Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256d          dummy_mask,cutoff_mask;
110     __m128           tmpmask0,tmpmask1;
111     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
112     __m256d          one     = _mm256_set1_pd(1.0);
113     __m256d          two     = _mm256_set1_pd(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_pd(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     vftab            = kernel_data->table_elec->data;
132     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
137     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
138     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173
174         fix0             = _mm256_setzero_pd();
175         fiy0             = _mm256_setzero_pd();
176         fiz0             = _mm256_setzero_pd();
177         fix1             = _mm256_setzero_pd();
178         fiy1             = _mm256_setzero_pd();
179         fiz1             = _mm256_setzero_pd();
180         fix2             = _mm256_setzero_pd();
181         fiy2             = _mm256_setzero_pd();
182         fiz2             = _mm256_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm256_setzero_pd();
186         vvdwsum          = _mm256_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             jnrC             = jjnr[jidx+2];
196             jnrD             = jjnr[jidx+3];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
204                                                  x+j_coord_offsetC,x+j_coord_offsetD,
205                                                  &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm256_sub_pd(ix0,jx0);
209             dy00             = _mm256_sub_pd(iy0,jy0);
210             dz00             = _mm256_sub_pd(iz0,jz0);
211             dx10             = _mm256_sub_pd(ix1,jx0);
212             dy10             = _mm256_sub_pd(iy1,jy0);
213             dz10             = _mm256_sub_pd(iz1,jz0);
214             dx20             = _mm256_sub_pd(ix2,jx0);
215             dy20             = _mm256_sub_pd(iy2,jy0);
216             dz20             = _mm256_sub_pd(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
220             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
221             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
222
223             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
224             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
225             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
226
227             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
231                                                                  charge+jnrC+0,charge+jnrD+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234             vdwjidx0C        = 2*vdwtype[jnrC+0];
235             vdwjidx0D        = 2*vdwtype[jnrD+0];
236
237             fjx0             = _mm256_setzero_pd();
238             fjy0             = _mm256_setzero_pd();
239             fjz0             = _mm256_setzero_pd();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             r00              = _mm256_mul_pd(rsq00,rinv00);
246
247             /* Compute parameters for interactions between i and j atoms */
248             qq00             = _mm256_mul_pd(iq0,jq0);
249             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
250                                             vdwioffsetptr0+vdwjidx0B,
251                                             vdwioffsetptr0+vdwjidx0C,
252                                             vdwioffsetptr0+vdwjidx0D,
253                                             &c6_00,&c12_00);
254
255             /* Calculate table index by multiplying r with table scale and truncate to integer */
256             rt               = _mm256_mul_pd(r00,vftabscale);
257             vfitab           = _mm256_cvttpd_epi32(rt);
258             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
259             vfitab           = _mm_slli_epi32(vfitab,2);
260
261             /* CUBIC SPLINE TABLE ELECTROSTATICS */
262             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
263             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
264             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
265             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
266             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
267             Heps             = _mm256_mul_pd(vfeps,H);
268             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
269             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
270             velec            = _mm256_mul_pd(qq00,VV);
271             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
272             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
273
274             /* LENNARD-JONES DISPERSION/REPULSION */
275
276             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
277             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
278             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
279             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
280             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _mm256_add_pd(velecsum,velec);
284             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
285
286             fscal            = _mm256_add_pd(felec,fvdw);
