Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m128i          vfitab;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256d          dummy_mask,cutoff_mask;
113     __m128           tmpmask0,tmpmask1;
114     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
115     __m256d          one     = _mm256_set1_pd(1.0);
116     __m256d          two     = _mm256_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     vftab            = kernel_data->table_elec->data;
135     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
140     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
141     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
142     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
175                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
176
177         fix0             = _mm256_setzero_pd();
178         fiy0             = _mm256_setzero_pd();
179         fiz0             = _mm256_setzero_pd();
180         fix1             = _mm256_setzero_pd();
181         fiy1             = _mm256_setzero_pd();
182         fiz1             = _mm256_setzero_pd();
183         fix2             = _mm256_setzero_pd();
184         fiy2             = _mm256_setzero_pd();
185         fiz2             = _mm256_setzero_pd();
186         fix3             = _mm256_setzero_pd();
187         fiy3             = _mm256_setzero_pd();
188         fiz3             = _mm256_setzero_pd();
189
190         /* Reset potential sums */
191         velecsum         = _mm256_setzero_pd();
192         vvdwsum          = _mm256_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_pd(ix0,jx0);
215             dy00             = _mm256_sub_pd(iy0,jy0);
216             dz00             = _mm256_sub_pd(iz0,jz0);
217             dx10             = _mm256_sub_pd(ix1,jx0);
218             dy10             = _mm256_sub_pd(iy1,jy0);
219             dz10             = _mm256_sub_pd(iz1,jz0);
220             dx20             = _mm256_sub_pd(ix2,jx0);
221             dy20             = _mm256_sub_pd(iy2,jy0);
222             dz20             = _mm256_sub_pd(iz2,jz0);
223             dx30             = _mm256_sub_pd(ix3,jx0);
224             dy30             = _mm256_sub_pd(iy3,jy0);
225             dz30             = _mm256_sub_pd(iz3,jz0);
226
227             /* Calculate squared distance and things based on it */
228             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
229             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
230             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
231             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
232
233             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
234             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
235             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
236
237             rinvsq00         = gmx_mm256_inv_pd(rsq00);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
241                                                                  charge+jnrC+0,charge+jnrD+0);
242             vdwjidx0A        = 2*vdwtype[jnrA+0];
243             vdwjidx0B        = 2*vdwtype[jnrB+0];
244             vdwjidx0C        = 2*vdwtype[jnrC+0];
245             vdwjidx0D        = 2*vdwtype[jnrD+0];
246
247             fjx0             = _mm256_setzero_pd();
248             fjy0             = _mm256_setzero_pd();
249             fjz0             = _mm256_setzero_pd();
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             /* Compute parameters for interactions between i and j atoms */
256             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
257                                             vdwioffsetptr0+vdwjidx0B,
258                                             vdwioffsetptr0+vdwjidx0C,
259                                             vdwioffsetptr0+vdwjidx0D,
260                                             &c6_00,&c12_00);
261
262             /* LENNARD-JONES DISPERSION/REPULSION */
263
264             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
265             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
266             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
267             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
268             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
272
273             fscal            = fvdw;
274
275             /* Calculate temporary vectorial force */
276             tx               = _mm256_mul_pd(fscal,dx00);
277             ty               = _mm256_mul_pd(fscal,dy00);
278             tz               = _mm256_mul_pd(fscal,dz00);
279
280             /* Update vectorial force */
281             fix0             = _mm256_add_pd(fix0,tx);
282             fiy0             = _mm256_add_pd(fiy0,ty);
283             fiz0             = _mm256_add_pd(fiz0,tz);
284
285             fjx0             = _mm256_add_pd(fjx0,tx);
286             fjy0             = _mm256_add_pd(fjy0,ty);
287             fjz0             = _mm256_add_pd(fjz0,tz);
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             r10              = _mm256_mul_pd(rsq10,rinv10);
294
295             /* Compute parameters for interactions between i and j atoms */
296             qq10             = _mm256_mul_pd(iq1,jq0);
297
298             /* Calculate table index by multiplying r with table scale and truncate to integer */
299             rt               = _mm256_mul_pd(r10,vftabscale);
300             vfitab           = _mm256_cvttpd_epi32(rt);
301             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
302             vfitab           = _mm_slli_epi32(vfitab,2);
303
304             /* CUBIC SPLINE TABLE ELECTROSTATICS */
305             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
306             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
307             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
308             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
309             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
