             velecsum         = _mm256_add_pd(velecsum,velec);
208
209             fscal            = felec;
210
211             /* Calculate temporary vectorial force */
212             tx               = _mm256_mul_pd(fscal,dx00);
213             ty               = _mm256_mul_pd(fscal,dy00);
214             tz               = _mm256_mul_pd(fscal,dz00);
215
216             /* Update vectorial force */
217             fix0             = _mm256_add_pd(fix0,tx);
218             fiy0             = _mm256_add_pd(fiy0,ty);
219             fiz0             = _mm256_add_pd(fiz0,tz);
220
221             fjptrA             = f+j_coord_offsetA;
222             fjptrB             = f+j_coord_offsetB;
223             fjptrC             = f+j_coord_offsetC;
224             fjptrD             = f+j_coord_offsetD;
225             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
226
227             /* Inner loop uses 43 flops */
228         }
229
230         if(jidx<j_index_end)
231         {
232
233             /* Get j neighbor index, and coordinate index */
234             jnrlistA         = jjnr[jidx];
235             jnrlistB         = jjnr[jidx+1];
236             jnrlistC         = jjnr[jidx+2];
237             jnrlistD         = jjnr[jidx+3];
238             /* Sign of each element will be negative for non-real atoms.
239              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
240              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
241              */
242             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
243
244             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
245             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
246             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
247
248             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
249             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
250             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
251             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
252             j_coord_offsetA  = DIM*jnrA;
253             j_coord_offsetB  = DIM*jnrB;
254             j_coord_offsetC  = DIM*jnrC;
255             j_coord_offsetD  = DIM*jnrD;
256
257             /* load j atom coordinates */
258             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
259                                                  x+j_coord_offsetC,x+j_coord_offsetD,
260                                                  &jx0,&jy0,&jz0);
261
262             /* Calculate displacement vector */
263             dx00             = _mm256_sub_pd(ix0,jx0);
264             dy00             = _mm256_sub_pd(iy0,jy0);
265             dz00             = _mm256_sub_pd(iz0,jz0);
266
267             /* Calculate squared distance and things based on it */
268             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
269
270             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
271
272             /* Load parameters for j particles */
273             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
274                                                                  charge+jnrC+0,charge+jnrD+0);
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             r00              = _mm256_mul_pd(rsq00,rinv00);
281             r00              = _mm256_andnot_pd(dummy_mask,r00);
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq00             = _mm256_mul_pd(iq0,jq0);
285
286             /* Calculate table index by multiplying r with table scale and truncate to integer */
287             rt               = _mm256_mul_pd(r00,vftabscale);
288             vfitab           = _mm256_cvttpd_epi32(rt);
289             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
290             vfitab           = _mm_slli_epi32(vfitab,2);
291
292             /* CUBIC SPLINE TABLE ELECTROSTATICS */
293             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
294             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
295             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
296             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
297             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
298             Heps             = _mm256_mul_pd(vfeps,H);
299             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
300             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
301             velec            = _mm256_mul_pd(qq00,VV);
302             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
303             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velec            = _mm256_andnot_pd(dummy_mask,velec);
307             velecsum         = _mm256_add_pd(velecsum,velec);
308
309             fscal            = felec;
310
311             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm256_mul_pd(fscal,dx00);
315             ty               = _mm256_mul_pd(fscal,dy00);
316             tz               = _mm256_mul_pd(fscal,dz00);
317
318             /* Update vectorial force */
319             fix0             = _mm256_add_pd(fix0,tx);
320             fiy0             = _mm256_add_pd(fiy0,ty);
321             fiz0             = _mm256_add_pd(fiz0,tz);
322
323             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
324             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
325             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
326             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
327             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
328
329             /* Inner loop uses 44 flops */
330         }
331
332         /* End of innermost loop */
333
334         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
335                                                  f+i_coord_offset,fshift+i_shift_offset);
336
337         ggid                        = gid[iidx];
338         /* Update potential energies */
339         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
340
341         /* Increment number of inner iterations */
342         inneriter                  += j_index_end - j_index_start;
343
344         /* Outer loop uses 8 flops */
345     }
346
347     /* Increment number of outer iterations */
348     outeriter        += nri;
349
350     /* Update outer/inner flops */
351
352     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
353 }
354 /*
355  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_double
356  * Electrostatics interaction: CubicSplineTable
357  * VdW interaction:            None
358  * Geometry:                   Particle-Particle
359  * Calculate force/pot:        Force
360  */
361 void
362 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_double
363                     (t_nblist * gmx_restrict                nlist,
364                      rvec * gmx_restrict                    xx,
365                      rvec * gmx_restrict                    ff,
366                      t_forcerec * gmx_restrict              fr,
367                      t_mdatoms * gmx_restrict               mdatoms,
368                      nb_kernel_data_t * gmx_restrict        kernel_data,
369                      t_nrnb * gmx_restrict                  nrnb)
370 {
371     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
372      * just 0 for non-waters.