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm256_mul_pd(fscal,dx00);
290             ty               = _mm256_mul_pd(fscal,dy00);
291             tz               = _mm256_mul_pd(fscal,dz00);
292
293             /* Update vectorial force */
294             fix0             = _mm256_add_pd(fix0,tx);
295             fiy0             = _mm256_add_pd(fiy0,ty);
296             fiz0             = _mm256_add_pd(fiz0,tz);
297
298             fjx0             = _mm256_add_pd(fjx0,tx);
299             fjy0             = _mm256_add_pd(fjy0,ty);
300             fjz0             = _mm256_add_pd(fjz0,tz);
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r10              = _mm256_mul_pd(rsq10,rinv10);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq10             = _mm256_mul_pd(iq1,jq0);
310
311             /* Calculate table index by multiplying r with table scale and truncate to integer */
312             rt               = _mm256_mul_pd(r10,vftabscale);
313             vfitab           = _mm256_cvttpd_epi32(rt);
314             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
315             vfitab           = _mm_slli_epi32(vfitab,2);
316
317             /* CUBIC SPLINE TABLE ELECTROSTATICS */
318             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
319             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
320             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
321             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
322             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
323             Heps             = _mm256_mul_pd(vfeps,H);
324             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
325             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
326             velec            = _mm256_mul_pd(qq10,VV);
327             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
328             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm256_add_pd(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm256_mul_pd(fscal,dx10);
337             ty               = _mm256_mul_pd(fscal,dy10);
338             tz               = _mm256_mul_pd(fscal,dz10);
339
340             /* Update vectorial force */
341             fix1             = _mm256_add_pd(fix1,tx);
342             fiy1             = _mm256_add_pd(fiy1,ty);
343             fiz1             = _mm256_add_pd(fiz1,tz);
344
345             fjx0             = _mm256_add_pd(fjx0,tx);
346             fjy0             = _mm256_add_pd(fjy0,ty);
347             fjz0             = _mm256_add_pd(fjz0,tz);
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             r20              = _mm256_mul_pd(rsq20,rinv20);
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq20             = _mm256_mul_pd(iq2,jq0);
357
358             /* Calculate table index by multiplying r with table scale and truncate to integer */
359             rt               = _mm256_mul_pd(r20,vftabscale);
360             vfitab           = _mm256_cvttpd_epi32(rt);
361             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
362             vfitab           = _mm_slli_epi32(vfitab,2);
363
364             /* CUBIC SPLINE TABLE ELECTROSTATICS */
365             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
366             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
367             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
368             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
369             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
370             Heps             = _mm256_mul_pd(vfeps,H);
371             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
372             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
373             velec            = _mm256_mul_pd(qq20,VV);
374             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
375             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velecsum         = _mm256_add_pd(velecsum,velec);
379
380             fscal            = felec;
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm256_mul_pd(fscal,dx20);
384             ty               = _mm256_mul_pd(fscal,dy20);
385             tz               = _mm256_mul_pd(fscal,dz20);
386
387             /* Update vectorial force */
388             fix2             = _mm256_add_pd(fix2,tx);
389             fiy2             = _mm256_add_pd(fiy2,ty);
390             fiz2             = _mm256_add_pd(fiz2,tz);
391
392             fjx0             = _mm256_add_pd(fjx0,tx);
393             fjy0             = _mm256_add_pd(fjy0,ty);
394             fjz0             = _mm256_add_pd(fjz0,tz);
395
396             fjptrA             = f+j_coord_offsetA;
397             fjptrB             = f+j_coord_offsetB;
398             fjptrC             = f+j_coord_offsetC;
399             fjptrD             = f+j_coord_offsetD;
400
401             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
402
403             /* Inner loop uses 145 flops */
404         }
405
406         if(jidx<j_index_end)
407         {
408
409             /* Get j neighbor index, and coordinate index */
410             jnrlistA         = jjnr[jidx];
411             jnrlistB         = jjnr[jidx+1];
412             jnrlistC         = jjnr[jidx+2];
413             jnrlistD         = jjnr[jidx+3];
414             /* Sign of each element will be negative for non-real atoms.