310             Heps             = _mm256_mul_pd(vfeps,H);
311             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
312             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
313             velec            = _mm256_mul_pd(qq10,VV);
314             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
315             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velecsum         = _mm256_add_pd(velecsum,velec);
319
320             fscal            = felec;
321
322             /* Calculate temporary vectorial force */
323             tx               = _mm256_mul_pd(fscal,dx10);
324             ty               = _mm256_mul_pd(fscal,dy10);
325             tz               = _mm256_mul_pd(fscal,dz10);
326
327             /* Update vectorial force */
328             fix1             = _mm256_add_pd(fix1,tx);
329             fiy1             = _mm256_add_pd(fiy1,ty);
330             fiz1             = _mm256_add_pd(fiz1,tz);
331
332             fjx0             = _mm256_add_pd(fjx0,tx);
333             fjy0             = _mm256_add_pd(fjy0,ty);
334             fjz0             = _mm256_add_pd(fjz0,tz);
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             r20              = _mm256_mul_pd(rsq20,rinv20);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq20             = _mm256_mul_pd(iq2,jq0);
344
345             /* Calculate table index by multiplying r with table scale and truncate to integer */
346             rt               = _mm256_mul_pd(r20,vftabscale);
347             vfitab           = _mm256_cvttpd_epi32(rt);
348             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
349             vfitab           = _mm_slli_epi32(vfitab,2);
350
351             /* CUBIC SPLINE TABLE ELECTROSTATICS */
352             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
353             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
354             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
355             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
356             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
357             Heps             = _mm256_mul_pd(vfeps,H);
358             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
359             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
360             velec            = _mm256_mul_pd(qq20,VV);
361             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
362             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velecsum         = _mm256_add_pd(velecsum,velec);
366
367             fscal            = felec;
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm256_mul_pd(fscal,dx20);
371             ty               = _mm256_mul_pd(fscal,dy20);
372             tz               = _mm256_mul_pd(fscal,dz20);
373
374             /* Update vectorial force */
375             fix2             = _mm256_add_pd(fix2,tx);
376             fiy2             = _mm256_add_pd(fiy2,ty);
377             fiz2             = _mm256_add_pd(fiz2,tz);
378
379             fjx0             = _mm256_add_pd(fjx0,tx);
380             fjy0             = _mm256_add_pd(fjy0,ty);
381             fjz0             = _mm256_add_pd(fjz0,tz);
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             r30              = _mm256_mul_pd(rsq30,rinv30);
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq30             = _mm256_mul_pd(iq3,jq0);
391
392             /* Calculate table index by multiplying r with table scale and truncate to integer */
393             rt               = _mm256_mul_pd(r30,vftabscale);
394             vfitab           = _mm256_cvttpd_epi32(rt);
395             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
396             vfitab           = _mm_slli_epi32(vfitab,2);
397
398             /* CUBIC SPLINE TABLE ELECTROSTATICS */
399             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
400             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
401             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
402             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
403             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
404             Heps             = _mm256_mul_pd(vfeps,H);
405             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
406             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
407             velec            = _mm256_mul_pd(qq30,VV);
408             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
409             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velecsum         = _mm256_add_pd(velecsum,velec);
413
414             fscal            = felec;
415
416             /* Calculate temporary vectorial force */
417             tx               = _mm256_mul_pd(fscal,dx30);
418             ty               = _mm256_mul_pd(fscal,dy30);
419             tz               = _mm256_mul_pd(fscal,dz30);
420
421             /* Update vectorial force */
422             fix3             = _mm256_add_pd(fix3,tx);
423             fiy3             = _mm256_add_pd(fiy3,ty);
424             fiz3             = _mm256_add_pd(fiz3,tz);
425
426             fjx0             = _mm256_add_pd(fjx0,tx);
427             fjy0             = _mm256_add_pd(fjy0,ty);
428             fjz0             = _mm256_add_pd(fjz0,tz);
429
430             fjptrA             = f+j_coord_offsetA;
431             fjptrB             = f+j_coord_offsetB;
432             fjptrC             = f+j_coord_offsetC;
433             fjptrD             = f+j_coord_offsetD;
434
435             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
436
437             /* Inner loop uses 164 flops */
438         }
439
440         if(jidx<j_index_end)
441         {
442
443             /* Get j neighbor index, and coordinate index */
444             jnrlistA         = jjnr[jidx];
445             jnrlistB         = jjnr[jidx+1];
446             jnrlistC         = jjnr[jidx+2];
447             jnrlistD         = jjnr[jidx+3];
448             /* Sign of each element will be negative for non-real atoms.