373      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
374      * jnr indices corresponding to data put in the four positions in the SIMD register.
375      */
376     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
377     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
378     int              jnrA,jnrB,jnrC,jnrD;
379     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
380     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
381     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
382     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
383     real             rcutoff_scalar;
384     real             *shiftvec,*fshift,*x,*f;
385     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
386     real             scratch[4*DIM];
387     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
388     real *           vdwioffsetptr0;
389     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
390     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
391     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
392     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
393     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
394     real             *charge;
395     __m128i          vfitab;
396     __m128i          ifour       = _mm_set1_epi32(4);
397     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
398     real             *vftab;
399     __m256d          dummy_mask,cutoff_mask;
400     __m128           tmpmask0,tmpmask1;
401     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
402     __m256d          one     = _mm256_set1_pd(1.0);
403     __m256d          two     = _mm256_set1_pd(2.0);
404     x                = xx[0];
405     f                = ff[0];
406
407     nri              = nlist->nri;
408     iinr             = nlist->iinr;
409     jindex           = nlist->jindex;
410     jjnr             = nlist->jjnr;
411     shiftidx         = nlist->shift;
412     gid              = nlist->gid;
413     shiftvec         = fr->shift_vec[0];
414     fshift           = fr->fshift[0];
415     facel            = _mm256_set1_pd(fr->epsfac);
416     charge           = mdatoms->chargeA;
417
418     vftab            = kernel_data->table_elec->data;
419     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
420
421     /* Avoid stupid compiler warnings */
422     jnrA = jnrB = jnrC = jnrD = 0;
423     j_coord_offsetA = 0;
424     j_coord_offsetB = 0;
425     j_coord_offsetC = 0;
426     j_coord_offsetD = 0;
427
428     outeriter        = 0;
429     inneriter        = 0;
430
431     for(iidx=0;iidx<4*DIM;iidx++)
432     {
433         scratch[iidx] = 0.0;
434     }
435
436     /* Start outer loop over neighborlists */
437     for(iidx=0; iidx<nri; iidx++)
438     {
439         /* Load shift vector for this list */
440         i_shift_offset   = DIM*shiftidx[iidx];
441
442         /* Load limits for loop over neighbors */
443         j_index_start    = jindex[iidx];
444         j_index_end      = jindex[iidx+1];
445
446         /* Get outer coordinate index */
447         inr              = iinr[iidx];
448         i_coord_offset   = DIM*inr;
449
450         /* Load i particle coords and add shift vector */
451         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
452
453         fix0             = _mm256_setzero_pd();
454         fiy0             = _mm256_setzero_pd();
455         fiz0             = _mm256_setzero_pd();
456
457         /* Load parameters for i particles */
458         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
459
460         /* Start inner kernel loop */
461         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
462         {
463
464             /* Get j neighbor index, and coordinate index */
465             jnrA             = jjnr[jidx];
466             jnrB             = jjnr[jidx+1];
467             jnrC             = jjnr[jidx+2];
468             jnrD             = jjnr[jidx+3];
469             j_coord_offsetA  = DIM*jnrA;
470             j_coord_offsetB  = DIM*jnrB;
471             j_coord_offsetC  = DIM*jnrC;
472             j_coord_offsetD  = DIM*jnrD;
473
474             /* load j atom coordinates */
475             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
476                                                  x+j_coord_offsetC,x+j_coord_offsetD,
477                                                  &jx0,&jy0,&jz0);
478
479             /* Calculate displacement vector */
480             dx00             = _mm256_sub_pd(ix0,jx0);
481             dy00             = _mm256_sub_pd(iy0,jy0);
482             dz00             = _mm256_sub_pd(iz0,jz0);
483
484             /* Calculate squared distance and things based on it */
485             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
486
487             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
488
489             /* Load parameters for j particles */
490             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
491                                                                  charge+jnrC+0,charge+jnrD+0);
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             r00              = _mm256_mul_pd(rsq00,rinv00);
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq00             = _mm256_mul_pd(iq0,jq0);
501
502             /* Calculate table index by multiplying r with table scale and truncate to integer */
503             rt               = _mm256_mul_pd(r00,vftabscale);
504             vfitab           = _mm256_cvttpd_epi32(rt);
505             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
506             vfitab           = _mm_slli_epi32(vfitab,2);
507
508             /* CUBIC SPLINE TABLE ELECTROSTATICS */
509             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
510             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
511             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
512             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
513             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
514             Heps             = _mm256_mul_pd(vfeps,H);
515             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