415              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
416              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
417              */
418             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
419
420             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
421             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
422             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
423
424             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
425             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
426             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
427             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
428             j_coord_offsetA  = DIM*jnrA;
429             j_coord_offsetB  = DIM*jnrB;
430             j_coord_offsetC  = DIM*jnrC;
431             j_coord_offsetD  = DIM*jnrD;
432
433             /* load j atom coordinates */
434             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
435                                                  x+j_coord_offsetC,x+j_coord_offsetD,
436                                                  &jx0,&jy0,&jz0);
437
438             /* Calculate displacement vector */
439             dx00             = _mm256_sub_pd(ix0,jx0);
440             dy00             = _mm256_sub_pd(iy0,jy0);
441             dz00             = _mm256_sub_pd(iz0,jz0);
442             dx10             = _mm256_sub_pd(ix1,jx0);
443             dy10             = _mm256_sub_pd(iy1,jy0);
444             dz10             = _mm256_sub_pd(iz1,jz0);
445             dx20             = _mm256_sub_pd(ix2,jx0);
446             dy20             = _mm256_sub_pd(iy2,jy0);
447             dz20             = _mm256_sub_pd(iz2,jz0);
448
449             /* Calculate squared distance and things based on it */
450             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
451             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
452             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
453
454             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
455             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
456             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
457
458             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
459
460             /* Load parameters for j particles */
461             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
462                                                                  charge+jnrC+0,charge+jnrD+0);
463             vdwjidx0A        = 2*vdwtype[jnrA+0];
464             vdwjidx0B        = 2*vdwtype[jnrB+0];
465             vdwjidx0C        = 2*vdwtype[jnrC+0];
466             vdwjidx0D        = 2*vdwtype[jnrD+0];
467
468             fjx0             = _mm256_setzero_pd();
469             fjy0             = _mm256_setzero_pd();
470             fjz0             = _mm256_setzero_pd();
471
472             /**************************
473              * CALCULATE INTERACTIONS *
474              **************************/
475
476             r00              = _mm256_mul_pd(rsq00,rinv00);
477             r00              = _mm256_andnot_pd(dummy_mask,r00);
478
479             /* Compute parameters for interactions between i and j atoms */
480             qq00             = _mm256_mul_pd(iq0,jq0);
481             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
482                                             vdwioffsetptr0+vdwjidx0B,
483                                             vdwioffsetptr0+vdwjidx0C,
484                                             vdwioffsetptr0+vdwjidx0D,
485                                             &c6_00,&c12_00);
486
487             /* Calculate table index by multiplying r with table scale and truncate to integer */
488             rt               = _mm256_mul_pd(r00,vftabscale);
489             vfitab           = _mm256_cvttpd_epi32(rt);
490             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
491             vfitab           = _mm_slli_epi32(vfitab,2);
492
493             /* CUBIC SPLINE TABLE ELECTROSTATICS */
494             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
495             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
496             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
497             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
498             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
499             Heps             = _mm256_mul_pd(vfeps,H);
500             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
501             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
502             velec            = _mm256_mul_pd(qq00,VV);
503             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
504             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
505
506             /* LENNARD-JONES DISPERSION/REPULSION */
507
508             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
509             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
510             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
511             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
512             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
513
514             /* Update potential sum for this i atom from the interaction with this j atom. */
515             velec            = _mm256_andnot_pd(dummy_mask,velec);
516             velecsum         = _mm256_add_pd(velecsum,velec);
517             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
518             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
519
520             fscal            = _mm256_add_pd(felec,fvdw);
521
522             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
523
524             /* Calculate temporary vectorial force */
525             tx               = _mm256_mul_pd(fscal,dx00);
526             ty               = _mm256_mul_pd(fscal,dy00);
527             tz               = _mm256_mul_pd(fscal,dz00);
528
529             /* Update vectorial force */
530             fix0             = _mm256_add_pd(fix0,tx);
531             fiy0             = _mm256_add_pd(fiy0,ty);
532             fiz0             = _mm256_add_pd(fiz0,tz);
533
534             fjx0             = _mm256_add_pd(fjx0,tx);
535             fjy0             = _mm256_add_pd(fjy0,ty);
536             fjz0             = _mm256_add_pd(fjz0,tz);
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             r10              = _mm256_mul_pd(rsq10,rinv10);
543             r10              = _mm256_andnot_pd(dummy_mask,r10);
544
545             /* Compute parameters for interactions between i and j atoms */