449              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
450              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
451              */
452             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
453
454             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
455             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
456             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
457
458             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
459             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
460             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
461             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
462             j_coord_offsetA  = DIM*jnrA;
463             j_coord_offsetB  = DIM*jnrB;
464             j_coord_offsetC  = DIM*jnrC;
465             j_coord_offsetD  = DIM*jnrD;
466
467             /* load j atom coordinates */
468             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
469                                                  x+j_coord_offsetC,x+j_coord_offsetD,
470                                                  &jx0,&jy0,&jz0);
471
472             /* Calculate displacement vector */
473             dx00             = _mm256_sub_pd(ix0,jx0);
474             dy00             = _mm256_sub_pd(iy0,jy0);
475             dz00             = _mm256_sub_pd(iz0,jz0);
476             dx10             = _mm256_sub_pd(ix1,jx0);
477             dy10             = _mm256_sub_pd(iy1,jy0);
478             dz10             = _mm256_sub_pd(iz1,jz0);
479             dx20             = _mm256_sub_pd(ix2,jx0);
480             dy20             = _mm256_sub_pd(iy2,jy0);
481             dz20             = _mm256_sub_pd(iz2,jz0);
482             dx30             = _mm256_sub_pd(ix3,jx0);
483             dy30             = _mm256_sub_pd(iy3,jy0);
484             dz30             = _mm256_sub_pd(iz3,jz0);
485
486             /* Calculate squared distance and things based on it */
487             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
488             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
489             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
490             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
491
492             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
493             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
494             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
495
496             rinvsq00         = gmx_mm256_inv_pd(rsq00);
497
498             /* Load parameters for j particles */
499             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
500                                                                  charge+jnrC+0,charge+jnrD+0);
501             vdwjidx0A        = 2*vdwtype[jnrA+0];
502             vdwjidx0B        = 2*vdwtype[jnrB+0];
503             vdwjidx0C        = 2*vdwtype[jnrC+0];
504             vdwjidx0D        = 2*vdwtype[jnrD+0];
505
506             fjx0             = _mm256_setzero_pd();
507             fjy0             = _mm256_setzero_pd();
508             fjz0             = _mm256_setzero_pd();
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             /* Compute parameters for interactions between i and j atoms */
515             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
516                                             vdwioffsetptr0+vdwjidx0B,
517                                             vdwioffsetptr0+vdwjidx0C,
518                                             vdwioffsetptr0+vdwjidx0D,
519                                             &c6_00,&c12_00);
520
521             /* LENNARD-JONES DISPERSION/REPULSION */
522
523             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
524             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
525             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
526             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
527             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
531             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
532
533             fscal            = fvdw;
534
535             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
536
537             /* Calculate temporary vectorial force */
538             tx               = _mm256_mul_pd(fscal,dx00);
539             ty               = _mm256_mul_pd(fscal,dy00);
540             tz               = _mm256_mul_pd(fscal,dz00);
541
542             /* Update vectorial force */
543             fix0             = _mm256_add_pd(fix0,tx);
544             fiy0             = _mm256_add_pd(fiy0,ty);
545             fiz0             = _mm256_add_pd(fiz0,tz);
546
547             fjx0             = _mm256_add_pd(fjx0,tx);
548             fjy0             = _mm256_add_pd(fjy0,ty);
549             fjz0             = _mm256_add_pd(fjz0,tz);
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             r10              = _mm256_mul_pd(rsq10,rinv10);
556             r10              = _mm256_andnot_pd(dummy_mask,r10);
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq10             = _mm256_mul_pd(iq1,jq0);
560
561             /* Calculate table index by multiplying r with table scale and truncate to integer */
562             rt               = _mm256_mul_pd(r10,vftabscale);
563             vfitab           = _mm256_cvttpd_epi32(rt);
564             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
565             vfitab           = _mm_slli_epi32(vfitab,2);
566
567             /* CUBIC SPLINE TABLE ELECTROSTATICS */
568             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
569             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
570             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
571             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
572             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
573             Heps             = _mm256_mul_pd(vfeps,H);
574             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
575             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
576             velec            = _mm256_mul_pd(qq10,VV);
577             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
578             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
579
580             /* Update potential sum for this i atom from the interaction with this j atom. */
581             velec            = _mm256_andnot_pd(dummy_mask,velec);
582             velecsum         = _mm256_add_pd(velecsum,velec);
583
584             fscal            = felec;
585
586             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
587
588             /* Calculate temporary vectorial force */
589             tx               = _mm256_mul_pd(fscal,dx10);
590             ty               = _mm256_mul_pd(fscal,dy10);
591             tz               = _mm256_mul_pd(fscal,dz10);
592
593             /* Update vectorial force */
594             fix1             = _mm256_add_pd(fix1,tx);
595             fiy1             = _mm256_add_pd(fiy1,ty);
596             fiz1             = _mm256_add_pd(fiz1,tz);
597
598             fjx0             = _mm256_add_pd(fjx0,tx);
599             fjy0             = _mm256_add_pd(fjy0,ty);
600             fjz0             = _mm256_add_pd(fjz0,tz);