516             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
517             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
518
519             fscal            = felec;
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm256_mul_pd(fscal,dx00);
523             ty               = _mm256_mul_pd(fscal,dy00);
524             tz               = _mm256_mul_pd(fscal,dz00);
525
526             /* Update vectorial force */
527             fix0             = _mm256_add_pd(fix0,tx);
528             fiy0             = _mm256_add_pd(fiy0,ty);
529             fiz0             = _mm256_add_pd(fiz0,tz);
530
531             fjptrA             = f+j_coord_offsetA;
532             fjptrB             = f+j_coord_offsetB;
533             fjptrC             = f+j_coord_offsetC;
534             fjptrD             = f+j_coord_offsetD;
535             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
536
537             /* Inner loop uses 39 flops */
538         }
539
540         if(jidx<j_index_end)
541         {
542
543             /* Get j neighbor index, and coordinate index */
544             jnrlistA         = jjnr[jidx];
545             jnrlistB         = jjnr[jidx+1];
546             jnrlistC         = jjnr[jidx+2];
547             jnrlistD         = jjnr[jidx+3];
548             /* Sign of each element will be negative for non-real atoms.
549              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
550              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
551              */
552             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
553
554             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
555             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
556             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
557
558             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
559             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
560             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
561             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
562             j_coord_offsetA  = DIM*jnrA;
563             j_coord_offsetB  = DIM*jnrB;
564             j_coord_offsetC  = DIM*jnrC;
565             j_coord_offsetD  = DIM*jnrD;
566
567             /* load j atom coordinates */
568             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
569                                                  x+j_coord_offsetC,x+j_coord_offsetD,
570                                                  &jx0,&jy0,&jz0);
571
572             /* Calculate displacement vector */
573             dx00             = _mm256_sub_pd(ix0,jx0);
574             dy00             = _mm256_sub_pd(iy0,jy0);
575             dz00             = _mm256_sub_pd(iz0,jz0);
576
577             /* Calculate squared distance and things based on it */
578             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
579
580             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
581
582             /* Load parameters for j particles */
583             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
584                                                                  charge+jnrC+0,charge+jnrD+0);
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             r00              = _mm256_mul_pd(rsq00,rinv00);
591             r00              = _mm256_andnot_pd(dummy_mask,r00);
592
593             /* Compute parameters for interactions between i and j atoms */
594             qq00             = _mm256_mul_pd(iq0,jq0);
595
596             /* Calculate table index by multiplying r with table scale and truncate to integer */
597             rt               = _mm256_mul_pd(r00,vftabscale);
598             vfitab           = _mm256_cvttpd_epi32(rt);
599             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
600             vfitab           = _mm_slli_epi32(vfitab,2);
601
602             /* CUBIC SPLINE TABLE ELECTROSTATICS */
603             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
604             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
605             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
606             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
607             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
608             Heps             = _mm256_mul_pd(vfeps,H);
609             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
610             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
611             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
612
613             fscal            = felec;
614
615             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
616
617             /* Calculate temporary vectorial force */
618             tx               = _mm256_mul_pd(fscal,dx00);
619             ty               = _mm256_mul_pd(fscal,dy00);
620             tz               = _mm256_mul_pd(fscal,dz00);
621
622             /* Update vectorial force */
623             fix0             = _mm256_add_pd(fix0,tx);
624             fiy0             = _mm256_add_pd(fiy0,ty);
625             fiz0             = _mm256_add_pd(fiz0,tz);
626
627             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
628             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
629             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
630             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
631             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
632
633             /* Inner loop uses 40 flops */
634         }
635
636         /* End of innermost loop */
637
638         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
639                                                  f+i_coord_offset,fshift+i_shift_offset);
640
641         /* Increment number of inner iterations */
642         inneriter                  += j_index_end - j_index_start;
643
644         /* Outer loop uses 7 flops */
645     }
646
647     /* Increment number of outer iterations */
648     outeriter        += nri;
649
650     /* Update outer/inner flops */
651
652     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40);
653 }