546             qq10             = _mm256_mul_pd(iq1,jq0);
547
548             /* Calculate table index by multiplying r with table scale and truncate to integer */
549             rt               = _mm256_mul_pd(r10,vftabscale);
550             vfitab           = _mm256_cvttpd_epi32(rt);
551             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
552             vfitab           = _mm_slli_epi32(vfitab,2);
553
554             /* CUBIC SPLINE TABLE ELECTROSTATICS */
555             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
556             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
557             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
558             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
559             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
560             Heps             = _mm256_mul_pd(vfeps,H);
561             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
562             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
563             velec            = _mm256_mul_pd(qq10,VV);
564             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
565             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
566
567             /* Update potential sum for this i atom from the interaction with this j atom. */
568             velec            = _mm256_andnot_pd(dummy_mask,velec);
569             velecsum         = _mm256_add_pd(velecsum,velec);
570
571             fscal            = felec;
572
573             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm256_mul_pd(fscal,dx10);
577             ty               = _mm256_mul_pd(fscal,dy10);
578             tz               = _mm256_mul_pd(fscal,dz10);
579
580             /* Update vectorial force */
581             fix1             = _mm256_add_pd(fix1,tx);
582             fiy1             = _mm256_add_pd(fiy1,ty);
583             fiz1             = _mm256_add_pd(fiz1,tz);
584
585             fjx0             = _mm256_add_pd(fjx0,tx);
586             fjy0             = _mm256_add_pd(fjy0,ty);
587             fjz0             = _mm256_add_pd(fjz0,tz);
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             r20              = _mm256_mul_pd(rsq20,rinv20);
594             r20              = _mm256_andnot_pd(dummy_mask,r20);
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq20             = _mm256_mul_pd(iq2,jq0);
598
599             /* Calculate table index by multiplying r with table scale and truncate to integer */
600             rt               = _mm256_mul_pd(r20,vftabscale);
601             vfitab           = _mm256_cvttpd_epi32(rt);
602             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
603             vfitab           = _mm_slli_epi32(vfitab,2);
604
605             /* CUBIC SPLINE TABLE ELECTROSTATICS */
606             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
607             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
608             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
609             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
610             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
611             Heps             = _mm256_mul_pd(vfeps,H);
612             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
613             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
614             velec            = _mm256_mul_pd(qq20,VV);
615             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
616             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             velec            = _mm256_andnot_pd(dummy_mask,velec);
620             velecsum         = _mm256_add_pd(velecsum,velec);
621
622             fscal            = felec;
623
624             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm256_mul_pd(fscal,dx20);
628             ty               = _mm256_mul_pd(fscal,dy20);
629             tz               = _mm256_mul_pd(fscal,dz20);
630
631             /* Update vectorial force */
632             fix2             = _mm256_add_pd(fix2,tx);
633             fiy2             = _mm256_add_pd(fiy2,ty);
634             fiz2             = _mm256_add_pd(fiz2,tz);
635
636             fjx0             = _mm256_add_pd(fjx0,tx);
637             fjy0             = _mm256_add_pd(fjy0,ty);
638             fjz0             = _mm256_add_pd(fjz0,tz);
639
640             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
641             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
642             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
643             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
644
645             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
646
647             /* Inner loop uses 148 flops */
648         }
649
650         /* End of innermost loop */
651
652         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
653                                                  f+i_coord_offset,fshift+i_shift_offset);
654
655         ggid                        = gid[iidx];
656         /* Update potential energies */
657         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
658         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
659
660         /* Increment number of inner iterations */
661         inneriter                  += j_index_end - j_index_start;
662
663         /* Outer loop uses 20 flops */
664     }
665
666     /* Increment number of outer iterations */
667     outeriter        += nri;
668
669     /* Update outer/inner flops */
670
671     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
672 }
673 /*
674  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_double
675  * Electrostatics interaction: CubicSplineTable
676  * VdW interaction:            LennardJones
677  * Geometry:                   Water3-Particle
678  * Calculate force/pot:        Force
679  */
680 void
681 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_double
682                     (t_nblist                    * gmx_restrict       nlist,
683                      rvec                        * gmx_restrict          xx,
684                      rvec                        * gmx_restrict          ff,
685                      t_forcerec                  * gmx_restrict          fr,
686                      t_mdatoms                   * gmx_restrict     mdatoms,
687                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
688                      t_nrnb                      * gmx_restrict        nrnb)
689 {
690     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
691      * just 0 for non-waters.
692      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
693      * jnr indices corresponding to data put in the four positions in the SIMD register.