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             r20              = _mm256_mul_pd(rsq20,rinv20);
607             r20              = _mm256_andnot_pd(dummy_mask,r20);
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq20             = _mm256_mul_pd(iq2,jq0);
611
612             /* Calculate table index by multiplying r with table scale and truncate to integer */
613             rt               = _mm256_mul_pd(r20,vftabscale);
614             vfitab           = _mm256_cvttpd_epi32(rt);
615             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
616             vfitab           = _mm_slli_epi32(vfitab,2);
617
618             /* CUBIC SPLINE TABLE ELECTROSTATICS */
619             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
620             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
621             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
622             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
623             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
624             Heps             = _mm256_mul_pd(vfeps,H);
625             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
626             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
627             velec            = _mm256_mul_pd(qq20,VV);
628             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
629             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
630
631             /* Update potential sum for this i atom from the interaction with this j atom. */
632             velec            = _mm256_andnot_pd(dummy_mask,velec);
633             velecsum         = _mm256_add_pd(velecsum,velec);
634
635             fscal            = felec;
636
637             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
638
639             /* Calculate temporary vectorial force */
640             tx               = _mm256_mul_pd(fscal,dx20);
641             ty               = _mm256_mul_pd(fscal,dy20);
642             tz               = _mm256_mul_pd(fscal,dz20);
643
644             /* Update vectorial force */
645             fix2             = _mm256_add_pd(fix2,tx);
646             fiy2             = _mm256_add_pd(fiy2,ty);
647             fiz2             = _mm256_add_pd(fiz2,tz);
648
649             fjx0             = _mm256_add_pd(fjx0,tx);
650             fjy0             = _mm256_add_pd(fjy0,ty);
651             fjz0             = _mm256_add_pd(fjz0,tz);
652
653             /**************************
654              * CALCULATE INTERACTIONS *
655              **************************/
656
657             r30              = _mm256_mul_pd(rsq30,rinv30);
658             r30              = _mm256_andnot_pd(dummy_mask,r30);
659
660             /* Compute parameters for interactions between i and j atoms */
661             qq30             = _mm256_mul_pd(iq3,jq0);
662
663             /* Calculate table index by multiplying r with table scale and truncate to integer */
664             rt               = _mm256_mul_pd(r30,vftabscale);
665             vfitab           = _mm256_cvttpd_epi32(rt);
666             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
667             vfitab           = _mm_slli_epi32(vfitab,2);
668
669             /* CUBIC SPLINE TABLE ELECTROSTATICS */
670             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
671             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
672             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
673             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
674             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
675             Heps             = _mm256_mul_pd(vfeps,H);
676             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
677             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
678             velec            = _mm256_mul_pd(qq30,VV);
679             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
680             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
681
682             /* Update potential sum for this i atom from the interaction with this j atom. */
683             velec            = _mm256_andnot_pd(dummy_mask,velec);
684             velecsum         = _mm256_add_pd(velecsum,velec);
685
686             fscal            = felec;
687
688             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
689
690             /* Calculate temporary vectorial force */
691             tx               = _mm256_mul_pd(fscal,dx30);
692             ty               = _mm256_mul_pd(fscal,dy30);
693             tz               = _mm256_mul_pd(fscal,dz30);
694
695             /* Update vectorial force */
696             fix3             = _mm256_add_pd(fix3,tx);
697             fiy3             = _mm256_add_pd(fiy3,ty);
698             fiz3             = _mm256_add_pd(fiz3,tz);
699
700             fjx0             = _mm256_add_pd(fjx0,tx);
701             fjy0             = _mm256_add_pd(fjy0,ty);
702             fjz0             = _mm256_add_pd(fjz0,tz);
703
704             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
705             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
706             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
707             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
708
709             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
710
711             /* Inner loop uses 167 flops */
712         }
713
714         /* End of innermost loop */
715
716         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
717                                                  f+i_coord_offset,fshift+i_shift_offset);
718
719         ggid                        = gid[iidx];
720         /* Update potential energies */
721         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
722         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
723
724         /* Increment number of inner iterations */
725         inneriter                  += j_index_end - j_index_start;
726
727         /* Outer loop uses 26 flops */
728     }
729
730     /* Increment number of outer iterations */
731     outeriter        += nri;
732
733     /* Update outer/inner flops */
734
735     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
736 }
737 /*
738  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_256_double
739  * Electrostatics interaction: CubicSplineTable
740  * VdW interaction:            LennardJones
741  * Geometry:                   Water4-Particle
742  * Calculate force/pot:        Force
743  */
744 void
745 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_256_double
746                     (t_nblist                    * gmx_restrict       nlist,
747                      rvec                        * gmx_restrict          xx,
748                      rvec                        * gmx_restrict          ff,
749                      t_forcerec                  * gmx_restrict          fr,
750                      t_mdatoms                   * gmx_restrict     mdatoms,
751                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
752                      t_nrnb                      * gmx_restrict        nrnb)
753 {
754     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
755      * just 0 for non-waters.
756      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
757      * jnr indices corresponding to data put in the four positions in the SIMD register.