694      */
695     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
696     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
697     int              jnrA,jnrB,jnrC,jnrD;
698     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
699     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
700     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
701     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
702     real             rcutoff_scalar;
703     real             *shiftvec,*fshift,*x,*f;
704     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
705     real             scratch[4*DIM];
706     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
707     real *           vdwioffsetptr0;
708     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
709     real *           vdwioffsetptr1;
710     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
711     real *           vdwioffsetptr2;
712     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
713     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
714     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
715     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
716     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
717     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
718     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
719     real             *charge;
720     int              nvdwtype;
721     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
722     int              *vdwtype;
723     real             *vdwparam;
724     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
725     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
726     __m128i          vfitab;
727     __m128i          ifour       = _mm_set1_epi32(4);
728     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
729     real             *vftab;
730     __m256d          dummy_mask,cutoff_mask;
731     __m128           tmpmask0,tmpmask1;
732     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
733     __m256d          one     = _mm256_set1_pd(1.0);
734     __m256d          two     = _mm256_set1_pd(2.0);
735     x                = xx[0];
736     f                = ff[0];
737
738     nri              = nlist->nri;
739     iinr             = nlist->iinr;
740     jindex           = nlist->jindex;
741     jjnr             = nlist->jjnr;
742     shiftidx         = nlist->shift;
743     gid              = nlist->gid;
744     shiftvec         = fr->shift_vec[0];
745     fshift           = fr->fshift[0];
746     facel            = _mm256_set1_pd(fr->epsfac);
747     charge           = mdatoms->chargeA;
748     nvdwtype         = fr->ntype;
749     vdwparam         = fr->nbfp;
750     vdwtype          = mdatoms->typeA;
751
752     vftab            = kernel_data->table_elec->data;
753     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
754
755     /* Setup water-specific parameters */
756     inr              = nlist->iinr[0];
757     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
758     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
759     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
760     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
761
762     /* Avoid stupid compiler warnings */
763     jnrA = jnrB = jnrC = jnrD = 0;
764     j_coord_offsetA = 0;
765     j_coord_offsetB = 0;
766     j_coord_offsetC = 0;
767     j_coord_offsetD = 0;
768
769     outeriter        = 0;
770     inneriter        = 0;
771
772     for(iidx=0;iidx<4*DIM;iidx++)
773     {
774         scratch[iidx] = 0.0;
775     }
776
777     /* Start outer loop over neighborlists */
778     for(iidx=0; iidx<nri; iidx++)
779     {
780         /* Load shift vector for this list */
781         i_shift_offset   = DIM*shiftidx[iidx];
782
783         /* Load limits for loop over neighbors */
784         j_index_start    = jindex[iidx];
785         j_index_end      = jindex[iidx+1];
786
787         /* Get outer coordinate index */
788         inr              = iinr[iidx];
789         i_coord_offset   = DIM*inr;
790
791         /* Load i particle coords and add shift vector */
792         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
793                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
794
795         fix0             = _mm256_setzero_pd();
796         fiy0             = _mm256_setzero_pd();
797         fiz0             = _mm256_setzero_pd();
798         fix1             = _mm256_setzero_pd();
799         fiy1             = _mm256_setzero_pd();
800         fiz1             = _mm256_setzero_pd();
801         fix2             = _mm256_setzero_pd();
802         fiy2             = _mm256_setzero_pd();
803         fiz2             = _mm256_setzero_pd();
804
805         /* Start inner kernel loop */
806         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
807         {
808
809             /* Get j neighbor index, and coordinate index */
810             jnrA             = jjnr[jidx];
811             jnrB             = jjnr[jidx+1];
812             jnrC             = jjnr[jidx+2];
813             jnrD             = jjnr[jidx+3];
814             j_coord_offsetA  = DIM*jnrA;
815             j_coord_offsetB  = DIM*jnrB;
816             j_coord_offsetC  = DIM*jnrC;
817             j_coord_offsetD  = DIM*jnrD;
818
819             /* load j atom coordinates */
820             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
821                                                  x+j_coord_offsetC,x+j_coord_offsetD,
822                                                  &jx0,&jy0,&jz0);
823
824             /* Calculate displacement vector */
825             dx00             = _mm256_sub_pd(ix0,jx0);
826             dy00             = _mm256_sub_pd(iy0,jy0);
827             dz00             = _mm256_sub_pd(iz0,jz0);
828             dx10             = _mm256_sub_pd(ix1,jx0);
829             dy10             = _mm256_sub_pd(iy1,jy0);
830             dz10             = _mm256_sub_pd(iz1,jz0);
831             dx20             = _mm256_sub_pd(ix2,jx0);
832             dy20             = _mm256_sub_pd(iy2,jy0);
833             dz20             = _mm256_sub_pd(iz2,jz0);
834
835             /* Calculate squared distance and things based on it */
836             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
837             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
838             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
839
840             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
841             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
842             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
843
844             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
845
846             /* Load parameters for j particles */
847             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
848                                                                  charge+jnrC+0,charge+jnrD+0);
849             vdwjidx0A        = 2*vdwtype[jnrA+0];
850             vdwjidx0B        = 2*vdwtype[jnrB+0];
851             vdwjidx0C        = 2*vdwtype[jnrC+0];
852             vdwjidx0D        = 2*vdwtype[jnrD+0];
853
854             fjx0             = _mm256_setzero_pd();
855             fjy0             = _mm256_setzero_pd();
856             fjz0             = _mm256_setzero_pd();
857
858             /**************************
859              * CALCULATE INTERACTIONS *
860              **************************/
861
862             r00              = _mm256_mul_pd(rsq00,rinv00);
863
864             /* Compute parameters for interactions between i and j atoms */
865             qq00             = _mm256_mul_pd(iq0,jq0);
866             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
867                                             vdwioffsetptr0+vdwjidx0B,
868                                             vdwioffsetptr0+vdwjidx0C,
869                                             vdwioffsetptr0+vdwjidx0D,
870                                             &c6_00,&c12_00);
871
872             /* Calculate table index by multiplying r with table scale and truncate to integer */
873             rt               = _mm256_mul_pd(r00,vftabscale);
874             vfitab           = _mm256_cvttpd_epi32(rt);
875             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
876             vfitab           = _mm_slli_epi32(vfitab,2);
877
878             /* CUBIC SPLINE TABLE ELECTROSTATICS */
879             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
880             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
881             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
882             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
883             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
884             Heps             = _mm256_mul_pd(vfeps,H);
885             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
886             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
887             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
888
889             /* LENNARD-JONES DISPERSION/REPULSION */
890
891             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
892             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
893
894             fscal            = _mm256_add_pd(felec,fvdw);
895
896             /* Calculate temporary vectorial force */
897             tx               = _mm256_mul_pd(fscal,dx00);
898             ty               = _mm256_mul_pd(fscal,dy00);
899             tz               = _mm256_mul_pd(fscal,dz00);
900
901             /* Update vectorial force */
902             fix0             = _mm256_add_pd(fix0,tx);
903             fiy0             = _mm256_add_pd(fiy0,ty);
904             fiz0             = _mm256_add_pd(fiz0,tz);
905
906             fjx0             = _mm256_add_pd(fjx0,tx);
907             fjy0             = _mm256_add_pd(fjy0,ty);
908             fjz0             = _mm256_add_pd(fjz0,tz);
909
910             /**************************
911              * CALCULATE INTERACTIONS *
912              **************************/
913
914             r10              = _mm256_mul_pd(rsq10,rinv10);
915
916             /* Compute parameters for interactions between i and j atoms */
917             qq10             = _mm256_mul_pd(iq1,jq0);
918
919             /* Calculate table index by multiplying r with table scale and truncate to integer */
920             rt               = _mm256_mul_pd(r10,vftabscale);
921             vfitab           = _mm256_cvttpd_epi32(rt);
922             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
923             vfitab           = _mm_slli_epi32(vfitab,2);
924
925             /* CUBIC SPLINE TABLE ELECTROSTATICS */
926             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
927             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
928             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
929             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
930             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
931             Heps             = _mm256_mul_pd(vfeps,H);
932             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
933             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
934             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
935
936             fscal            = felec;
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm256_mul_pd(fscal,dx10);
940             ty               = _mm256_mul_pd(fscal,dy10);
941             tz               = _mm256_mul_pd(fscal,dz10);
942
943             /* Update vectorial force */
944             fix1             = _mm256_add_pd(fix1,tx);
945             fiy1             = _mm256_add_pd(fiy1,ty);
946             fiz1             = _mm256_add_pd(fiz1,tz);
947
948             fjx0             = _mm256_add_pd(fjx0,tx);
949             fjy0             = _mm256_add_pd(fjy0,ty);
950             fjz0             = _mm256_add_pd(fjz0,tz);
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             r20              = _mm256_mul_pd(rsq20,rinv20);
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq20             = _mm256_mul_pd(iq2,jq0);
960
961             /* Calculate table index by multiplying r with table scale and truncate to integer */
962             rt               = _mm256_mul_pd(r20,vftabscale);
963             vfitab           = _mm256_cvttpd_epi32(rt);
964             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
965             vfitab           = _mm_slli_epi32(vfitab,2);
966
967             /* CUBIC SPLINE TABLE ELECTROSTATICS */
968             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
969             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
970             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
971             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
972             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
973             Heps             = _mm256_mul_pd(vfeps,H);
974             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
975             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
976             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
977
978             fscal            = felec;
979
980             /* Calculate temporary vectorial force */
981             tx               = _mm256_mul_pd(fscal,dx20);
982             ty               = _mm256_mul_pd(fscal,dy20);
983             tz               = _mm256_mul_pd(fscal,dz20);
984
985             /* Update vectorial force */
986             fix2             = _mm256_add_pd(fix2,tx);
987             fiy2             = _mm256_add_pd(fiy2,ty);
988             fiz2             = _mm256_add_pd(fiz2,tz);
989
990             fjx0             = _mm256_add_pd(fjx0,tx);
991             fjy0             = _mm256_add_pd(fjy0,ty);
992             fjz0             = _mm256_add_pd(fjz0,tz);
993
994             fjptrA             = f+j_coord_offsetA;
995             fjptrB             = f+j_coord_offsetB;
996             fjptrC             = f+j_coord_offsetC;
997             fjptrD             = f+j_coord_offsetD;
998
999             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1000
1001             /* Inner loop uses 128 flops */
1002         }
1003
1004         if(jidx<j_index_end)
1005         {
1006
1007             /* Get j neighbor index, and coordinate index */
1008             jnrlistA         = jjnr[jidx];
1009             jnrlistB         = jjnr[jidx+1];
1010             jnrlistC         = jjnr[jidx+2];
1011             jnrlistD         = jjnr[jidx+3];
1012             /* Sign of each element will be negative for non-real atoms.