758      */
759     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
760     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
761     int              jnrA,jnrB,jnrC,jnrD;
762     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
763     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
764     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
765     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
766     real             rcutoff_scalar;
767     real             *shiftvec,*fshift,*x,*f;
768     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
769     real             scratch[4*DIM];
770     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
771     real *           vdwioffsetptr0;
772     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
773     real *           vdwioffsetptr1;
774     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
775     real *           vdwioffsetptr2;
776     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
777     real *           vdwioffsetptr3;
778     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
779     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
780     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
781     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
782     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
783     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
784     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
785     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
786     real             *charge;
787     int              nvdwtype;
788     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
789     int              *vdwtype;
790     real             *vdwparam;
791     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
792     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
793     __m128i          vfitab;
794     __m128i          ifour       = _mm_set1_epi32(4);
795     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
796     real             *vftab;
797     __m256d          dummy_mask,cutoff_mask;
798     __m128           tmpmask0,tmpmask1;
799     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
800     __m256d          one     = _mm256_set1_pd(1.0);
801     __m256d          two     = _mm256_set1_pd(2.0);
802     x                = xx[0];
803     f                = ff[0];
804
805     nri              = nlist->nri;
806     iinr             = nlist->iinr;
807     jindex           = nlist->jindex;
808     jjnr             = nlist->jjnr;
809     shiftidx         = nlist->shift;
810     gid              = nlist->gid;
811     shiftvec         = fr->shift_vec[0];
812     fshift           = fr->fshift[0];
813     facel            = _mm256_set1_pd(fr->epsfac);
814     charge           = mdatoms->chargeA;
815     nvdwtype         = fr->ntype;
816     vdwparam         = fr->nbfp;
817     vdwtype          = mdatoms->typeA;
818
819     vftab            = kernel_data->table_elec->data;
820     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
821
822     /* Setup water-specific parameters */
823     inr              = nlist->iinr[0];
824     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
825     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
826     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
827     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
828
829     /* Avoid stupid compiler warnings */
830     jnrA = jnrB = jnrC = jnrD = 0;
831     j_coord_offsetA = 0;
832     j_coord_offsetB = 0;
833     j_coord_offsetC = 0;
834     j_coord_offsetD = 0;
835
836     outeriter        = 0;
837     inneriter        = 0;
838
839     for(iidx=0;iidx<4*DIM;iidx++)
840     {
841         scratch[iidx] = 0.0;
842     }
843
844     /* Start outer loop over neighborlists */
845     for(iidx=0; iidx<nri; iidx++)
846     {
847         /* Load shift vector for this list */
848         i_shift_offset   = DIM*shiftidx[iidx];
849
850         /* Load limits for loop over neighbors */
851         j_index_start    = jindex[iidx];
852         j_index_end      = jindex[iidx+1];
853
854         /* Get outer coordinate index */
855         inr              = iinr[iidx];
856         i_coord_offset   = DIM*inr;
857
858         /* Load i particle coords and add shift vector */
859         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
860                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
861
862         fix0             = _mm256_setzero_pd();
863         fiy0             = _mm256_setzero_pd();
864         fiz0             = _mm256_setzero_pd();
865         fix1             = _mm256_setzero_pd();
866         fiy1             = _mm256_setzero_pd();
867         fiz1             = _mm256_setzero_pd();
868         fix2             = _mm256_setzero_pd();
869         fiy2             = _mm256_setzero_pd();
870         fiz2             = _mm256_setzero_pd();
871         fix3             = _mm256_setzero_pd();
872         fiy3             = _mm256_setzero_pd();
873         fiz3             = _mm256_setzero_pd();
874
875         /* Start inner kernel loop */
876         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
877         {
878
879             /* Get j neighbor index, and coordinate index */
880             jnrA             = jjnr[jidx];
881             jnrB             = jjnr[jidx+1];
882             jnrC             = jjnr[jidx+2];
883             jnrD             = jjnr[jidx+3];
884             j_coord_offsetA  = DIM*jnrA;
885             j_coord_offsetB  = DIM*jnrB;
886             j_coord_offsetC  = DIM*jnrC;
887             j_coord_offsetD  = DIM*jnrD;
888
889             /* load j atom coordinates */
890             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
891                                                  x+j_coord_offsetC,x+j_coord_offsetD,
892                                                  &jx0,&jy0,&jz0);
893
894             /* Calculate displacement vector */
895             dx00             = _mm256_sub_pd(ix0,jx0);
896             dy00             = _mm256_sub_pd(iy0,jy0);
897             dz00             = _mm256_sub_pd(iz0,jz0);
898             dx10             = _mm256_sub_pd(ix1,jx0);
899             dy10             = _mm256_sub_pd(iy1,jy0);
900             dz10             = _mm256_sub_pd(iz1,jz0);
901             dx20             = _mm256_sub_pd(ix2,jx0);
902             dy20             = _mm256_sub_pd(iy2,jy0);
903             dz20             = _mm256_sub_pd(iz2,jz0);
904             dx30             = _mm256_sub_pd(ix3,jx0);
905             dy30             = _mm256_sub_pd(iy3,jy0);
906             dz30             = _mm256_sub_pd(iz3,jz0);
907
908             /* Calculate squared distance and things based on it */
909             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
910             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
911             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
912             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
913
914             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
915             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
916             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
917
918             rinvsq00         = gmx_mm256_inv_pd(rsq00);
919
920             /* Load parameters for j particles */
921             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
922                                                                  charge+jnrC+0,charge+jnrD+0);
923             vdwjidx0A        = 2*vdwtype[jnrA+0];
924             vdwjidx0B        = 2*vdwtype[jnrB+0];
925             vdwjidx0C        = 2*vdwtype[jnrC+0];
926             vdwjidx0D        = 2*vdwtype[jnrD+0];
927
928             fjx0             = _mm256_setzero_pd();
929             fjy0             = _mm256_setzero_pd();
930             fjz0             = _mm256_setzero_pd();
931
932             /**************************
933              * CALCULATE INTERACTIONS *
934              **************************/
935