1013              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1014              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1015              */
1016             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1017
1018             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1019             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1020             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1021
1022             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1023             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1024             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1025             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1026             j_coord_offsetA  = DIM*jnrA;
1027             j_coord_offsetB  = DIM*jnrB;
1028             j_coord_offsetC  = DIM*jnrC;
1029             j_coord_offsetD  = DIM*jnrD;
1030
1031             /* load j atom coordinates */
1032             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1033                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1034                                                  &jx0,&jy0,&jz0);
1035
1036             /* Calculate displacement vector */
1037             dx00             = _mm256_sub_pd(ix0,jx0);
1038             dy00             = _mm256_sub_pd(iy0,jy0);
1039             dz00             = _mm256_sub_pd(iz0,jz0);
1040             dx10             = _mm256_sub_pd(ix1,jx0);
1041             dy10             = _mm256_sub_pd(iy1,jy0);
1042             dz10             = _mm256_sub_pd(iz1,jz0);
1043             dx20             = _mm256_sub_pd(ix2,jx0);
1044             dy20             = _mm256_sub_pd(iy2,jy0);
1045             dz20             = _mm256_sub_pd(iz2,jz0);
1046
1047             /* Calculate squared distance and things based on it */
1048             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1049             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1050             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1051
1052             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1053             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1054             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1055
1056             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1057
1058             /* Load parameters for j particles */
1059             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1060                                                                  charge+jnrC+0,charge+jnrD+0);
1061             vdwjidx0A        = 2*vdwtype[jnrA+0];
1062             vdwjidx0B        = 2*vdwtype[jnrB+0];
1063             vdwjidx0C        = 2*vdwtype[jnrC+0];
1064             vdwjidx0D        = 2*vdwtype[jnrD+0];
1065
1066             fjx0             = _mm256_setzero_pd();
1067             fjy0             = _mm256_setzero_pd();
1068             fjz0             = _mm256_setzero_pd();
1069
1070             /**************************
1071              * CALCULATE INTERACTIONS *
1072              **************************/
1073
1074             r00              = _mm256_mul_pd(rsq00,rinv00);
1075             r00              = _mm256_andnot_pd(dummy_mask,r00);
1076
1077             /* Compute parameters for interactions between i and j atoms */
1078             qq00             = _mm256_mul_pd(iq0,jq0);
1079             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1080                                             vdwioffsetptr0+vdwjidx0B,
1081                                             vdwioffsetptr0+vdwjidx0C,
1082                                             vdwioffsetptr0+vdwjidx0D,
1083                                             &c6_00,&c12_00);
1084
1085             /* Calculate table index by multiplying r with table scale and truncate to integer */
1086             rt               = _mm256_mul_pd(r00,vftabscale);
1087             vfitab           = _mm256_cvttpd_epi32(rt);
1088             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1089             vfitab           = _mm_slli_epi32(vfitab,2);
1090
1091             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1092             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1093             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1094             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1095             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1096             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1097             Heps             = _mm256_mul_pd(vfeps,H);
1098             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1099             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1100             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
1101
1102             /* LENNARD-JONES DISPERSION/REPULSION */
1103
1104             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1105             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1106
1107             fscal            = _mm256_add_pd(felec,fvdw);
1108
1109             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1110
1111             /* Calculate temporary vectorial force */
1112             tx               = _mm256_mul_pd(fscal,dx00);
1113             ty               = _mm256_mul_pd(fscal,dy00);
1114             tz               = _mm256_mul_pd(fscal,dz00);
1115
1116             /* Update vectorial force */
1117             fix0             = _mm256_add_pd(fix0,tx);
1118             fiy0             = _mm256_add_pd(fiy0,ty);
1119             fiz0             = _mm256_add_pd(fiz0,tz);
1120
1121             fjx0             = _mm256_add_pd(fjx0,tx);
1122             fjy0             = _mm256_add_pd(fjy0,ty);
1123             fjz0             = _mm256_add_pd(fjz0,tz);
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             r10              = _mm256_mul_pd(rsq10,rinv10);
1130             r10              = _mm256_andnot_pd(dummy_mask,r10);
1131
1132             /* Compute parameters for interactions between i and j atoms */
1133             qq10             = _mm256_mul_pd(iq1,jq0);
1134
1135             /* Calculate table index by multiplying r with table scale and truncate to integer */
1136             rt               = _mm256_mul_pd(r10,vftabscale);
1137             vfitab           = _mm256_cvttpd_epi32(rt);
1138             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1139             vfitab           = _mm_slli_epi32(vfitab,2);
1140
1141             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1142             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1143             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1144             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1145             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1146             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1147             Heps             = _mm256_mul_pd(vfeps,H);
1148             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1149             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1150             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1151
1152             fscal            = felec;
1153
1154             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1155
1156             /* Calculate temporary vectorial force */
1157             tx               = _mm256_mul_pd(fscal,dx10);
1158             ty               = _mm256_mul_pd(fscal,dy10);
1159             tz               = _mm256_mul_pd(fscal,dz10);
1160
1161             /* Update vectorial force */
1162             fix1             = _mm256_add_pd(fix1,tx);
1163             fiy1             = _mm256_add_pd(fiy1,ty);
1164             fiz1             = _mm256_add_pd(fiz1,tz);
1165
1166             fjx0             = _mm256_add_pd(fjx0,tx);
1167             fjy0             = _mm256_add_pd(fjy0,ty);
1168             fjz0             = _mm256_add_pd(fjz0,tz);
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             r20              = _mm256_mul_pd(rsq20,rinv20);
1175             r20              = _mm256_andnot_pd(dummy_mask,r20);
1176
1177             /* Compute parameters for interactions between i and j atoms */
1178             qq20             = _mm256_mul_pd(iq2,jq0);
1179
1180             /* Calculate table index by multiplying r with table scale and truncate to integer */
1181             rt               = _mm256_mul_pd(r20,vftabscale);
1182             vfitab           = _mm256_cvttpd_epi32(rt);
1183             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1184             vfitab           = _mm_slli_epi32(vfitab,2);
1185
1186             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1187             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1188             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1189             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1190             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1191             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1192             Heps             = _mm256_mul_pd(vfeps,H);
1193             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1194             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1195             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1196
1197             fscal            = felec;
1198
1199             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1200
1201             /* Calculate temporary vectorial force */
1202             tx               = _mm256_mul_pd(fscal,dx20);
1203             ty               = _mm256_mul_pd(fscal,dy20);
1204             tz               = _mm256_mul_pd(fscal,dz20);
1205
1206             /* Update vectorial force */
1207             fix2             = _mm256_add_pd(fix2,tx);
1208             fiy2             = _mm256_add_pd(fiy2,ty);
1209             fiz2             = _mm256_add_pd(fiz2,tz);
1210
1211             fjx0             = _mm256_add_pd(fjx0,tx);
1212             fjy0             = _mm256_add_pd(fjy0,ty);
1213             fjz0             = _mm256_add_pd(fjz0,tz);
1214
1215             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1216             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1217             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1218             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1219
1220             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1221
1222             /* Inner loop uses 131 flops */
1223         }
1224
1225         /* End of innermost loop */
1226
1227         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1228                                                  f+i_coord_offset,fshift+i_shift_offset);
1229
1230         /* Increment number of inner iterations */
1231         inneriter                  += j_index_end - j_index_start;
1232
1233         /* Outer loop uses 18 flops */
1234     }
1235
1236     /* Increment number of outer iterations */
1237     outeriter        += nri;
1238
1239     /* Update outer/inner flops */
1240
1241     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1242 }