936             /* Compute parameters for interactions between i and j atoms */
937             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
938                                             vdwioffsetptr0+vdwjidx0B,
939                                             vdwioffsetptr0+vdwjidx0C,
940                                             vdwioffsetptr0+vdwjidx0D,
941                                             &c6_00,&c12_00);
942
943             /* LENNARD-JONES DISPERSION/REPULSION */
944
945             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
946             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
947
948             fscal            = fvdw;
949
950             /* Calculate temporary vectorial force */
951             tx               = _mm256_mul_pd(fscal,dx00);
952             ty               = _mm256_mul_pd(fscal,dy00);
953             tz               = _mm256_mul_pd(fscal,dz00);
954
955             /* Update vectorial force */
956             fix0             = _mm256_add_pd(fix0,tx);
957             fiy0             = _mm256_add_pd(fiy0,ty);
958             fiz0             = _mm256_add_pd(fiz0,tz);
959
960             fjx0             = _mm256_add_pd(fjx0,tx);
961             fjy0             = _mm256_add_pd(fjy0,ty);
962             fjz0             = _mm256_add_pd(fjz0,tz);
963
964             /**************************
965              * CALCULATE INTERACTIONS *
966              **************************/
967
968             r10              = _mm256_mul_pd(rsq10,rinv10);
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq10             = _mm256_mul_pd(iq1,jq0);
972
973             /* Calculate table index by multiplying r with table scale and truncate to integer */
974             rt               = _mm256_mul_pd(r10,vftabscale);
975             vfitab           = _mm256_cvttpd_epi32(rt);
976             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
977             vfitab           = _mm_slli_epi32(vfitab,2);
978
979             /* CUBIC SPLINE TABLE ELECTROSTATICS */
980             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
981             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
982             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
983             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
984             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
985             Heps             = _mm256_mul_pd(vfeps,H);
986             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
987             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
988             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
989
990             fscal            = felec;
991
992             /* Calculate temporary vectorial force */
993             tx               = _mm256_mul_pd(fscal,dx10);
994             ty               = _mm256_mul_pd(fscal,dy10);
995             tz               = _mm256_mul_pd(fscal,dz10);
996
997             /* Update vectorial force */
998             fix1             = _mm256_add_pd(fix1,tx);
999             fiy1             = _mm256_add_pd(fiy1,ty);
1000             fiz1             = _mm256_add_pd(fiz1,tz);
1001
1002             fjx0             = _mm256_add_pd(fjx0,tx);
1003             fjy0             = _mm256_add_pd(fjy0,ty);
1004             fjz0             = _mm256_add_pd(fjz0,tz);
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             r20              = _mm256_mul_pd(rsq20,rinv20);
1011
1012             /* Compute parameters for interactions between i and j atoms */
1013             qq20             = _mm256_mul_pd(iq2,jq0);
1014
1015             /* Calculate table index by multiplying r with table scale and truncate to integer */
1016             rt               = _mm256_mul_pd(r20,vftabscale);
1017             vfitab           = _mm256_cvttpd_epi32(rt);
1018             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1019             vfitab           = _mm_slli_epi32(vfitab,2);
1020
1021             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1022             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1023             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1024             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1025             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1026             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1027             Heps             = _mm256_mul_pd(vfeps,H);
1028             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1029             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1030             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1031
1032             fscal            = felec;
1033
1034             /* Calculate temporary vectorial force */
1035             tx               = _mm256_mul_pd(fscal,dx20);
1036             ty               = _mm256_mul_pd(fscal,dy20);
1037             tz               = _mm256_mul_pd(fscal,dz20);
1038
1039             /* Update vectorial force */
1040             fix2             = _mm256_add_pd(fix2,tx);
1041             fiy2             = _mm256_add_pd(fiy2,ty);
1042             fiz2             = _mm256_add_pd(fiz2,tz);
1043
1044             fjx0             = _mm256_add_pd(fjx0,tx);
1045             fjy0             = _mm256_add_pd(fjy0,ty);
1046             fjz0             = _mm256_add_pd(fjz0,tz);
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             r30              = _mm256_mul_pd(rsq30,rinv30);
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq30             = _mm256_mul_pd(iq3,jq0);
1056
1057             /* Calculate table index by multiplying r with table scale and truncate to integer */
1058             rt               = _mm256_mul_pd(r30,vftabscale);
1059             vfitab           = _mm256_cvttpd_epi32(rt);
1060             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1061             vfitab           = _mm_slli_epi32(vfitab,2);
1062
1063             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1064             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1065             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1066             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1067             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1068             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1069             Heps             = _mm256_mul_pd(vfeps,H);
1070             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1071             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1072             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
1073
1074             fscal            = felec;
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm256_mul_pd(fscal,dx30);
1078             ty               = _mm256_mul_pd(fscal,dy30);
1079             tz               = _mm256_mul_pd(fscal,dz30);
1080
1081             /* Update vectorial force */
1082             fix3             = _mm256_add_pd(fix3,tx);
1083             fiy3             = _mm256_add_pd(fiy3,ty);
1084             fiz3             = _mm256_add_pd(fiz3,tz);
1085
1086             fjx0             = _mm256_add_pd(fjx0,tx);
1087             fjy0             = _mm256_add_pd(fjy0,ty);
1088             fjz0             = _mm256_add_pd(fjz0,tz);
1089
1090             fjptrA             = f+j_coord_offsetA;
1091             fjptrB             = f+j_coord_offsetB;
1092             fjptrC             = f+j_coord_offsetC;
1093             fjptrD             = f+j_coord_offsetD;
1094
1095             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1096
1097             /* Inner loop uses 147 flops */
1098         }
1099
1100         if(jidx<j_index_end)
1101         {
1102
1103             /* Get j neighbor index, and coordinate index */
1104             jnrlistA         = jjnr[jidx];
1105             jnrlistB         = jjnr[jidx+1];
1106             jnrlistC         = jjnr[jidx+2];
1107             jnrlistD         = jjnr[jidx+3];
1108             /* Sign of each element will be negative for non-real atoms.
1109              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1110              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1111              */
1112             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1113
1114             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1115             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1116             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1117
1118             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1119             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1120             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1121             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1122             j_coord_offsetA  = DIM*jnrA;
1123             j_coord_offsetB  = DIM*jnrB;
1124             j_coord_offsetC  = DIM*jnrC;
1125             j_coord_offsetD  = DIM*jnrD;
1126
1127             /* load j atom coordinates */
1128             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1129                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1130                                                  &jx0,&jy0,&jz0);
1131
1132             /* Calculate displacement vector */
1133             dx00             = _mm256_sub_pd(ix0,jx0);
1134             dy00             = _mm256_sub_pd(iy0,jy0);
1135             dz00             = _mm256_sub_pd(iz0,jz0);
1136             dx10             = _mm256_sub_pd(ix1,jx0);
1137             dy10             = _mm256_sub_pd(iy1,jy0);
1138             dz10             = _mm256_sub_pd(iz1,jz0);
1139             dx20             = _mm256_sub_pd(ix2,jx0);
1140             dy20             = _mm256_sub_pd(iy2,jy0);
1141             dz20             = _mm256_sub_pd(iz2,jz0);
1142             dx30             = _mm256_sub_pd(ix3,jx0);
1143             dy30             = _mm256_sub_pd(iy3,jy0);
1144             dz30             = _mm256_sub_pd(iz3,jz0);
1145
1146             /* Calculate squared distance and things based on it */
1147             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1148             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1149             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1150             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1151
1152             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1153             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1154             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1155
1156             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1157
1158             /* Load parameters for j particles */
1159             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1160                                                                  charge+jnrC+0,charge+jnrD+0);
1161             vdwjidx0A        = 2*vdwtype[jnrA+0];
1162             vdwjidx0B        = 2*vdwtype[jnrB+0];
1163             vdwjidx0C        = 2*vdwtype[jnrC+0];
1164             vdwjidx0D        = 2*vdwtype[jnrD+0];
1165
1166             fjx0             = _mm256_setzero_pd();
1167             fjy0             = _mm256_setzero_pd();
1168             fjz0             = _mm256_setzero_pd();
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             /* Compute parameters for interactions between i and j atoms */
1175             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1176                                             vdwioffsetptr0+vdwjidx0B,
1177                                             vdwioffsetptr0+vdwjidx0C,
1178                                             vdwioffsetptr0+vdwjidx0D,
1179                                             &c6_00,&c12_00);
1180
1181             /* LENNARD-JONES DISPERSION/REPULSION */
1182
1183             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1184             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1185
1186             fscal            = fvdw;
1187
1188             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1189
1190             /* Calculate temporary vectorial force */
1191             tx               = _mm256_mul_pd(fscal,dx00);
1192             ty               = _mm256_mul_pd(fscal,dy00);
1193             tz               = _mm256_mul_pd(fscal,dz00);
1194
1195             /* Update vectorial force */
1196             fix0             = _mm256_add_pd(fix0,tx);
1197             fiy0             = _mm256_add_pd(fiy0,ty);
1198             fiz0             = _mm256_add_pd(fiz0,tz);
1199
1200             fjx0             = _mm256_add_pd(fjx0,tx);
1201             fjy0             = _mm256_add_pd(fjy0,ty);
1202             fjz0             = _mm256_add_pd(fjz0,tz);
1203
1204             /**************************
1205              * CALCULATE INTERACTIONS *
1206              **************************/
1207
1208             r10              = _mm256_mul_pd(rsq10,rinv10);
1209             r10              = _mm256_andnot_pd(dummy_mask,r10);
1210
1211             /* Compute parameters for interactions between i and j atoms */
1212             qq10             = _mm256_mul_pd(iq1,jq0);
1213
1214             /* Calculate table index by multiplying r with table scale and truncate to integer */
1215             rt               = _mm256_mul_pd(r10,vftabscale);
1216             vfitab           = _mm256_cvttpd_epi32(rt);
1217             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1218             vfitab           = _mm_slli_epi32(vfitab,2);
1219
1220             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1221             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1222             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1223             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1224             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1225             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1226             Heps             = _mm256_mul_pd(vfeps,H);
1227             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1228             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1229             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1230
1231             fscal            = felec;
1232
1233             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1234
1235             /* Calculate temporary vectorial force */
1236             tx               = _mm256_mul_pd(fscal,dx10);
1237             ty               = _mm256_mul_pd(fscal,dy10);
1238             tz               = _mm256_mul_pd(fscal,dz10);
1239
1240             /* Update vectorial force */
1241             fix1             = _mm256_add_pd(fix1,tx);
1242             fiy1             = _mm256_add_pd(fiy1,ty);
1243             fiz1             = _mm256_add_pd(fiz1,tz);
1244
1245             fjx0             = _mm256_add_pd(fjx0,tx);
1246             fjy0             = _mm256_add_pd(fjy0,ty);
1247             fjz0             = _mm256_add_pd(fjz0,tz);
1248
1249             /**************************
1250              * CALCULATE INTERACTIONS *
1251              **************************/
1252
1253             r20              = _mm256_mul_pd(rsq20,rinv20);
1254             r20              = _mm256_andnot_pd(dummy_mask,r20);
1255
1256             /* Compute parameters for interactions between i and j atoms */
1257             qq20             = _mm256_mul_pd(iq2,jq0);
1258
1259             /* Calculate table index by multiplying r with table scale and truncate to integer */
1260             rt               = _mm256_mul_pd(r20,vftabscale);
1261             vfitab           = _mm256_cvttpd_epi32(rt);
1262             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1263             vfitab           = _mm_slli_epi32(vfitab,2);
1264
1265             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1266             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1267             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1268             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1269             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1270             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1271             Heps             = _mm256_mul_pd(vfeps,H);
1272             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1273             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1274             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1275
1276             fscal            = felec;
1277
1278             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1279
1280             /* Calculate temporary vectorial force */
1281             tx               = _mm256_mul_pd(fscal,dx20);
1282             ty               = _mm256_mul_pd(fscal,dy20);
1283             tz               = _mm256_mul_pd(fscal,dz20);
1284
1285             /* Update vectorial force */
1286             fix2             = _mm256_add_pd(fix2,tx);
1287             fiy2             = _mm256_add_pd(fiy2,ty);
1288             fiz2             = _mm256_add_pd(fiz2,tz);
1289
1290             fjx0             = _mm256_add_pd(fjx0,tx);
1291             fjy0             = _mm256_add_pd(fjy0,ty);
1292             fjz0             = _mm256_add_pd(fjz0,tz);
1293
1294             /**************************
1295              * CALCULATE INTERACTIONS *
1296              **************************/
1297
1298             r30              = _mm256_mul_pd(rsq30,rinv30);
1299             r30              = _mm256_andnot_pd(dummy_mask,r30);
1300
1301             /* Compute parameters for interactions between i and j atoms */
1302             qq30             = _mm256_mul_pd(iq3,jq0);
1303
1304             /* Calculate table index by multiplying r with table scale and truncate to integer */
1305             rt               = _mm256_mul_pd(r30,vftabscale);
1306             vfitab           = _mm256_cvttpd_epi32(rt);
1307             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1308             vfitab           = _mm_slli_epi32(vfitab,2);
1309
1310             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1311             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1312             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1313             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1314             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1315             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1316             Heps             = _mm256_mul_pd(vfeps,H);
1317             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1318             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1319             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
1320
1321             fscal            = felec;
1322
1323             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1324
1325             /* Calculate temporary vectorial force */
1326             tx               = _mm256_mul_pd(fscal,dx30);
1327             ty               = _mm256_mul_pd(fscal,dy30);
1328             tz               = _mm256_mul_pd(fscal,dz30);
1329
1330             /* Update vectorial force */
1331             fix3             = _mm256_add_pd(fix3,tx);
1332             fiy3             = _mm256_add_pd(fiy3,ty);
1333             fiz3             = _mm256_add_pd(fiz3,tz);
1334
1335             fjx0             = _mm256_add_pd(fjx0,tx);
1336             fjy0             = _mm256_add_pd(fjy0,ty);
1337             fjz0             = _mm256_add_pd(fjz0,tz);
1338
1339             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1340             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1341             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1342             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1343
1344             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1345
1346             /* Inner loop uses 150 flops */
1347         }
1348
1349         /* End of innermost loop */
1350
1351         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1352                                                  f+i_coord_offset,fshift+i_shift_offset);
1353
1354         /* Increment number of inner iterations */
1355         inneriter                  += j_index_end - j_index_start;
1356
1357         /* Outer loop uses 24 flops */
1358     }
1359
1360     /* Increment number of outer iterations */
1361     outeriter        += nri;
1362
1363     /* Update outer/inner flops */
1364
1365     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1366 }